Opportunities and Barriers to Composting in a Municipal Context: A Case Study in São José dos Campos, Brazil
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Identification of Local Stakeholders
2.3. Preparation of Scripts and Data Collection
2.4. Systematization and Data Analysis
3. Results and Discussion
3.1. Profile of Composting Local Stakeholders
3.2. Influencing Factors
3.3. Operational and Non-Operational Difficulties
3.4. Textual Statistics Analysis
3.5. Local Market
3.6. Opportunities and Barriers
4. Conclusions, Insights, and Limitations
4.1. Conclusions
- Education, infrastructure, and social influence were determining factors in the decision to start composting.
- Operational difficulties at the beginning of the process for home composting and non-operational challenges for community and commercial composting are recurrent.
- Interviewees perceive trust in public authorities as low and mention a lack of support, dialogue, and one-off activities as insufficient to promote the practice.
- Space availability is not a determining factor for home composting.
- The efficiency of generated waste diversion is from 42% to 59% for home composting.
- There are potential savings of 3% annually on landfill fees with home composting.
- In the current scenario, the economic value of organic compost from MSW’s rapidly degrading organic fraction is not very competitive compared to substitute products.
- Products with MAPA registration are 50% more expensive than those supplied without registration.
- Vermicompost could be a potential commercial product for PSOW appreciation.
4.2. Insights and Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deus, R.M.; Bezerra, B.S.; Battistelle, R.A.G. Solid waste indicators and their implications for management practice. Int. J. Environ. Sci. Technol. 2019, 16, 1129–1144. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018; Available online: https://openknowledge.worldbank.org/handle/10986/30317 (accessed on 10 May 2021).
- Sondh, S.; Upadhyay, D.S.; Patel, S.; Patel, R.N. A strategic review on Municipal Solid Waste (living solid waste) management system focusing on policies, selection criteria and techniques for waste-to-value. J. Clean. Prod. 2022, 356, 131908. [Google Scholar] [CrossRef]
- Kharola, S.; Ram, M.; Goyal, N.; Mangla, S.K.; Nautiyal, O.P.; Rawat, A.; Pant, D. Barriers to organic waste management in a circular economy. J. Clean. Prod. 2022, 362, 132282. [Google Scholar] [CrossRef]
- Fernández-González, J.M.; Diaz-Lopez, C.; Martin-Pascual, J.; Zamorano, M. Recycling organic fraction of municipal solid waste: Systematic literature review and bibliometric analysis of research trends. Sustainability 2020, 12, 4798. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Sarsaiya, S.; Awasthi, M.K.; Liu, T.; Zhao, J.; Kumar, S.; Zhang, Z. Changes in global trends in food waste composting: Research challenges and opportunities. Bioresour. Technol. 2020, 299, 122555. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Yang, M.; Xie, D.; Ni, J.; Meng, J.; Wang, Q.; Wu, C. Research trend analysis of composting based on Web of Science database. Environ. Sci. Pollut. Res. 2021, 28, 59528–59541. [Google Scholar] [CrossRef] [PubMed]
- Brasil. Lei no12.305 de 2 de Gosto de 2010. Presidência Da República. Institui a Política Nacional de Resíduos Sólidos; Altera a Lei No 9.605, de 12 de Fevereiro de 1998; E Dá Outras Providências. Diário Oficial Da União, Brasília DF, de 03 de Agosto de 2010, P. 2.; Diário Oficial [Da União]. 2010. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm (accessed on 19 May 2022).
- Brasil; Ministério do Meio Ambiente; Secretaria de Qualidade Ambiental. Plano Nacional de Resíduos Sólidos—Planares [recurso eletrônico], coordenação de André Luiz Felisberto França, Secretaria de Qualidade Ambiental, Carlos Roberto Vieira da Silva Filho, Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais—Abrelpe. 2022. Available online: https://portal-api.sinir.gov.br/wp-content/uploads/2022/07/Planares-B.pdf (accessed on 19 May 2019).
- ABRELPE. Associação Brasileira de Limpezas de Limpeza Pública e Resíduos Especiais. Panorama dos Resíduos Sólidos no Brasil. 2021. Available online: https://abrelpe.org.br/panorama-2021/ (accessed on 19 May 2019).
