Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wind Farms Identification
2.2. Useful Life Estimation
2.3. Wind Turbine Blade Mass Estimation
2.4. MPC Coordinate Definition
2.5. Calculation Economic Viability Assessment
2.6. Evaluated Scenarios
3. Results
3.1. MPC Location
3.2. Economic Viability Assessment
3.2.1. Base Scenario
3.2.2. Proposed Scenario—Energy Recovery with a Centralized MPC
3.2.3. Proposed Scenario—Energy Recovery with Decentralized MPCs
3.2.4. Logistics of the Decommissioned Wind Turbine Blades in the Brazilian Northeast
3.2.5. Sensitivity Analysis—Fluctuations in Fuel Prices
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CG | center of gravity |
MPC | material processing center |
SRF | solid recovered fuel |
GRP | glass-fiber reinforced polymer |
UCT | unit cost of transport |
cost of disposing decommissioned wind blades in industrial landfill site | |
road distance from the wind farm to the industrial landfill site | |
road freight price to wind farm (empty truck) | |
road freight price for decommissioned wind turbine blades for industrial landfill site (full truck) | |
quantity of material to be sent to industrial landfill site | |
cost per tonne to dispose of decommissioned wind turbine blades in industrial landfill site | |
cost of using petroleum coke in a cement plant | |
distance by road from the refinery to the port or from the port to the cement plant | |
road freight price (empty truck) | |
road freight price for petroleum coke (full truck) | |
quantity of petroleum coke to be sent to the cement plant | |
maritime freight price per tonne of petroleum coke | |
acquisition cost per tonne of petroleum coke | |
cost of energy recovery from decommissioned wind blades | |
quantity of material to be sent to MPC | |
road distance from the MPC to the wind farm | |
road freight price from MPC to wind farm (empty truck) | |
road freight price for decommissioned wind farm blades to MPC (full truck) | |
N | number of truck trips from the MPC to the cement plant |
road distance from the MPC to the cement plant | |
road freight price for crushed material from MPC to cement plant (full truck) | |
road freight price from cement plant to MPC (empty truck) | |
Q | material to be crushed and sent to cement plant |
cost per tonne for crushing decommissioned wind turbine blades |
References
- EPE. Balanço Energético Nacional 2022: Ano Base 2021; Empresa de Pesquisa Energética: Rio de Janeiro, Brazil, 2022; p. 264.
- ABEEÓLICA. Boletim Anual de Geração Eólica 2021; Associação Brasileira de Energia Eólica: São Paulo, Brazil, 2022; p. 19. [Google Scholar]
- EPE. Plano Decenal de Expansão de Energia 2031; Empresa de Pesquisa Energética: Brasília, Brazil, 2022; p. 411.
- IRENA. Global Renewables Outlook: Energy Transformation 2050; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2020; ISBN 978-92-9260-238-3. [Google Scholar]
- IRENA. Renewable Power Generation Costs in 2020; IRENA: Abu Dhabi, United Arab Emirates, 2021; ISBN 978-92-9260-348-9. [Google Scholar]
- ANEEL. Atlas de Energia Elétrica do Brasil; Agência Nacional de Energia Elétrica: Brasília, Brazil, 2002. [Google Scholar]
- Cooperman, A.; Eberle, A.; Lantz, E. Wind Turbine Blade Material in the United States: Quantities, Costs, and End-of-Life Options. Resour. Conserv. Recycl. 2021, 168, 105439. [Google Scholar] [CrossRef]
- EPE. Empreendimentos Eólicos ao Fim da Vida Útil—Situação Atual e Perspectivas Futuras; Empresa de Pesquisa Energética: Brasília, Brazil, 2021; p. 57.
