Exploring the Impact of the Digital Economy on Green Total Factor Productivity—Evidence from Chinese Cities
Abstract
:1. Introduction
2. Mechanism Analysis
2.1. Digital Economic Index
2.2. Green Total Factor Productivity
2.3. Measurement and Analysis Methods
2.4. Empirical Model
2.5. Data Sources and Descriptive Statistics for Variables
3. Empirical Analysis and Results
3.1. Results of Baseline Regression
3.2. Robustness Test
3.3. Heterogeneity Analysis
3.4. Analysis of Impact Mechanisms
4. Discussion
4.1. Discussion of the Main Effects
4.2. Discussion of Intermediary Effects
4.3. Discussion of Heterogeneity
5. Conclusions and Implications
6. Study Limitations and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tapscott, D.; Lowy, A.; Ticoll, D. Blueprint to the Digital Economy: Wealth Creation in the Era of e-Business, 1st ed.; McGraw-Hill: New York, NY, USA, 1998; p. 384. [Google Scholar]
- Paradise, J.F. China’s Quest for Global Economic Governance Reform. J. Chin. Political Sci. 2019, 24, 471–493. [Google Scholar] [CrossRef]
- Watanabe, C.; Naveed, K.; Tou, Y.; Neittaanmäki, P. Measuring GDP in the digital economy: Increasing dependence on uncaptured GDP. Technol. Forecast. Soc. Chang. 2018, 137, 226–240. [Google Scholar] [CrossRef]
- Rolle, R.P.; Martucci, V.; Godoy, E.P. Architecture for digital twin implementation focusing on industry 4.0. IEEE Lat. Am. Trans. 2020, 18, 889–898. [Google Scholar] [CrossRef]
- Huang, J.; Shen, Y.; Chen, J.; Zhou, Y. Regional Digital Economy Development and Enterprise Productivity: A Study of the Chinese Yangtze River Delta. Reg. Sci. Policy Pract. 2022, 14, 118–137. [Google Scholar] [CrossRef]
- Curran, D. Risk, innovation, and democracy in the digital economy. Eur. J. Soc. Theory 2018, 21, 207–226. [Google Scholar] [CrossRef]
- Nambisan, S.; Wright, M.; Feldman, M. The digital transformation of innovation and entrepreneurship: Progress, challenges and key themes. Res. Policy 2019, 48, 103773. [Google Scholar] [CrossRef]
- Arntz, M.; Gregory, T.; Zierahn, U. The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis; OECD Social, Employment and Migration Working Papers; OECD: Paris, France, 2016; Volume 189. [Google Scholar] [CrossRef]
- Frey, C.B.; Osborne, M.A. The future of employment: How susceptible are jobs to computerization? Technol. Forecast. Soc. Chang. 2017, 114, 254–280. [Google Scholar] [CrossRef]
- Acemoglu, D.; Restrepo, P. Artificial intelligence, automation, and work. In The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2018; pp. 197–236. [Google Scholar]
- Jabłoński, M. Value migration to the sustainable business models of digital economy companies on the capital market. Sustainability 2018, 10, 3113. [Google Scholar] [CrossRef]
- Pouri, M.J.; Hilty, L.M. Conceptualizing the digital sharing economy in the context of sustainability. Sustainability 2018, 10, 4453. [Google Scholar] [CrossRef]
- Rosário, A.T.; Dias, J.C. Sustainability and the Digital Transition: A Literature Review. Sustainability 2022, 14, 4072. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. “Green” productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Jeon, B.M.; Sickles, R.C. The role of environmental factors in growth accounting. J. Appl. Econom. 2004, 19, 567–591. [Google Scholar] [CrossRef]
