Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Heterogeneity between Subregions
- Global spatial autocorrelation.
- Local spatial autocorrelation.
2.3.2. Homogeneity within Partitions
2.3.3. Assessment of Optimal Number of Groups (Calculation of Pseudo F-Statistics)
2.4. Research Framework
3. Results
3.1. Descriptive Statistics
3.2. Correlation Analysis
3.3. Analysis of Spatial Heterogeneity at the Unidimensional Indicator Level
3.4. Zoning of Cropland Management Types in the Northeastern Black Soil Zone
4. Discussion
4.1. Scientific and Comprehensive Indicators Are Key to Measuring Regional Zoning
4.2. Information on the Sanjiang Plain and Songnen Plain in the Same Subregion
4.3. Evaluation of the Results of Zoning
4.4. Shortcoming of the Study and Future Research Direction
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, B.; Zhang, G.; Xie, Y.; Shen, B.; Gu, Z.; Ding, Y. Delineating the black soil region and typical black soil region of northeastern China. Chin. Sci. Bull. 2021, 66, 96–106. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Huang, F.; Yang, X.; Liu, Z.; Wan, W.; Wang, J.; Xu, Y.; Li, Z.; Ren, T. Ensuring national food security by strengthening high-productivity black soil granary in Northeast China. Bull. Chin. Acad. Sci. (Chin. Version) 2021, 36, 1184–1193. [Google Scholar]
- Zhang, J.; Sun, B.; Zhu, J.; Wang, J.; Pan, X.; Gao, T. Black soil protection and utilization based on harmonization of mountain-river-forest-farmland-lake-grassland-sandy land ecosystems and strategic construction of ecological barrier. Bull. Chin. Acad. Sci. (Chin. Version) 2021, 36, 1155–1164. [Google Scholar]
- Han, X.; Zou, W.; Yang, F. Main achievements, challenges, and recommendations of black soil conservation and utilization in China. Bull. Chin. Acad. Sci. (Chin. Version) 2021, 36, 1194–1202. [Google Scholar]
- Han, X.; Zou, W. Research perspectives and footprint of utilization and protection of black soil in northeast China. Acta Pedofil. Sin. 2021, 58, 1341–1358. [Google Scholar]
- Wang, J.; Xu, X.; Pei, J.; Li, S. Current situations of black soil quality and facing opportunities and challenges in northeast China. Chin. J. Soil Sci. 2021, 52, 695–701. [Google Scholar]
- Xu, Y.; Pei, J.; Li, S.; Zou, H.; Wang, J.; Zhang, J. Main characteristics and utilization countermeasures for black soils in different regions of Northeast China. Chin. J. Soil Sci. 2023, 54, 495–504. [Google Scholar]
- Schneider, A.; Friedl, M.A.; Potere, D. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens. Environ. 2010, 114, 1733–1746. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Martilli, A.; Mills, G.; Moede, C.; Stewart, I.D.; Van Vliet, J.; Bechtel, B. A global map of Local Climate Zones to support earth system modelling and urban scale environmental science. Earth Syst. Sci. Data Discuss. 2022, 14, 3835–3873. [Google Scholar] [CrossRef]
- Bailey, R.G.; Bailey, R.G. Ecoregions and climate change. In Ecoregions: The Ecosystem Geography of the Oceans and Continents; Springer: New York, NY, USA, 2014; pp. 95–103. [Google Scholar]
- Dadrasi, A.; Chaichi, M.; Nehbandani, A.; Soltani, E.; Nemati, A.; Salmani, F.; Heydari, M.; Yousefi, A.R. Global insight into understanding wheat yield and production through Agro-Ecological Zoning. Sci. Rep. 2023, 13, 15898. [Google Scholar] [CrossRef]