- Dorigato, A. Recycling of Thermosetting Composites for Wind Blade Application. Adv. Ind. Eng. Polym. Res. 2021, 4, 116–132. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Ni, A. Recycling and Reuse of Composite Materials for Wind Turbine Blades: An Overview. J. Reinf. Plast. Compos. 2019, 38, 567–577. [Google Scholar] [CrossRef]
- Fonte, R.; Xydis, G. Wind Turbine Blade Recycling: An Evaluation of the European Market Potential for Recycled Composite Materials. J. Environ. Manag. 2021, 287, 112269. [Google Scholar] [CrossRef] [PubMed]
- Argus Media Group. Energy ARGUS Petroleum Coke; Argus Media Group: London, UK, 2023; p. 32. [Google Scholar]
- Beauson, J.; Laurent, A.; Rudolph, D.P.; Pagh Jensen, J. The Complex End-of-Life of Wind Turbine Blades: A Review of the European Context. Renew. Sustain. Energy Rev. 2022, 155, 111847. [Google Scholar] [CrossRef]
- La Rosa, A.D.; Banatao, D.R.; Pastine, S.J.; Latteri, A.; Cicala, G. Recycling Treatment of Carbon Fibre/Epoxy Composites: Materials Recovery and Characterization and Environmental Impacts through Life Cycle Assessment. Compos. Part B Eng. 2016, 104, 17–25. [Google Scholar] [CrossRef]
- Siemens Gamesa Siemens-Gamesa-Recyclable-Blade-Infographic.Pdf. Available online: https://www.siemensgamesa.com/en-int/-/media/siemensgamesa/downloads/en/explore/journal/siemens-gamesa-recyclable-blade-infographic.pdf?la=en-bz&hash=9E3ED5E372844AB7E94D1164A6DA1CC3C149BC2C (accessed on 4 December 2022).
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- ETIP. Wind How Wind Is Going Circular—Blade Recycling; ETIP: Brussels, Belgium, 2019. [Google Scholar]
- Martinez-Marquez, D.; Florin, N.; Hall, W.; Majewski, P.; Wang, H.; Stewart, R.A. State-of-the-Art Review of Product Stewardship Strategies for Large Composite Wind Turbine Blades. Resour. Conserv. Recycl. Adv. 2022, 15, 200109. [Google Scholar] [CrossRef]
- Bhadra, J.; Al-Thani, N.; Abdulkareem, A. Recycling of Polymer-Polymer Composites. In Micro and Nano Fibrillar Composites (MFCs and NFCs) from Polymer Blends; Elsevier: Amsterdam, The Netherlands, 2017; pp. 263–277. ISBN 978-0-08-101991-7. [Google Scholar]
- Ramirez-Tejeda, K.; Turcotte, D.A.; Pike, S. Unsustainable Wind Turbine Blade Disposal Practices in the United States: A Case for Policy Intervention and Technological Innovation. NEW Solut. J. Environ. Occup. Health Policy 2017, 26, 581–598. [Google Scholar] [CrossRef]
- Jensen, J.P.; Skelton, K. Wind Turbine Blade Recycling: Experiences, Challenges and Possibilities in a Circular Economy. Renew. Sustain. Energy Rev. 2018, 97, 165–176. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Li, K.; Lin, S.; Li, M.; Hao, T.; Ling, Z.; Xiang, D.; Wang, T. A Systematic Review of Factors Affecting Properties of Thermal-Activated Recycled Cement. Resour. Conserv. Recycl. 2022, 185, 106432. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Hu, X.; Ran, B.; Huang, R.; Tang, H.; Li, Z.; Li, B.; Wu, S. Modification of Recycled Cement with Phosphogypsum and Ground Granulated Blast Furnace Slag. Constr. Build. Mater. 2024, 426, 136241. [Google Scholar] [CrossRef]
- Wang, J.; Xu, L.; Li, M.; Wang, Y.; He, H.; Xiang, D.; Li, K.; Hao, T. Investigations on Factors Influencing Physical Properties of Recycled Cement and the Related Carbon Emissions and Energy Consumptions. J. Clean. Prod. 2023, 414, 137715. [Google Scholar] [CrossRef]
- Xu, L.; Wang, J.; Huang, R.; Li, B.; Ran, B.; Hu, X. Investigations on Micro-Mechanical Properties of the ITZs between Recycled Aggregates and Recycled Cement Paste. Constr. Build. Mater. 2024, 450, 138640. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Yu, J.; Xu, L.; Li, M.; Cheng, J.; Li, Z. Effects of Sodium Sulfate and Potassium Sulfate on the Properties of Calcium Sulfoaluminate (CSA) Cement Based Grouting Materials. Constr. Build. Mater. 2022, 353, 129045. [Google Scholar] [CrossRef]
- Nagle, A.J.; Delaney, E.L.; Bank, L.C.; Leahy, P.G. A Comparative Life Cycle Assessment between Landfilling and Co-Processing of Waste from Decommissioned Irish Wind Turbine Blades. J. Clean. Prod. 2020, 277, 123321. [Google Scholar] [CrossRef]
- ANEEL SIGA—Sistema de Informações de Geração da ANEEL—Dados Abertos—Agência Nacional de Energia Elétrica. Available online: https://dadosabertos.aneel.gov.br/dataset/siga-sistema-de-informacoes-de-geracao-da-aneel (accessed on 1 November 2022).