- SNIS. Ministério do Desenvolvimento Regional. Secretaria Nacional de Saneamento. In Sistema Nacional de Informações sobre Saneamento: Diagnóstico Temático Manejo de Resíduos Sólidos Urbanos; SNS/MDR: Brasília, Brazil, 2021. Available online: http://www.snis.gov.br/downloads/diagnosticos/rs/2020/DIAGNOSTICO_TEMATICO_VISAO_GERAL_RS_SNIS_2021.pdf (accessed on 19 May 2022).
- Siqueira, T.M.O.D.; Assad, M.L.R.C. Compostagem de resíduos sólidos urbanos no estado de São Paulo. Ambient. Soc. 2015, 18, 243–264. [Google Scholar] [CrossRef]
- Fehr, M.; Arantes, C.A. Making a case for recycling biodegradable municipal waste. Environ. Syst. Decis. 2015, 35, 483–489. [Google Scholar] [CrossRef]
- Gonçalves, A.T.T.; Moraes, F.T.F.; Marques, G.L.; Lima, J.P.; Lima, R.D.S. Urban solid waste challenges in the BRICS countries: A systematic literature review. Rev. Ambiente Água 2018, 13, e2157. [Google Scholar] [CrossRef]
- Simas, A.L.F.; Silva, W.L.C.; Tajiri, C.A.H.; Nader, F.A.S.; Alegre, M.F.R.; Scatena, G.K.; Oliveira Mello, I.; Filho, J.V.M.; Santa Inez, J.R.M. São Paulo. Plano de Resíduos Sólidos do Estado de São Paulo 2020; Secretaria de Infraestrutura e Meio Ambiente: São Paulo, Brazil, 2020; Available online: https://smastr16.blob.core.windows.net/home/2020/12/plano-resi%CC%81duos-solidos-2020_final.pdf (accessed on 24 June 2022).
- Machado, R.C.; Cunha, S.K. From urban waste to urban farmers: Can we close the agriculture loop within the city bounds? Waste Manag. Res. 2022, 40, 306–313. [Google Scholar] [CrossRef]
- Sewak, A.; Kim, J.; Rundle-Thiele, S.; Deshpande, S. Influencing household-level waste-sorting and composting behaviour: What works? A systematic review (1995–2020) of waste management interventions. Waste Manag. Res. 2021, 39, 892–909. [Google Scholar] [CrossRef] [PubMed]
- Díez, E.; McIntosh, B.S. A review of the factors which influence the use and usefulness of information systems. Environ. Model. Softw. 2009, 24, 588–602. [Google Scholar] [CrossRef]
- Kim, J.; Rundle-Thiele, S.; Knox, K. Systematic literature review of best practice in food waste reduction programs. J. Soc. Mark. 2019, 9, 447–466. [Google Scholar] [CrossRef]
- Yin, R.K. Estudo de Caso: Planejamento e Métodos, 5th ed.; Bookman: Porto Alegre, Brazil, 2015. [Google Scholar]
- IBGE. Instituto Brasileiro de Geografia e Estatística. Estimativas da População Residente com Data de Referência 1° de Julho de 2021. Available online: https://cidades.ibge.gov.br/brasil/sp/sao-jose-dos-campos/panorama (accessed on 24 June 2022).
- PMSJC. São José em Dados 2016—Informações Sobre a Cidade de São José dos Campos; Prefeitura Municipal de São José dos Campos: São José dos Campos, Brazil, 2016. [Google Scholar]
- PMSJC. Geosanja. 2022. Available online: https://geosanja.sjc.sp.gov.br/ (accessed on 6 June 2022).
- PMSJC. Urbam Conclui Estudo Sobre Lixo em São José; Prefeitura Municipal de São José dos Campos: São José dos Campos, Brazil, 2018. Available online: https://www.sjc.sp.gov.br/noticias/2018/setembro/27/urbam-conclui-estudo-sobre-o-lixo-em-sao-jose/ (accessed on 20 January 2020).
- Econodata. Plataforma de Prospecção de Empresas. Available online: https://www.econodata.com.br/consulta-cnae (accessed on 1 February 2021).