- Walton, C.R.; Zak, D.; Audet, J.; Petersen, R.J.; Lange, J.; Oehmke, C.; Wichtmann, W.; Kreyling, J.; Grygoruk, M.; Jabłońska, E. Wetland buffer zones for nitrogen and phosphorus retention: Impacts of soil type, hydrology and vegetation. Sci. Total Environ. 2020, 727, 138709. [Google Scholar] [CrossRef] [PubMed]
- Zymaroieva, A.; Zhukov, O.; Fedonyuk, T.; Pinkin, A. Application of Geographically Weighted Principal Components Analysis Based on Soybean Yield Spatial Variation for Agro-Ecological Zoning of the Territory. Agron. Res. 2019, 17, 2460–2473. [Google Scholar] [CrossRef]
- Mirzaee, S.; Ghorbani-Dashtaki, S.; Mohammadi, J.; Asadi, H.; Asadzadeh, F. Spatial variability of soil organic matter using remote sensing data. Catena 2016, 145, 118–127. [Google Scholar] [CrossRef]
- Eskandari Damaneh, H.; Jafari, M.; Eskandari Damaneh, H.; Behnia, M.; Khoorani, A.; Tiefenbacher, J.P. Testing possible scenario-based responses of vegetation under expected climatic changes in Khuzestan Province. Air Soil Water Res. 2021, 14, 117862. [Google Scholar] [CrossRef]
- Brown, M.; McCarty, J. Is remote sensing useful for finding and monitoring urban farms? Appl. Geogr. 2017, 80, 23–33. [Google Scholar] [CrossRef]
- Djerida, A. Investigating Groundwater Zones Relationship with Rainfall, Temperature and Modis-Derived NDVI and EVI. In Proceedings of the IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6440–6443. [Google Scholar]
- Nse, O.U.; Okolie, C.J.; Nse, V.O. Dynamics of land cover, land surface temperature and NDVI in Uyo City, Nigeria. Sci. Afr. 2020, 10, e00599. [Google Scholar] [CrossRef]
- Istanbuly, M.H.; Thabeet, A. Studying Changes in Normalized Difference Vegetation Index (NDVI) for Cover in the Area of Aleppo Mountain (Afrin) in Period between (2010–2016). J. Univ. Babylon Pure Appl. Sci. 2020, 28, 33–47. [Google Scholar]
- Wang, M.; Liu, X.; Liu, Z.; Wang, F.; Li, X.; Hou, G.; Zhao, S. Evaluation and driving force analysis of cultivated land quality in black soil region of Northeast China. Chin. Geogr. Sci. 2023, 33, 601–615. [Google Scholar] [CrossRef]
- Zhao, G.; Deng, Z.; Liu, C. Assessment of the Coupling Degree between Agricultural Modernization and the Coordinated Development of Black Soil Protection and Utilization: A Case Study of Heilongjiang Province. Land 2024, 13, 288. [Google Scholar] [CrossRef]
- Davatgar, N.; Neishabouri, M.; Sepaskhah, A. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 2012, 173, 111–118. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bakhshandeh, E.; Emadi, M.; Li, T.; Xu, M. Integration of PCA and fuzzy clustering for delineation of soil management zones and cost-efficiency analysis in a citrus plantation. Sustainability 2020, 12, 5809. [Google Scholar] [CrossRef]
- Li, X.; Meng, X.; Ji, X.; Zhou, J.; Pan, C.; Gao, N. Zoning technology for the management of ecological and clean small-watersheds via k-means clustering and entropy-weighted TOPSIS: A case study in Beijing. J. Clean. Prod. 2023, 397, 136449. [Google Scholar] [CrossRef]
- Rahbar, A.; Vadiati, M.; Talkhabi, M.; Nadiri, A.A.; Nakhaei, M.; Rahimian, M. A hydrogeochemical analysis of groundwater using hierarchical clustering analysis and fuzzy C-mean clustering methods in Arak plain, Iran. Environ. Earth Sci. 2020, 79, 342. [Google Scholar] [CrossRef]
- Bhagwan, V.P.V.; Theerthala, A.A.; Devi, U.D.M.U.; Neelima, T.; Chary, D.S. Delineation and Evaluation of Management Zones for Site Specific Nutrient Management in Maize Tracts of Northern Telangana using Geostatistical and Fuzzy C Mean Cluster approach. Res. Sq. 2023, preprint. [Google Scholar]