- Arias, F.; Bank, L. Assessment of Present/Future Decommissioned Wind Blade Fiber-Reinforced Composite Material in the United States; City College of New York: New York, NY, USA, 2016; 69p. [Google Scholar]
- Liu, P.; Barlow, C.Y. The Environmental Impact of Wind Turbine Blades. IOP Conf. Ser. Mater. Sci. Eng. 2016, 139, 012032. [Google Scholar] [CrossRef]
- Sultan, A.A.M.; Mativenga, P.T.; Lou, E. Managing Supply Chain Complexity: Foresight for Wind Turbine Composite Waste. Procedia CIRP 2018, 69, 938–943. [Google Scholar] [CrossRef]
- Martin, C. Wind Turbine Blades Can’t Be Recycled, So They’re Piling Up in Landfills. 2020. Available online: https://www.bloomberg.com (accessed on 10 May 2023).
- RiverCap Fiberglass Recycling | RiverCap. Available online: https://www.rivercapllc.com/fiberglass-recycling (accessed on 13 February 2023).
- Martins, P.G.; Laugeni, F.P. Administração da Produção, 3rd ed.; Saraiva Uni.: São Paulo, Brazil, 2015; ISBN 978-85-02-61835-0. [Google Scholar]
- Bittencourt, B.N.; Servare Junior, M.W.J. Centro de gravidade para localizar centro de coleta para a economia circular do óleo de cozinha em vitória, es: Gravity center to locate a collection center for the circular economy of cooking oil in vitória, ES. Braz. J. Prod. Eng. 2021, 7, 194–206. [Google Scholar] [CrossRef]
- De Oliveira Costa, D.; Dos Santos, M.; Francisco Simões Gomes, C.; Medina, A. Estratégia de Expansão do Market Share no Mercado Sul-Americano: Uma Abordagem Prática aos Métodos do Centro de Gravidade e o Método Moora; Universidade Federal de Campina Grande: Rio de Janeiro, Brazil, 2022. [Google Scholar]
- Soares, I.R.C.; Biagio, M.G.; Gonçalves, M.F.S.; Servare Junior, M.W.J. Localização de centro de triagem de papel para escolas do bairro da vila mariana, são paulo: Location of paper sorting center for schools in vila mariana neighborhood, são paulo. Braz. J. Prod. Eng. 2020, 6, 110–119. [Google Scholar] [CrossRef]
- ANTT. Agência Nacional de Transporte Terrestre; ANTT: Brasília, Brazil, 2022; p. 68. [Google Scholar]
- Diez-Cañamero, B.; Mendoza, J.M.F. Circular Economy Performance and Carbon Footprint of Wind Turbine Blade Waste Management Alternatives. Waste Manag. 2023, 164, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Meng, F.; Barlow, C.Y. Wind Turbine Blade End-of-Life Options: An Eco-Audit Comparison. J. Clean. Prod. 2019, 212, 1268–1281. [Google Scholar] [CrossRef]
- Belizario-Silva, F.; Oliveira, L.A.; John, V.M. Relatório de Coleta de Dados para o Sistema de Informação do Desempenho Ambiental da Construção: Cimento; Sistema de Informação do Desempenho Ambiental da Construção: São Paulo, Brazil, 2022; p. 19. [Google Scholar]
- Roland, G.R.O., Jr. Análise da Cadeia de Suprimentos do Coque de Petróleo na Indústria Cimenteira Brasileira; Universidade Federal do Paraná: Curitiba, Brazil, 2016. [Google Scholar]
- Phillips 66 Company Sweeny Refinery. Available online: https://www.phillips66.com/refining/sweeny-refinery/ (accessed on 22 May 2023).
- Profitable Venture Magazine Dump Truck Hourly Hauling Rates Per Load in 2023. Available online: https://www.profitableventure.com/dump-truck-hauling-rate-load/ (accessed on 10 June 2023).
- RANDON. Owner’s Manual—Bulk and Dry Cargo; RANDON: Caxias do Sul, Brazil, 2023. (In Portugueses) [Google Scholar]
- EPRI. Wind Turbine Blade Recycling: Preliminary Assessment; EPRI: Palo Alto, CA, USA, 2020; p. 60. [Google Scholar]
- TSA. CDR—Combustível derivado de resíduo. Available online: http://www.tsa.eco.br/2017/05/05/cdr/ (accessed on 2 May 2023).