- Yin, R.K. Pesquisa Qualitativa do Início ao Fim; Penso Editora: Porto Alegre, Brazil, 2016. [Google Scholar]
- Marshall, B.; Cardon, P.; Poddar, A.; Fontenot, R. Does sample size matter in qualitative research?: A review of qualitative interviews in IS research. J. Comput. Inf. Syst. 2013, 54, 11–22. [Google Scholar] [CrossRef]
- Bardin, L. Análise de Conteúdo. Lisb. Edições 1977, 70, 225. [Google Scholar]
- Moraes, R. Análise de conteúdo. Rev. Educ. Porto Alegre 1999, 22, 7–32. [Google Scholar]
- Pereira, V.R.; Fiore, F.A. Fatores influenciadores da segregação de resíduos orgânicos na fonte geradora para a viabilização de sistemas de compostagem. Eng. Sanit. E Ambient. 2022, 27, 643–652. [Google Scholar] [CrossRef]
- Camargo, B.V.; Justo, A.M. Tutorial Para Uso do Software IRAMUTEQ. Universidade Federal de Santa Catarina Brasil [Internet].[Santa Catarina]: UFSC. 2013. Available online: http://www.iramuteq.org/documentation/fichiers/tutoriel-en-portugais (accessed on 2 February 2022).
- Helms, M.M.; Nixon, J. Exploring SWOT analysis–where are we now? A review of academic research from the last decade. J. Strategy Manag. 2010, 3, 215–251. [Google Scholar] [CrossRef]
- Mensah, J. Sustainable development: Meaning, history, principles, pillars, and implications for human action: Literature review. Cogent Soc. Sci. 2019, 5, 1653531. [Google Scholar] [CrossRef]
- Janker, J.; Mann, S.; Rist, S. Social sustainability in agriculture–A system-based framework. J. Rural Stud. 2019, 65, 32–42. [Google Scholar] [CrossRef]
- Vinuto, J. A amostragem em bola de neve na pesquisa qualitativa: Um debate em aberto. Temáticas 2014, 22, 203–220. [Google Scholar] [CrossRef]
- Kiehl, E.J. Fertilizantes Orgânicos; Agronômica Ceres: São Paulo, Brazil, 1985; p. 492. [Google Scholar]
- Onwosi, C.O.; Igbokwe, V.C.; Odimba, J.N.; Eke, I.E.; Nwankwoala, M.O.; Iroh, I.N.; Ezeogu, L.I. Composting technology in waste stabilization: On the methods, challenges and future prospects. J. Environ. Manag. 2017, 190, 140–157. [Google Scholar] [CrossRef]
- Jouhara, H.; Czajczyńska, D.; Ghazal, H.; Krzyżyńska, R.; Anguilano, L.; Reynolds, A.J.; Spencer, N. Municipal waste management systems for domestic use. Energy 2017, 139, 485–506. [Google Scholar] [CrossRef]
- Tramontina. Compostagem Plástica. Manual de Uso e Manutenção. 2016. Available online: https://assets.tramontina.com.br/upload/tramon/imagens/MUL/78295254MNP001.pdf (accessed on 21 September 2022).
- Higa, T.; Parr, J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment; International Nature Farming Research Center: Atami, Japan, 1994; Volume 1. [Google Scholar]
- Schwengber, J.E.i; Schiedeck, G.; Gonçalves, M.M. Compostagem laminar–uma alternativa para o manejo de resíduos orgânicos. In Comunicado Técnico 169; Embrapa: Brasília, Brazil, 2007. [Google Scholar]
- Güttler, G. Acúmulo e Perdas de Nutrientes Durante a Compostagem de Resíduos Orgânicos Diretamente Sobre o Solo Com Cultivo de Hortaliças. Ph.D. Thesis, State Santa Catarina University, Florianópolis, Brazil, 2019. [Google Scholar]
- Singh, R.P.; Singh, P.; Araujo, A.S.; Ibrahim, M.H.; Sulaiman, O. Management of urban solid waste: Vermicomposting a sustainable option. Resour. Conserv. Recycl. 2011, 55, 719–729. [Google Scholar] [CrossRef]
- Gajalakshmi, S.; Abbasi, S.A. Solid Waste Management by Composting: State of the Art. Crit. Rev. Environ. Sci. Technol. 2008, 38, 311–400. [Google Scholar] [CrossRef]
- de Sousa Antunes, L.F.; Correia ME, F.; da Silva, D.G. Millicomposting: Composting based on the use of diplopods aiming at the production of organic substrates. Rev. Em Agronegócio E Meio Ambiente 2020, 13, 1019–1038. [Google Scholar] [CrossRef]