- Chen, C.; Lan, Q.; Gao, M.; Sun, Y. Green total factor productivity growth and its determinants in China’s industrial economy. Sustainability 2018, 10, 1052. [Google Scholar] [CrossRef]
- Liu, Z.; Xin, L. Has China’s Belt and Road Initiative promoted its green total factor productivity?—Evidence from primary provinces along the route. Energy Policy 2019, 129, 360–369. [Google Scholar] [CrossRef]
- Zheng, S.; Kahn, M.E.; Sun, W.; Luo, D. Incentives for China’s urban mayors to mitigate pollution externalities: The role of the central government and public environmentalism. Reg. Sci. Urban Econ. 2014, 47, 61–71. [Google Scholar] [CrossRef]
- Tang, J.; Qin, F. Analyzing the Effect of Local Government Competition on Green Total Factor Productivity from the Market Segmentation Perspective in China—Evidence from a Three-Stage DEA Model. Front. Environ. Sci. 2021, 9, 763945. [Google Scholar] [CrossRef]
- Liao, L.; Du, M.; Chen, Z. Environmental pollution and socioeconomic health inequality: Evidence from China. Sustain. Cities Soc. 2023, 95, 104579. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Zhao, J. Does green credit policy promote the green innovation efficiency of heavy polluting industries?—Empirical evidence from China’s industries. Environ. Sci. Pollut. Res. Int. 2022, 29, 46721–46736. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Bai, G.; Shen, Z.; Xia, L. Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. J. Clean. Prod. 2022, 378, 134539. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, K.; Liu, K. Exploring the Mechanism of the Impact of Green Finance and Digital Economy on China’s Green Total Factor Productivity. Int. J. Environ. Res. Public Health 2022, 19, 16303. [Google Scholar] [CrossRef]
- Zhu, C.; Wu, M.; Xiong, J. Experienced CEO and Factor Productivity Improvement: Re-Examination of Experience Trap. Complexity 2022, 11, 1014224. [Google Scholar] [CrossRef]
- Canh, N.P.; Thanh, S.D. Financial development and the shadow economy: A multi-dimensional analysis. Econ. Anal. Policy 2020, 67, 37–54. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, C.; Huang, Z. Can the digital economy improve green total factor productivity? An empirical study based on Chinese urban data. Math. Biosci. Eng. 2023, 20, 6866–6893. [Google Scholar] [CrossRef] [PubMed]
- Gaziz, S.; Oteshova, A.; Prodanova, N.; Savina, N.; Bokov, D.O. Digital economy and its role in the process of economic development. J. Secur. Sustain. Issues 2020, 9, 1225–1235. [Google Scholar] [CrossRef] [PubMed]
- Telukdarie, A.; Dube, T.; Matjuta, P.; Philbin, S. The opportunities and challenges of digitalization for SME’s. Procedia Comput. Sci. 2023, 217, 689–698. [Google Scholar] [CrossRef]
- Jun, W.; Nasir, M.H.; Yousaf, Z.; Khattak, A.; Yasir, M.; Javed, A.; Shirazi, S.H. Innovation performance in digital economy: Does digital platform capability, improvisation capability and organizational readiness really matter? Eur. J. Innov. Manag. 2022, 25, 1309–1327. [Google Scholar] [CrossRef]
- Liu, B.; Zou, H.; Qin, H.; Ji, H.; Guo, Y. An evolutionary game analysis of digital transformation of multiagents in digital innovation ecosystems. PLoS ONE 2023, 18, e02890111. [Google Scholar] [CrossRef]
- Xie, M.; Ding, L.; Xia, Y.; Guo, J.; Pan, J.; Wang, H. Does artificial intelligence affect the pattern of skill demand? Evidence from Chinese manufacturing firms. Econ. Model. 2021, 96, 295–309. [Google Scholar] [CrossRef]