- IBGE Áreas Territoriais|IBGE. Available online: https://www.ibge.gov.br/geociencias/organizacao-do-territorio/estrutura-territorial/15761-areas-dos-municipios.html (accessed on 10 June 2023).
- EREF. Analysis of MSW Landfill Tipping Fees-September 2021; Environmental Research & Education Foundation: Raleigh, NC, USA, 2022. [Google Scholar]
- WWF. Brasil Geração de Energia em Fernando de Noronha; WWF: Gland, Switzerland, 2020. [Google Scholar]
- Rodrigues, J.; Parreiras, M. Pioneiro no País, Parque Eólico do Morro do Camelinho Acabou Abandonado. Available online: https://www.em.com.br/app/noticia/gerais/2018/08/27/interna_gerais,983688/pioneiro-no-pais-parque-eolico-do-morro-do-camelinho-acabou-abandonad.shtml (accessed on 2 April 2023).
- Pitombo, J.P. Nove Anos Após Leilão, Torres Eólicas Estão Abandonadas na Bahia. Available online: https://www1.folha.uol.com.br/mercado/2019/10/nove-anos-apos-leilao-torres-eolicas-estao-abandonadas-na-bahia.shtml (accessed on 2 April 2023).
- Chagas, C. Chesf retomará obras do parque eólico Casa Nova B. Energ. Hoje 2023. Available online: https://brasilenergia.com.br/energia/chesf-retomara-obras-do-parque-eolico-casa-nova-b/ (accessed on 15 May 2024).
- Brazil Diagnóstico Temático Manejo de Resíduos Sólidos—Visão Geral—Ano de Referência 2021; Secretaria Nacional de Saneamento—SNS: Brasília, Brazil, 2022; p. 72.
- Brazil Base Legislation of the Presidency of the Republic-Law No. 12.305 of 02 August 2010. Available online: https://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm (accessed on 23 April 2023).
- Brazil Base Legislation of the Presidency of the Republic-Law No. 14.026 of 15 July 2020. Available online: https://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/lei/l14026.htm (accessed on 2 May 2023).
- ABNT. NBR 10004. Resíduos Sólidos–Classificação; Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2004; p. 71. [Google Scholar]
- Medici, P.; van den Dobbelsteen, A.; Peck, D. Safety and Health Concerns for the Users of a Playground, Built with Reused Rotor Blades from a Dismantled Wind Turbine. Sustainability 2020, 12, 3626. [Google Scholar] [CrossRef]
- Brazil Base Legislation of the Presidency of the Republic-Decree No. 12.082 of 27 June 2024. Available online: https://legislacao.presidencia.gov.br/atos/?tipo=DEC&numero=12082&ano=2024&ato=685gXRE5ENZpWT4d3 (accessed on 15 December 2024).
- Brazil BRAZIL’S NDC. National Determination to Contribute and Transform; Brazil BRAZIL’S NDC: Brasília, Brazil, 2024; p. 44. [Google Scholar]
- WindEurope. How to Build a Circular Economy for Wind Turbine Blades through Policy and Parterships; WindEurope: Brussels, Belgium, 2020; p. 13. [Google Scholar]
- AWEA. Wind Turbine End-of-Life Strategies; AWEA: Washington, DC, USA, 2020; p. 2. [Google Scholar]
- G-Fiber Granuleret Glasfiber|G-Fiber. Available online: https://g-fiber.dk/granuleret-glasfiber/ (accessed on 13 December 2024).
- Miljøskærm Recycling-Miljøskærm. Available online: https://miljoskarm.dk/en/recycling/ (accessed on 13 December 2024).
- Canvus Canvus|Functional Art Made from Wind Turbine Blades. Available online: https://www.gocanvus.com (accessed on 13 December 2024).
- Leon, M., Jr. Recycling of Wind Turbine Blades: Recent Developments. Curr. Opin. Green Sustain. Chem. 2023, 39, 100746. [Google Scholar] [CrossRef]
- Liu, P.; Meng, F.; Barlow, C.Y. Wind Turbine Blade End-of-Life Options: An Economic Comparison. Resour. Conserv. Recycl. 2022, 180, 106202. [Google Scholar] [CrossRef]
- Brazil Ministry of the Environment/National Environmental Council Base No. 499 of 6 October 2020. Available online: https://www.in.gov.br/en/web/dou/-/resolucao-conama/mma-n-499-de-6-de-outubro-de-2020-281790575 (accessed on 20 March 2024).