- Bortolotti, A.; Kampelmann, S.; De Muynck, S. Decentralised organic resource treatments–classification and comparison through extended material flow analysis. J. Clean. Prod. 2018, 183, 515–526. [Google Scholar] [CrossRef]
- Siqueira, T.M.O.D.; Abreu, M.J.D. Fechando o ciclo dos resíduos orgânicos: Compostagem inserida na vida urbana. Ciência E Cult. 2016, 68, 38–43. [Google Scholar] [CrossRef]
- Adhikari, B.K.; Barrington, S.; Martinez, J.; King, S. Characterization of food waste and bulking agents for composting. Waste Manag. 2008, 28, 795–804. [Google Scholar] [CrossRef]
- Cox, J.; Giorgi, S.; Sharp, V.; Strange, K.; Wilson, D.C.; Blakey, N. Household waste prevention—A review of evidence. Waste Manag. Res. 2010, 28, 193–219. [Google Scholar] [CrossRef]
- Gillespie, A.; Halog, A. Community-Scale Composting Initiatives in South-East Queensland and Beyond: A Review of Successes, Challenges and Lessons for a Pilot Project on Karragarra Island, southern Moreton Bay. Circ. Econ. Sustain. 2022, 3, 305–319. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Mavrakis, V.; Davison, S.; Høj, S.B.; Vlaholias, E.; Sharp, A.; Dawson, D. Estimating informal household food waste in developed countries: The case of Australia. Waste Manag. Res. 2014, 32, 1254–1258. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, G.M.D. Compostagem Urbana: Estudo de Caso do Projeto Reciclorgânico. Bacharelor’s Thesis, Universidade de São Paulo, São Paulo, Brazil, 2021. [Google Scholar]
- Vázquez, M.A.; Soto, M. The efficiency of home composting programmes and compost quality. Waste Manag. 2017, 64, 39–50. [Google Scholar] [CrossRef] [PubMed]
- Abreu, M.J.D. Gestão Comunitária de Resíduos Orgânicos: O Caso do Projeto Revolução dos Baldinhos (PRB). Master’s Thesis, Capital Social e Agricultura Urbana. de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil, 2013. [Google Scholar]
- Walling, E.; Trémier, A.; Vaneeckhaute, C. A review of mathematical models for composting. Waste Manag. 2020, 113, 379–394. [Google Scholar] [CrossRef] [PubMed]
- Urbam. Urbanizadora Municipal. Estudo de Caracterização Gravimétrica São José dos Campos—SP. 2018. Available online: https://www.sjc.sp.gov.br/media/34209/apresentacao-urbam-caracterizacao-gravimetrica-sjc-2018.pdf (accessed on 4 July 2022).
- Fehr, M. The management challenge for household waste in emerging economies like Brazil: Realistic source separation and activation of reverse logistics. Waste Manag. Res. 2014, 32, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Pai, S.; Ai, N.; Zheng, J. Decentralized community composting feasibility analysis for residential food waste: A Chicago case study. Sustain. Cities Soc. 2019, 50, 101683. [Google Scholar] [CrossRef]
- Adhikari, B.K.; Trémier, A.; Martinez, J.; Barrington, S. Home and community composting for on-site treatment of urban organic waste: Perspective for Europe and Canada. Waste Manag. Res. 2010, 28, 1039–1053. [Google Scholar] [CrossRef] [PubMed]
- Karkanias, C.; Perkoulidis, G.; Moussiopoulos, N. Sustainable management of household biodegradable waste: Lessons from home composting programmes. Waste Biomass Valorization 2016, 7, 659–665. [Google Scholar] [CrossRef]
- Chiabi, L. Ciclo Orgânico: Um Empreendimento Social, de Compostagem Comunitária e Gestão de Resíduos. Bachalor’s Thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2017. [Google Scholar]
- Takahashi, Y.; Nomura, H.; Yabe, M. Modeling home composting behavior toward sustainable municipal organic waste management at the source in developing countries. Resour. Conserv. Recycl. 2019, 140, 65–71. [Google Scholar] [CrossRef]