- Zhang, F.; Wang, H.; Zhao, X.; Jiang, Q. Investigation on Zoning Management of Saline Soil in Cotton Fields in Alar Reclamation Area, Xinjiang. Agriculture 2023, 14, 3. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H.; Feng, Y.; He, Y.; Han, Z.; Zhang, B. Investigating Urban Underground Space Suitability Evaluation Using Fuzzy C-Mean Clustering Algorithm—A Case Study of Huancui District, Weihai City. Appl. Sci. 2022, 12, 12113. [Google Scholar] [CrossRef]
- Ao, M.; Zhang, X.; Guan, Y. Research and practice of conservation tillage in black soil region of northeast China. Bull. Chin. Acad. Sci. (Chin. Version) 2021, 36, 1203–1215. [Google Scholar]
- FAO. World Reference Base for Soil Resources 2014, Update 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Taxonomy, S. Keys to Soil Taxonomy; United States Department of Agriculture Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- FAO. Global Status of Black Soils; FAO: Rome, Italy, 2022. [Google Scholar]
- Zhou, Y.; Li, X.; Liu, Y. Cultivated land protection and rational use in China. Land Use Policy 2021, 106, 105454. [Google Scholar] [CrossRef]
- Meng, X.; Bao, Y.; Luo, C.; Zhang, X.; Liu, H. SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML-CNN prediction model. Remote Sens. Environ. 2024, 300, 113911. [Google Scholar] [CrossRef]
- Xiong, C.; Ma, H.; Liang, S.; He, T.; Zhang, Y.; Zhang, G.; Xu, J. Improved global 250 m 8-day NDVI and EVI products from 2000–2021 using the LSTM model. Sci. Data 2023, 10, 800. [Google Scholar] [CrossRef]
- Chen, Y. Spatial autocorrelation equation based on Moran’s index. Sci. Rep. 2023, 13, 19296. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. New approaches for calculating Moran’s index of spatial autocorrelation. PLoS ONE 2013, 8, e68336. [Google Scholar] [CrossRef] [PubMed]
- Griffith, D.A. Interpreting Moran Eigenvector Maps with the Getis-Ord Gi* Statistic. Prof. Geogr. 2021, 73, 447–463. [Google Scholar] [CrossRef]
- Lin, J. Comparison of Moran’s I and Geary’s C in Multivariate Spatial Pattern Analysis. Geogr. Anal. 2023, 55, 685–702. [Google Scholar] [CrossRef]
- Anselin, L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association. In Spatial Analytical Perspectives on GIS; Routledge: Abingdon, UK, 2019; pp. 111–126. [Google Scholar]
- Liu, W.; Ma, L.; Smanov, Z.; Samarkhanov, K.; Abuduwaili, J. Clarifying Soil Texture and Salinity Using Local Spatial Statistics (Getis-Ord Gi* and Moran’s I) in Kazakh–Uzbekistan Border Area, Central Asia. Agronomy 2022, 12, 332. [Google Scholar] [CrossRef]
- Sinaga, S.J.; Satyahadewi, N.; Perdana, H. Determining the Optimum Number of Clusters in Hierarchical Clustering Using Pseudo-F. Euler J. Ilm. Mat. Sains Dan Teknol. 2023, 11, 372–382. [Google Scholar] [CrossRef]
- Hochin, T.; Hayashi, Y.; Nomiya, H.; Chowdhury, M. Quasi-optimality under pseudo F statistic in clustering data. J. Contrib. 2018, 7, 320–324. [Google Scholar] [CrossRef]
- Miky, Y.; Kamel, A.; Alshouny, A. A combined contour lines iteration algorithm and Delaunay triangulation for terrain modeling enhancement. Geo-Spat. Inf. Sci. 2023, 26, 558–576. [Google Scholar] [CrossRef]
- Gökgöz, T.; Hacar, M. Comparison of two methods for multiresolution terrain modelling in GIS. Geocarto Int. 2020, 35, 1360–1372. [Google Scholar] [CrossRef]