- ABCP. Panorama_Coprocessamento_2022_Ano_Base_2021.pdf; Associação Brasileira de Cimento Portland: São Paulo, Brazil, 2022; p. 20. [Google Scholar]
- Aeris Energy Nossa História. Available online: https://www.aerisenergy.com.br/ (accessed on 2 April 2023).
- LM Wind Power We Are LM Wind Power-the Leading Rotor Blade Supplier to the Wind Industry | LM Wind Power. Available online: https://www.lmwindpower.com/ (accessed on 2 April 2023).
- Ramos, M.J., Jr.; Medeiros, D.L.; dos Almeida, E.S. Blade Manufacturing for Onshore and Offshore Wind Farms: The Energy and Environmental Performance for a Case Study in Brazil. Rev. Gest. Produção 2023, 30, 22. [Google Scholar] [CrossRef]
- G1 Wobben Encerra Produção de pá Eólica em Unidade de Sorocaba. Available online: https://g1.globo.com/sp/sorocaba-jundiai/noticia/2019/10/02/wobben-encerra-producao-de-pa-eolica-em-unidade-de-sorocaba.ghtml (accessed on 16 April 2023).
- AECIPP Aeris Compra Instalações da Wobben no Pecém e Inicia Operações na Planta Industrial em Agosto. Available online: http://www.aecipp.com.br/pt-br/noticias/aeris-compra-instalacoes-da-wobben-no-pecem-e-inicia-operacoes-na-planta-industrial-em (accessed on 16 April 2023).
- World Bank World Bank Open Data. Ano de Referência: 2020. Available online: https://data.worldbank.org (accessed on 25 June 2023).
- Ramos Júnior, M.J.; Figueiredo, P.S.; Travassos Júnior, X.L. Routes for the Wind Power Generation in Brazil: A Feasibility Study for the State of Ceará. J. Innov. Sustain. RISUS 2023, 14, 113–128. [Google Scholar] [CrossRef]
- Săftoiu, G.-V.; Constantin, C.; Nicoară, A.-I.; Pelin, G.; Ficai, D.; Ficai, A. Glass Fibre-Reinforced Composite Materials Used in the Aeronautical Transport Sector: A Critical Circular Economy Point of View. Sustainability 2024, 16, 4632. [Google Scholar] [CrossRef]
- Roland Junior, G.R.O.; Zattar, I.C. Gestão da Cadeia de Suprimentos do Coque de Petroleo na Indústria Cimenteira. In Proceedings of the Anais do ConBRepro 2022, 2 December 2022; Universidade Tecnológica Federal do Paraná: Curitiba, Brazil; p. 12.
- Torres, V.A.; Lange, L.C. Rotas tecnológicas, desafios e potencial para valoração energética de resíduo sólido urbano por coprocessamento no Brasil. Eng. Sanit. Ambient. 2022, 27, 25–30. [Google Scholar] [CrossRef]
Parameter | Transportation | Place of Origin | Place of Destination | (t) | (km) | (USD/t.km) | (USD/t) | |
Wind blade | Truck | Wind farm | Industrial landfill site | 1 | 388 | 0.19 | 60 | |
Parameter | Transportation | Place of Origin | Place of Destination | (t) | (km) | (USD/t.km) | (USD/t) | (USD/t) |
Petroleum coke | Truck | Sweeny refinery | Houston port | 0.6 | 105 | 0.39 | - | 128.5 |
Ship | Houston port | Aracajú port | 0.6 | - | - | 22.96 | - | |
Truck | Aracajú port | Cement plant | 0.6 | 930 | 0.05 | - | - |
Parameter | Transportation | Place of Origin | Place of Destination | (t) | (km) | (USD/t.km) | (USD/t) |
Wind blade | Truck | Wind Farm | MPC | 1 | 608 | 0.19 | 127 |
Parameter | Transportation | Place of Origin | Place of Destination | (t) | (km) | (USD/t.km) | |
Crushed material in the SRF | Truck | MPC | Cement plant | 0.92 | 454 | 0.18 |