- Agrawal, A.; Gans, J.; Golfarb, A. The Economics of Artificial Intelligence: An Agenda; University of Chicago Press: Chicago, IL, USA, 2019; p. 43. [Google Scholar]
- Mullainathan, S.; Spiess, J. Machine learning: An applied econometric approach. J. Econ. Perspect. 2017, 31, 87–106. [Google Scholar] [CrossRef]
- Nuno, G. Change Management in the Digital Economy: Model Proposal. Int. J. Innov. Digit. Econ. 2020, 11, 37–51. [Google Scholar] [CrossRef]
- Jesemann, I. Support of startup innovation towards development of new industries. Procedia CIRP 2020, 88, 3–8. [Google Scholar] [CrossRef]
- Thijs, T.R.; Victoria, S. The Solow residual, Domar aggregation, and inefficiency: A synthesis of TFP measures. J. Product. Anal. 2011, 36, 71–77. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Dai, D.; Fan, Y.; Wang, G.; Xie, J. Digital Economy, R&D Investment, and Regional Green Innovation—Analysis Based on Provincial Panel Data in China. Sustainability 2022, 14, 6508. [Google Scholar] [CrossRef]
- Zhao, X.; Nakonieczny, J.; Jabeen, F.; Shahzad, U.; Jia, W. Does green innovation induce green total factor productivity? Novel findings from Chinese city level data. Technol. Forecast. Soc. Chang. 2022, 185, 122021. [Google Scholar] [CrossRef]
- Wu, J.; Xia, Q.; Li, Z. Green innovation and enterprise green total factor productivity at a micro level: A perspective of technical distance. J. Clean. Prod. 2022, 344, 131070. [Google Scholar] [CrossRef]
- Javeed, S.A.; Latief, R.; Akram, U. The Effects of Board Capital on Green Innovation to Improve Green Total Factor Productivity. Sustainability 2023, 15, 10023. [Google Scholar] [CrossRef]
- Du, M.; Wu, F.; Ye, D.; Zhao, Y.; Liao, L. Exploring the effects of energy quota trading policy on carbon emission efficiency: Quasi-experimental evidence from China. Energy Econ. 2023, 124, 106791. [Google Scholar] [CrossRef]
- Ma, D.; Zhu, Q. Innovation in emerging economies: Research on the digital economy driving high quality green development. J. Bus. Res. 2022, 145, 801–813. [Google Scholar] [CrossRef]
- Fan, F.; Lian, H.; Liu, X.; Wang, X. Can environmental regulation promote urban green innovation Efficiency? An empirical study based on Chinese cities. J. Clean. Prod. 2021, 287, 125060. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Peng, D.; Wen, H.; Song, H. Does the Digital Economy Promote Upgrading the Industrial Structure of Chinese Cities? Sustainability 2022, 14, 10235. [Google Scholar] [CrossRef]
- Fukuyama, H.; Weber, W.L. A directional slacks-based measure of technical inefficiency. Socio-Econ. Plan. Sci. 2009, 43, 274–287. [CrossRef]
- Gruber, H. Innovation, skills and investment: A digital industrial policy for Europe. Econ. Politica Ind. 2017, 44, 327–343. [Google Scholar] [CrossRef]
- Xue, Y.; Tang, C.; Wu, H.; Liu, J.; Hao, Y. The emerging driving force of energy consumption in China: Does digital economy development matter? Energy Policy 2022, 165, 112997. [Google Scholar] [CrossRef]
- Bobenič Hintošová, A.; Bódy, G. Sustainable FDI in the Digital Economy. Sustainability 2023, 15, 10794. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, P.; Wang, D.; Wu, J. Can smart city construction facilitate green total factor productivity? A quasi-natural experiment based on China’s pilot smart city. Sustain. Cities Soc. 2021, 69, 102809. [Google Scholar] [CrossRef]