- Keng, Z.X.; Chong, S.; Ng, C.G.; Ridzuan, N.I.; Hanson, S.; Pan, G.T.; Lam, H.L. Community-scale composting for food waste: A life-cycle assessment-supported case study. J. Clean. Prod. 2020, 261, 121220. [Google Scholar] [CrossRef]
- Li, Z.; Lu, H.; Ren, L.; He, L. Experimental and modeling approaches for food waste composting: A review. Chemosphere 2013, 93, 1247–1257. [Google Scholar] [CrossRef]
- Duque, T.O.; Valadão, J.D.A.D. Abordagens teóricas de tecnologia social no Brasil. Rev. Pensamento Contemp. Em Adm. 2017, 11, 1–19. [Google Scholar] [CrossRef]
- Borghesi, G.; Morone, P. A review of the effects of COVID-19 on food waste. Food Secur. 2023, 15, 261–280. [Google Scholar] [CrossRef]
- Principato, L.; Secondi, L.; Cicatiello, C.; Mattia, G. Caring more about food: The unexpected positive effect of the COVID-19 lockdown on household food management and waste. Socio-Econ. Plan. Sci. 2022, 82, 100953. [Google Scholar] [CrossRef]
- Iranmanesh, M.; Ghobakhloo, M.; Nilsashi, M.; Tseng, M.L.; Senali, M.G.; Abbasi, G.A. Impacts of the COVID-19 pandemic on household food waste behaviour: A systematic review. Appetite 2022, 176, 106127. [Google Scholar] [CrossRef]
- MAPA. Instrução Normativa nº 61, de 8 de Julho de 2020. Estabelece as Regras Sobre Definições, Exigências, Especificações, Garantias, Tolerâncias, Registro, Embalagem E Rotulagem dos Fertilizantes Orgânicos e dos Biofertilizantes, Destinados à Agricultura; Ministério da Agricultura, Pecuária e Abastecimento: Brasília, Brazil, 2020. [Google Scholar]
- Bersan, J.L.M.; Kelmer, G.A.R.; de Almeida, J.R. Avaliação da qualidade nutricional de composto orgânico produzido com resíduos provenientes de composteiras domésticas. Revista Brasileira de Meio Ambiente 2022. pp. 240–258. Available online: https://revistabrasileirademeioambiente.com/index.php/RVBMA/article/view/1164 (accessed on 19 May 2022).
- Ruellan, A. Olhares convergentes para o solo. Cad. De Desenvolv. E Meio Ambiente 1995, 2, 109–118. [Google Scholar]
- Costa, S.; Marinelo, S. O visível e o invisível da agricultura urbana em São José dos Campos, SP. GOT Rev. De Geogr. E Ordenam. Do Territ. 2019, 16, 99. [Google Scholar] [CrossRef]
- Nolasco, C.L. Demanda e abastecimento de hortaliças na microrregião de São José dos Campos, Brasil: Implicações para a segurança alimentar e desenvolvimento sustentável no contexto das mudanças globais. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil, 2016. [Google Scholar]
- Ferreira, A.J.D.; Guilherme, R.I.M.M.; Ferreira, C.S.S. Urban agriculture, a tool towards more resilient urban communities? Curr. Opin. Environ. Sci. Health 2018, 5, 93–97. [Google Scholar] [CrossRef]
- Altieri, M.A.; Nicholls, C. Urban agroecology: Designing biodiverse, productive and resilient city farms. Agro Sur 2018, 46, 49–60. [Google Scholar] [CrossRef]
- ABREFEN. Associação Brasileira dos Produtores de Remineralizadores de Solo e Fertilizantes Naturais. Rev. Novosolo 2022, 2, 6–9. Available online: https://abrefen.org.br/category/ed2-revista-novo-solo/ (accessed on 19 May 2022).
- Brasil. Decreto Federal nº 8.384, de 29 de Dezembro de 2014. Altera o Anexo ao Decreto nº 4.954, de 14 de Janeiro de 2004, Que Aprova o Regulamento da Lei nº 6.894, de 16 de Dezembro de 1980, Que Dispõe Sobre a Inspeção e Fiscalização da Produção e do Comércio de Fertilizantes, Corretivos, Inoculantes ou Biofertilizantes Destinados à Agricultura. 2004. Available online: https://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=consultarLegislacaoFederal (accessed on 19 May 2022).