State | Territorial Area (km2) a | Number of Wind Farms b | Installed Capacity (MW) b | Accumulation of Wind Turbine Blade Waste in 20 Years—From 2023 to 2042 (t) | Concentration of Wind Turbine Blade Waste in 20 Years—From 2023 to 2042 (t/km2) |
---|---|---|---|---|---|
Bahia | 564,760 | 247 (33%) | 6433 (30%) | 66,389 | 0.12 |
Rio Grande do Norte | 52,810 | 223 (29%) | 6747 (32%) | 69,629 | 1.32 |
Piauí | 251,755 | 104 (14%) | 3379 (16%) | 34,871 | 0.14 |
Ceará | 148,894 | 100 (13%) | 2516 (12%) | 25,965 | 0.17 |
Pernambuco | 98,068 | 39 (5.1%) | 992 (4.7%) | 10,237 | 0.10 |
Paraíba | 56,467 | 30 (3.9%) | 628 (3.0%) | 6481 | 0.11 |
Maranhão | 329,651 | 16 (2.1%) | 426 (2.0%) | 4396 | 0.01 |
Sergipe | 21,938 | 1 (0.2%) | 34 (0.1%) | 351 | 0.02 |
Alagoas | 27,831 | - | - | - | - |
TOTAL | 1,552,174 | 760 (100%) | 21,155 (100%) | 218,319 | 0.14 |
State | Decommissioned Wind Turbine Blades (t) | Base and Proposed Scenarios Combined—Centralized MPC | Base and Proposed Scenarios Combined—Decentralized MPCs | ||||||
---|---|---|---|---|---|---|---|---|---|
Base Scenario (t) | Logistics Cost—Base Scenario (USD) | Proposed Scenario— Centralized MPC (t) a | Logistics Cost—Proposed Scenario (USD) | Base Scenario (t) | Logistics Cost—Base Scenario (USD) | Proposed Scenario— Decentralized MPC (t) b | Logistics Cost—Proposed Scenario (USD) | ||
Bahia | 66,389 | 57,340 (86%) | 1.69 × 107 | 9049 (14%) | 2.52 × 106 | 512 (1%) | 1.19 × 105 | 65,877 (99%) | 1.48 × 107 |
Rio Grande do Norte | 69,629 | 69,629 (100%) | 1.58 × 107 | - | - | - | - | 69,629 (100%) | 1.22 × 107 |
Piauí | 34,871 | 1711 (5%) | 3.63 × 105 | 33,160 (95%) | 8.83 × 106 | 1711 (5%) | 3.63 × 105 | 33,160 (95%) | 8.83 × 106 |
Ceará | 25,965 | 20,007 (77%) | 5.28 × 106 | 5958 (23%) | 1.76 × 106 | - | - | 25,965 (100%) | 4.64 × 106 |
Pernambuco | 10,237 | 6011 (59%) | 1.53 × 106 | 4226 (41%) | 1.06 × 106 | 1161 (11%) | 2.78 × 105 | 9076 (89%) | 2.30 × 106 |
Paraíba | 6481 | 6481 (100%) | 1.53 × 106 | - | - | - | - | 6481 (100%) | 1.23 × 106 |
Maranhão | 4396 | 4396 (100%) | 1.63 × 106 | - | - | 4396 (100%) | 1.09 × 106 | - | - |
Sergipe | 351 | 351 (100%) | 7.77 × 104 | - | - | 351 (100%) | 9.41 × 104 | - | - |
Total | 218,319 | 165,926 (76%) | 4.31 × 107 | 52,393 (24%) | 1.42 × 107 | 8131 (4%) | 1.94 × 106 | 210,188 (96%) | 4.40 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos Júnior, M.J.; Medeiros, D.L.; Batista Azevedo, J.; dos Santos Almeida, E. Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site. Sustainability 2025, 17, 365. https://doi.org/10.3390/su17010365
Ramos Júnior MJ, Medeiros DL, Batista Azevedo J, dos Santos Almeida E. Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site. Sustainability. 2025; 17(1):365. https://doi.org/10.3390/su17010365
Chicago/Turabian StyleRamos Júnior, Mário Joel, Diego Lima Medeiros, Joyce Batista Azevedo, and Edna dos Santos Almeida. 2025. "Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site" Sustainability 17, no. 1: 365. https://doi.org/10.3390/su17010365
APA StyleRamos Júnior, M. J., Medeiros, D. L., Batista Azevedo, J., & dos Santos Almeida, E. (2025). Wind Turbine Blade Decommissioning in Brazil: The Economic Performance of Energy Recovery in a Cement Kiln Compared to Industrial Landfill Site. Sustainability, 17(1), 365. https://doi.org/10.3390/su17010365