Primary Indicators | Secondary Indicators | Definitions |
---|---|---|
Digital economic carrier | Traditional infrastructure | Internet users per 100 people |
Mobile phone users per 100 people | ||
Digital infrastructure | Mobile phone base stations | |
Big data centers | ||
Cloud platforms | ||
Industry digitization | Industrial digitalization | Computers per 100 people in industrial enterprises |
Proportion of industrial applications using Internet | ||
Service industrial digitalization | Digital financial inclusion level | |
E-commerce transaction volume | ||
E-government platforms | ||
Digital industrialization | Industry type | Top 100 Internet companies |
Listed companies in the intelligent manufacturing industry | ||
Industry scale | Telecommunications and postal services revenue | |
Software and information services revenue | ||
Computer and other electronic equipment manufacturing revenue |
Variable Symbol | Variable Meaning | Measurement Method |
---|---|---|
RD | R&D spending | R&D spending/General financial expenditures |
Sciexp | Science expenditure | Urban research spending |
FDI | Foreign direct investment | Amount of foreign direct investment |
Lngdp | The development rate of regional GDP | |
czzc1 | Cities’ finance budget expenditure | Amount of finance budget expenditure |
Fingdp | GDP | Gross domestic product |
Tzgdp | The proportion of tertiary industry | Tertiary industry/total industry |
Yangziriver | Cities in the Yangtze River Delta region | If the city belongs to the Yangtze River Delta region, value is 1; otherwise, value is 0 |
Areacode | City area code | Cities in the east are 1, cities in the central region are 2, and cities in the west are 3 |
VarName | Obs | Mean | SD | Min | Median | Max | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
GTFP | 2538 | 0.997 | 0.019 | 0.806 | 0.996 | 1.243 | |||||
rd | 2538 | 0.016 | 0.016 | 0.001 | 0.011 | 0.207 | |||||
szjj3 | 2538 | 0.094 | 0.051 | 0.010 | 0.085 | 0.552 | |||||
szjj4 | 2538 | −0.011 | 0.661 | −1.234 | −0.121 | 6.374 | |||||
sciexp | 2538 | 1.01 × 105 | 3.09 × 105 | 753.000 | 26,565.500 | 4.33 × 106 | |||||
fdi | 2538 | 5.99 × 105 | 1.42 × 106 | 0.000 | 1.54 × 105 | 2.05 × 107 | |||||
czzc1 | 2538 | 10.256 | 0.730 | 7.426 | 10.196 | 13.635 | |||||
tzgdp | 2538 | 40.967 | 9.932 | 10.200 | 40.200 | 83.500 | |||||
lngdp | 2538 | 16.569 | 0.909 | 14.106 | 16.464 | 19.760 | |||||
yangziriver | 2538 | 0.383 | 0.486 | 0.000 | 0.000 | 1.000 | |||||
areacode | 2538 | 1.943 | 0.802 | 1.000 | 2.000 | 3.000 | |||||
GTFP | rd | szjj3 | szjj4 | sciexp | fdi | czzc1 | tzgdp | lngdp | yangzi~r | areacode | |
GTFP | 1 | ||||||||||
rd | 0.089 *** | 1 | |||||||||
szjj3 | 0.165 *** | 0.483 *** | 1 | ||||||||
szjj4 | 0.155 *** | 0.484 *** | 0.969 *** | 1 | |||||||
sciexp | 0.109 *** | 0.521 *** | 0.530 *** | 0.482 *** | 1 | ||||||
fdi | 0.057 *** | 0.443 *** | 0.441 *** | 0.424 *** | 0.791 *** | 1 | |||||
czzc1 | 0.075 *** | 0.428 *** | 0.550 *** | 0.521 *** | 0.610 *** | 0.666 *** | 1 | ||||
tzgdp | 0.120 *** | 0.273 *** | 0.617 *** | 0.625 *** | 0.413 *** | 0.372 *** | 0.526 *** | 1 | |||
lngdp | 0.077 *** | 0.526 *** | 0.527 *** | 0.527 *** | 0.542 *** | 0.625 *** | 0.885 *** | 0.388 *** | 1 | ||
yangziriver | −0.0260 | 0.250 *** | −0.0190 | −0.054 *** | 0.105 *** | 0.106 *** | 0.142 *** | −0.053 *** | 0.106 *** | 1 | |