- Brasil. Decreto Federal nº 4.954, de 14 de janeiro de 2.004. Regulamenta a lei nº 6.894, de 16 de Dezembro 1980, Que Dispõe Sobre a Inspeção e Fiscalização da Produção e do Comércio de Fertilizantes, Corretivos e Inoculantes Ou Biofertilizantes Destinados à Agricultura, e dá Outras Providências. 2014. Available online: http://sistemasweb.agricultura.gov.br/sislegis/action/detalhaAto.do?method=recuperarTextoAtoTematicaPortal&codigoTematica=1229184 (accessed on 19 May 2022).
- Srivastava, V.; Squartini, A.; Masi, A.; Sarkar, A.; Singh, R.P. Metabarcoding analysis of the bacterial succession during vermicomposting of municipal solid waste employing the earthworm Eisenia fetida. Sci. Total Environ. 2021, 766, 144389. [Google Scholar] [CrossRef] [PubMed]
- Ndegwa, P.M.; Thompson, S.A.; Das, K.C. Effects of stocking density and feeding rate on vermicomposting of biosolids. Bioresour. Technol. 2000, 71, 5–12. [Google Scholar] [CrossRef]
- Hammermeister, A.M.; Astatkie, T.; Jeliazkova, E.A.; Warman, P.R.; Martin, R.C. Nutrient supply from organic amendments applied to unvegetated soil, lettuce and orchardgrass. Can. J. Soil Sci. 2006, 86, 21–33. [Google Scholar] [CrossRef]
- Ducasse, V.; Capowiez, Y.; Peigné, J. Vermicomposting of municipal solid waste as a possible lever for the development of sustainable agriculture. Agron. Sustain. Dev. 2022, 42, 89. [Google Scholar] [CrossRef]
- Suthar, S. Vermicomposting of vegetable-market solid waste using Eisenia fetida: Impact of bulking material on earthworm growth and decomposition rate. Ecol. Eng. 2009, 35, 914–920. [Google Scholar] [CrossRef]
- Panda, A.K.; Mishra, R.; Dutta, J.; Wani, Z.A.; Pant, S.; Siddiqui, S.; Bisht, S.S. Impact of Vermicomposting on Greenhouse Gas Emission: A Short Review. Sustainability 2022, 14, 11306. [Google Scholar] [CrossRef]
- Jain, K.; Singh, J.; Chauhan, L.K.S.; Murthy, R.C.; Gupta, S.K. Modulation of flyash-induced genotoxicity in Vicia faba by vermicomposting. Ecotoxicol. Environ. Saf. 2004, 59, 89–94. [Google Scholar] [CrossRef] [PubMed]
- Lohri, C.R.; Diener, S.; Zabaleta, I.; Mertenat, A.; Zurbrügg, C. Treatment technologies for urban solid biowaste to create value products: A review with focus on low-and middle-income settings. Rev. Environ. Sci. Bio/Technol. 2017, 16, 81–130. [Google Scholar] [CrossRef]
- IBGE. Instituto Brasileiro de Geografia e Estatística. Downloads. Available online: https://www.ibge.gov.br/geociencias/downloads-geociencias.html (accessed on 24 June 2022).