- Liu, H.; Bao, Y.; Xu, M.; Zhang, X.; Meng, X.; Pan, Y.; Yang, H.; Xie, Y. Comparison of precision management zoning methods in black soil area based on SOM and NDVI. Trans. CSAE 2019, 35, 177–183. [Google Scholar]
- Fan, J.; Zhou, K.; Sheng, K.; Guo, R.; Chen, D.; Wang, Y.; Liu, H.; Wang, Z.; Sun, Y.; Zhang, J. Territorial function differentiation and its comprehensive regionalization in China. Sci. China Earth Sci. 2023, 66, 247–270. [Google Scholar] [CrossRef]
- Vianna, L.F.d.N.; Massignan, A.M.; Pandolfo, C.; Dortzbach, D. Evaluating environmental factors, geographic scale and methods for viticultural zoning in the high-altitude region of Santa Catarina, Brazil. Remote Sens. Appl. Soc. Environ. 2019, 13, 158–170. [Google Scholar] [CrossRef]
- Taye, M.; Simane, B.; Zaitchik, B.F.; Selassie, Y.G.; Setegn, S. Rainfall variability across the agro-climatic zones of a tropical highland: The case of the jema watershed, northwestern ethiopia. Environments 2019, 6, 118. [Google Scholar] [CrossRef]
- Ma, S.-N.; Yin, Y.; Yu, Z.-Y.; Meng, L.-H.; Liu, Q.; Zhang, X.-L. UAV remote sensing accurate management zoning with terrain factor. J. Jilin Agric. Univ. 2021, 43, 205–212. [Google Scholar]
- Parhizkar, T.; Rafieipour, E.; Parhizkar, A. Evaluation and improvement of energy consumption prediction models using principal component analysis based feature reduction. J. Clean. Prod. 2021, 279, 123866. [Google Scholar] [CrossRef]
- Chen, J.; Qu, M.; Zhang, J.; Xie, E.; Huang, B.; Zhao, Y. Soil fertility quality assessment based on geographically weighted principal component analysis (GWPCA) in large-scale areas. Catena 2021, 201, 105197. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Q.; Duan, Y.; Liu, W. Spatial Correlation between Water Resources and Rural Settlements in the Yanhe Watershed Based on Bivariate Spatial Autocorrelation Methods. Land 2023, 12, 1719. [Google Scholar] [CrossRef]
- Ficetola, G.F.; Lunghi, E.; Manenti, R. Microhabitat analyses support relationships between niche breadth and range size when spatial autocorrelation is strong. Ecography 2020, 43, 724–734. [Google Scholar] [CrossRef]
- Darikwa, T.B.; Manda, S.O. Measuring Bivariate Spatial Clustering in Disease Risks. In Modern Biostatistical Methods for Evidence-Based Global Health Research; Springer: Berlin/Heidelberg, Germany, 2022; pp. 235–260. [Google Scholar]
Province | 2019 | 2021 | Change |
---|---|---|---|
Liaoning Province | 518.21 | 515.36 | −2.85 |
Jilin Province | 749.85 | 744.98 | −4.87 |
Heilongjiang Province | 1719.54 | 1716.58 | −2.96 |
Inner Mongolia East Four Leagues | 762.44 | 764.73 | 2.29 |
Total | 3750.04 | 3741.65 | −8.39 |
Factor | Abbreviation | Resolution | Name | Data Source |
---|---|---|---|---|
Climate | Pre_mean | 1 km | Precipitation | National Earth System Science Data Center, National Science and Technology Infrastructure of China (http://www.geodata.cn, accessed on 27 December 2023) |
Tem_mean | 1 km | Temperature | National Earth System Science Data Center, National Science and Technology Infrastructure of China (http://www.geodata.cn, accessed on 27 December 2023) | |
Soil | SOM_mean | 30 m | Soil Organic Matter | [34] Xiangtian Meng, Yilin Bao, Chong Luo, Xinle Zhang, Huanjun Liu, SOC content of global Mollisols at a 30 m spatial resolution from 1984 to 2021 generated by the novel ML–CNN prediction model, Remote Sensing of Environment, Volume 300, 2024, 113911, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2023.113911 |