areacode | −0.057 *** | −0.346 *** | −0.263 *** | −0.257 *** | −0.209 *** | −0.207 *** | −0.272 *** | −0.244 *** | −0.428 *** | 0.110 *** | 1 |
GTFP | (1) | (2) | (3) |
---|---|---|---|
Szjj | 0.066 *** | 0.059 ** | 0.004 * |
(0.023) | (0.026) | (0.002) | |
sciexp | −0.000 | 0.000 | |
(0.000) | (0.000) | ||
Govfin | 0.000 | 0.000 | |
(0.000) | (0.000) | ||
Fdi | −0.000 *** | −0.000 *** | |
(0.000) | (0.000) | ||
Fingdp | −0.009 ** | −0.009 ** | |
(0.004) | (0.004) | ||
Tzgdp | −0.0001 | −0.0001 | |
(0.0001) | (0.0001) | ||
Lngdp | 0.014 *** | 0.014 *** | |
(0.004) | (0.004) | ||
Constant | 0.990 *** | 0.849 *** | 0.856 *** |
(0.002) | (0.052) | (0.054) | |
Yearfix | YES | YES | YES |
Idfix | YES | YES | YES |
R-squared | 0.117 | 0.132 | 0.131 |
GTFP | |||||
---|---|---|---|---|---|
Yangziriver | Non-Yangzi | East | West | Central | |
(1) | (2) | (3) | (4) | (5) | |
DEI | 0.100 *** | 0.036 | 0.059 ** | −0.027 | 0.051 |
(0.032) | (0.025) | (0.026) | (0.056) | (0.046) | |
Govfin | 0.000 | 0.000 | −0.000 | 0.000 * | 0.000 * |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Fdi | −0.000 ** | −0.000 *** | −0.000 *** | −0.000 | −0.000 ** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Fingdp | −0.006 | −0.013 ** | −0.026 *** | 0.004 | −0.011 |
(0.007) | (0.006) | (0.008) | (0.009) | (0.009) | |
Tzgdp | 0.000 | 0.000 | −0.000 | −0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
Lngdp | 0.019 ** | 0.020 *** | 0.029 *** | 0.005 | 0.016 *** |
(0.009) | (0.005) | (0.008) | (0.008) | (0.005) | |
Constant | 0.734 *** | 0.799 *** | 0.771 *** | 0.876 *** | 0.833 *** |
(0.164) | (0.076) | (0.120) | (0.130) | (0.104) | |
Observations | 972 | 1566 | 891 | 747 | 900 |
R-squared | 0.137 | 0.152 | 0.198 | 0.115 | 0.136 |
Yearfix | YES | YES | YES | YES | YES |
Idfix | YES | YES | YES | YES | YES |
Variable | (1) | (2) |
---|---|---|
R&D Investment | GTFP | |
rd | 0.069 ** | |
(0.027) | ||
DEI | 0.128 *** | |
(0.008) | ||
caizhengzc | −0.000 *** | 0.000 *** |
(0.000) | (0.000) | |
fdi | 0.000 *** | −0.000 ** |
(0.000) | (0.000) | |
czzc1 | −0.004 *** | −0.004 *** |
(0.001) | (0.001) | |
tzgdp | −0.000 | 0.000 *** |
(0.000) | (0.000) | |
lngdp | 0.008 *** | 0.002 ** |
(0.001) | (0.001) | |
Constant | −0.088 *** | 0.995 *** |
(0.006) | (0.009) | |
Observations | 2538 | 2538 |
R-squared | 0.393 | 0.065 |
Yearfix | YES | YES |
Idfix | YES | YES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Z.; Zhu, C.; Chen, M. Exploring the Impact of the Digital Economy on Green Total Factor Productivity—Evidence from Chinese Cities. Sustainability 2024, 16, 2734. https://doi.org/10.3390/su16072734
Sheng Z, Zhu C, Chen M. Exploring the Impact of the Digital Economy on Green Total Factor Productivity—Evidence from Chinese Cities. Sustainability. 2024; 16(7):2734. https://doi.org/10.3390/su16072734
Chicago/Turabian StyleSheng, Zuoyufan, Chengpeng Zhu, and Mo Chen. 2024. "Exploring the Impact of the Digital Economy on Green Total Factor Productivity—Evidence from Chinese Cities" Sustainability 16, no. 7: 2734. https://doi.org/10.3390/su16072734
APA StyleSheng, Z., Zhu, C., & Chen, M. (2024). Exploring the Impact of the Digital Economy on Green Total Factor Productivity—Evidence from Chinese Cities. Sustainability, 16(7), 2734. https://doi.org/10.3390/su16072734