- De Lima, L.M.; Péra, T.G.; Caixeta Filho, J.V. Implicações da Política Nacional de pisos de frete do transporte rodoviário na logística de fertilizantes No Brasil. Rev. Bras. De Transp. 2022, 2, 158–205. [Google Scholar] [CrossRef]
- Pereira, A.A.; Oliveira, M.A.; Leal Júnior, I.C. Custo de transporte e alocação da demanda: Análise da rede logística de uma produtora brasileira de fertilizantes nitrogenados. J. Transp. Lit. 2016, 10, 5–9. [Google Scholar] [CrossRef]
- Secretaria Especial de Assuntos Estratégicos. Plano Nacional de Fertilizantes 2050; SAE DF: Brasília, Brazil, 2021. [Google Scholar]
- Bernstad, A.; la Cour Jansen, J. Review of comparative LCAs of food waste management systems–current status and potential improvements. Waste Manag. 2012, 32, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.; Matthews, H.S.; Morawski, C. Review and meta-analysis of 82 studies on end-of-life management methods for source separated organics. Waste Manag. 2013, 33, 545–551. [Google Scholar] [CrossRef]
- Paes, L.A.B.; Bezerra, B.S.; Deus, R.M.; Jugend, D.; Battistelle, R.A.G. Organic solid waste management in a circular economy perspective–A systematic review and SWOT analysis. J. Clean. Prod. 2019, 239, 118086. [Google Scholar] [CrossRef]
- Ddiba, D.; Andersson, K.; Koop, S.H.; Ekener, E.; Finnveden, G.; Dickin, S. Governing the circular economy: Assessing the capacity to implement resource-oriented sanitation and waste management systems in low-and middle-income countries. Earth Syst. Gov. 2020, 4, 100063. [Google Scholar] [CrossRef]
- Aguilar, M.G.; Jaramillo, J.F.; Ddiba, D.; Páez, D.C.; Rueda, H.; Andersson, K.; Dickin, S. Governance challenges and opportunities for implementing resource recovery from organic waste streams in urban areas of Latin America: Insights from Chía, Colombia. Sustain. Prod. Consum. 2022, 30, 53–63. [Google Scholar] [CrossRef]
- Edgerton, E.; McKechnie, J.; Dunleavy, K. Behavioral determinants of household participation in a home composting scheme. Environ. Behav. 2009, 41, 151–169. [Google Scholar] [CrossRef]
- Mckenzie-Mohr, D.; Smith, W. Fostering sustainable behavior: Community-based social marketing. CBSM. 2009. Available online: http://www.cbsm.com/pages/guide/introduction (accessed on 20 June 2022).
- Weatherly, J.N.; Miller, K.; McDonald, T.W. Influência social como controle de estímulos. Psicologia IESB 2009, 1, 93–107. [Google Scholar]
- Knickmeyer, D. Social factors influencing household waste separation: A literature review on good practices to improve the recycling performance of urban areas. J. Clean. Prod. 2020, 245, 118605. [Google Scholar] [CrossRef]
- Manomaivibool, P.; Srivichai, M.; Unroj, P.; Dokmaingam, P. Chiang Rai Zero Waste: Participatory action research to promote source separation in rural areas. Resour. Conserv. Recycl. 2018, 136, 142–152. [Google Scholar] [CrossRef]
Thematic Axis | Data to Be Collected |
---|---|
Identification | Time of existence of the initiative, neighborhood, sociodemographic data (only household) |
Operating conditions | Model, the form of handling, frequency and average time spent on handling, an estimate of diverted waste and produced compost, type, and origin of raw material, problems in operation. |
Resources | Destination of the compost, price (if sold), monetary expenses with implementation and/or operation, and level of perceived energy expenditure. |
Motivations and Limitations | Factors for the decision to practice composting (triggers), motivational and inhibiting factors, strengths (community and commercial), and difficulties and discontinuity of the practice. |
Initiatives | Snowball | SEURBS | Total (%) |
---|---|---|---|
Active | 28 | 11 | 29.3 |
Inaccessible | 9 | 23 | 24 |
Discontinued | 2 | 20 | 16.5 |
Inactive but intending to resume or start | 7 | - | 5.3 |
Outsources composting (outside the municipality) | 1 | - | 0.7 |
Potential (not contacted) | 32 | - | 24 |
Model | Description | Reference |
---|---|---|
Pile or windrow | The most traditional form of disposal in patios, reaching temperatures close to 65 °C. | [36,37] |
Pallets or open boxes | They follow the same heating phases but are arranged in pre-molded and hollow wooden structures with a size of around one m3. | [38] |
Tramontina© | Hollow and collapsible commercial plastic compost bin for composting in the garden. | [39] |