Clay_mean | 1 km | Mean clay | The dataset is provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 27 December 2023) | |
Silt_mean | 1 km | Mean silt | The dataset is provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 29 December 2023) | |
Sand_mean | 1 km | Mean sand | The dataset is provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn, accessed on 29 December 2023) | |
Vegetation | NDVI_mean | 250 m | Mean normalized difference vegetation index | [35] Xiong, C., Ma, H., Liang, S. et al. Improved global 250 m 8-day NDVI and EVI products from 2000–2021 using the LSTM model. Sci Data 10, 800 (2023). https://doi.org/10.1038/s41597-023-02695-x |
EVI_mean | 250 m | Mean enhanced vegetation index | [35] Xiong, C., Ma, H., Liang, S. et al. Improved global 250 m 8-day NDVI and EVI products from 2000–2021 using the LSTM model. Sci Data 10, 800 (2023). https://doi.org/10.1038/s41597-023-02695-x | |
Terrain | Ele | 30 m | Elevation | Calculated from DEM |
Slo | 30 m | Slope | Calculated from DEM |
Norm | N | Mean | SD | Median | Min | Max | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
Pre | 317 | 704.12 | 193.18 | 676.02 | 203.33 | 1262.58 | 0.61 | 0.39 |
Tem | 317 | 5.85 | 2.88 | 5.62 | –3.02 | 11.74 | –0.30 | –0.15 |
SOM | 317 | 38.22 | 8.20 | 39.02 | 15.95 | 57.25 | –0.29 | –0.22 |
NDVI | 317 | 0.05 | 0.01 | 0.05 | 0.03 | 0.11 | 1.83 | 3.13 |
EVI | 317 | 0.05 | 0.01 | 0.04 | 0.03 | 0.08 | 1.52 | 2.14 |
Ele | 317 | 239.53 | 196.01 | 185.80 | 1.86 | 1229.94 | 1.71 | 3.52 |
Slo | 317 | 3.44 | 1.83 | 2.88 | 1.32 | 9.54 | 0.94 | 0.06 |
Clay | 317 | 24.82 | 3.31 | 24.78 | 13.60 | 32.41 | –0.25 | –0.31 |
Sand | 317 | 45.67 | 6.60 | 46.04 | 27.72 | 71.06 | 0.49 | 1.43 |
Silt | 317 | 29.51 | 4.12 | 29.51 | 11.61 | 45.16 | –0.59 | 3.83 |
Category | Group | Number of Counties | Area (km2) | Percentage (%) | Moran Index | Expectation | Variance | Moran Statistic | Moran_p_Value |
---|---|---|---|---|---|---|---|---|---|
Overall | - | 317 | 1,241,301.42 | 100 | 0.7706 | −0.0032 | 0.0013 | 21.5056 | 8.2 × 10−63 |
Southwest | 1 | 38 | 135,147.43 | 10.89 | 0.7142 | −0.0286 | 0.0176 | 5.6052 | 1.6 × 10−5 |
Central–South | 2 | 47 | 56,032.92 | 4.51 | 0.6611 | −0.0227 | 0.0105 | 6.6847 | 1.2 × 10−8 |
Central–West | 3 | 42 | 230,094.94 | 18.54 | 0.6141 | −0.0244 | 0.0106 | 6.2140 | 9.8 × 10−6 |
Northwest | 4 | 18 | 305,053.38 | 24.58 | 0.3097 | −0.0625 | 0.0298 | 2.1301 | 1.0 × 10−1 |
Southeast | 5 | 44 | 98,981.41 | 7.97 | 0.5148 | −0.0233 | 0.0112 | 5.0715 | 1.7 × 10−3 |
Northeast | 6 | 128 | 415,991.34 | 33.51 | 0.6605 | −0.0079 | 0.0034 | 11.3884 | 5.2 × 10−16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, L.; Yu, Y.; Zang, D.; Dai, X.; Zheng, S. Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China. Sustainability 2024, 16, 3341. https://doi.org/10.3390/su16083341
Li Y, Wang L, Yu Y, Zang D, Dai X, Zheng S. Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China. Sustainability. 2024; 16(8):3341. https://doi.org/10.3390/su16083341
Chicago/Turabian StyleLi, Yong, Liping Wang, Yunfei Yu, Deqiang Zang, Xilong Dai, and Shufeng Zheng. 2024. "Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China" Sustainability 16, no. 8: 3341. https://doi.org/10.3390/su16083341
APA StyleLi, Y., Wang, L., Yu, Y., Zang, D., Dai, X., & Zheng, S. (2024). Cropland Zoning Based on District and County Scales in the Black Soil Region of Northeastern China. Sustainability, 16(8), 3341. https://doi.org/10.3390/su16083341