Combokashi or bokashi | Anaerobic method developed in Japan that degrades organic matter using efficient microorganisms, molasses, and water. | [40] |
Laminar | It consists of disposing a layer of approximately 30 cm height of the residue directly on the soil with straw and covering it with another layer for natural decomposition. The site is used for planting after transforming the material into compost. The Lages method, developed by the Federal University of Santa Catarina, was one of the methodologies applied. | [41,42] |
Worm farm (vermicomposting) and boxes with microorganisms | Worm farms and the box with microorganisms have the same structure as stackable and closed boxes. The difference is that the first uses Californian earthworms (Eisenia andrei) to consume organic waste, and the second does not. | [43,44] |
Milicomposting | Biotransformation of cellulosic materials (vegetable waste, non-toxic cardboard) with woodlice (Trigoniulus corallinus). | [45] |
Home Composting (kg/Month.Home) | Community Composting (kg/Month) | ||||
---|---|---|---|---|---|
Reference | Residue | Compost | Reference | Residue | Compost |
This study | 13.58 to 18.84 | 3.36 | This study | 228.4 a 1870 b | 60 a 772 b |
[49] | 11.6 | - | [50] | 168 | - |
[51] | 15.52 | - | [52] | 862.6 | - |
[53] | 10.5 | - | [54] | 15,000 | 5250 |
Scale | This Study | [58] | [59] |
---|---|---|---|
Home (USD) | 21.48 (1) | 34.63 to 230.87 (2) | 57.06/t (2) |
Community (USD) | 86.77/t (1,3) | 438.65/t (2) | 160.30/t (2) |
Involvement Time (Months) | This Study | [54] | [60] | [52] |
---|---|---|---|---|
% | ||||
0–6 | 11.1 (n = 3) | 27 | 17 | 37 |
6–12 | 7.4 (n = 2) | 13 * | 6 | 13 |
12 + | 81.5 (n = 22) | 60 ** | 77 | 50 |
Trigger Factors | Subcategories | Total % |
---|---|---|
Infrastructure and Convenience | Compost bin gain | 33.3 |
Excess vegetable residue on the property | ||
Need for fertilizer | ||
Education | Workshop and courses | 29.6 |
Internet search | ||
Academic education | ||
Social Influence and Social Norm | Sensitization through close person | 29.6 |
Exchange of information between peers | ||
Inspiration from other initiatives | ||
Everyday experience | ||
Social Technology | Entrepreneurship | 11.1 |
Sustainable School | ||
Foster collaborative culture | ||
Food safety education | ||
Professional Issues | Set an example as an influencer of the practice | 11.1 |
Problems with waste generated in the work environment | ||
Economic | Reduction of expenses with destination | 11.1 |
Reduction of expenses with the purchase of fertilizer | ||
Financial return with the sale of service or compost | ||
Pro-Environmental Behavior | Take an interest in environmental issues | 11.1 |
Concern about waste disposal | ||
Pandemic | - | 7.4 |
Supply and Demand of Organic Compost | Product | ||||
---|---|---|---|---|---|
Topsoil | Humus | Substrate | Cattle Manure | Organic Compost | |
No. establishments | 14 | 11 | 10 | 7 | 5 |
No. suppliers | 16 | 10 | 9 | 9 | 4 |
Weight of most wanted packages (kg) | 10–12 20–25 | 2 | 20–25 | 2–3 | 25 |
Certification Condition | Topsoil | Substrate | Soil Conditioner | Humus | Cattle Manure | Organic Compost | Peat | Chicken Manure |
---|---|---|---|---|---|---|---|---|
Average Price (USD/kg) | ||||||||
Registered in MAPA | 0.46 | 1.08 | 0.54 | 1.10 | 0.94 | 0.76 | 0.31 | - |
No MAPA registration | 0.28 | 0.39 | - | 0.50 | 0.54 | 0.33 | - | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, V.R.; Fiore, F.A. Opportunities and Barriers to Composting in a Municipal Context: A Case Study in São José dos Campos, Brazil. Sustainability 2024, 16, 3359. https://doi.org/10.3390/su16083359
Pereira VR, Fiore FA. Opportunities and Barriers to Composting in a Municipal Context: A Case Study in São José dos Campos, Brazil. Sustainability. 2024; 16(8):3359. https://doi.org/10.3390/su16083359
Chicago/Turabian StylePereira, Vanessa Rodrigues, and Fabiana Alves Fiore. 2024. "Opportunities and Barriers to Composting in a Municipal Context: A Case Study in São José dos Campos, Brazil" Sustainability 16, no. 8: 3359. https://doi.org/10.3390/su16083359
APA StylePereira, V. R., & Fiore, F. A. (2024). Opportunities and Barriers to Composting in a Municipal Context: A Case Study in São José dos Campos, Brazil. Sustainability, 16(8), 3359. https://doi.org/10.3390/su16083359