“More than a Feeling”: How Eco-Anxiety Shapes Pro-Environmental Behaviors and the Role of Readiness to Change
Abstract
1. Introduction
1.1. Eco-Anxiety and Climate Change
1.2. Readiness to Change and Sustainability
- (a)
- (b)
- (c)
- (d)
- Effectiveness of Proposed Solution: The sense of agency as well as positive outcomes expectancies may promote sustainable behavioral habits [42];
- (e)
- (f)
- (g)
1.3. Readiness to Change and Eco-Anxiety
1.4. Aims of the Study
2. Materials and Methods
2.1. Study Design
2.2. Instruments
2.3. Data Analysis
3. Results
3.1. Descriptive Results
3.2. Student’s T-Test Results
3.3. Network Analysis Results
3.4. Mediation Analysis Results
4. Discussion
4.1. Eco-Anxiety and Sustainable Behaviors by Gender
4.2. The Mediation Role of Readiness to Change
4.3. Future Implications
5. Strengths and Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Variables | Group | Mean | Sd | SE | t | df | p | B-H Critical Value | Cohen’s d | SE Cohen’s d |
---|---|---|---|---|---|---|---|---|---|---|
PEB-C | No eco-anxiety | 26.974 | 3.661 | 0.415 | −2.477 | 105.892 | 0.015 | 0.032 | −3.308 | 0.126 |
Eco-anxiety | 28.088 | 3.568 | 0.174 | |||||||
PEB-EC | No eco-anxiety | 11.628 | 2.941 | 0.333 | −5.573 | 134.795 | <0.001 | 0.005 | −0.615 | 0.133 |
Eco-anxiety | 13.774 | 3.966 | 0.193 | |||||||
PEB-F | No eco-anxiety | 8.897 | 5.186 | 0.587 | −2.430 | 103.048 | 0.016 | 0.036 | −0.310 | 0.126 |
Eco-anxiety | 10.447 | 4.813 | 0.235 | |||||||
PEB-T | No eco-anxiety | 11.154 | 3.054 | 0.346 | −1.065 | 101.469 | 0.29 | 0.045 | −0.136 | 0.124 |
Eco-anxiety | 11.549 | 2.751 | 0.134 | |||||||
RTC-PI | No eco-anxiety | 14.269 | 3.421 | 0.387 | −3.955 | 91.987 | <0.001 | 0.005 | −0.54 | 0.131 |
Eco-anxiety | 15.872 | 2.435 | 0.119 | |||||||
RTC-M | No eco-anxiety | 13.308 | 3.69 | 0.418 | −3.956 | 93.29 | <0.001 | 0.005 | −0.534 | 0.13 |
Eco-anxiety | 15.043 | 2.735 | 0.133 | |||||||
RTC-SE | No eco-anxiety | 17.385 | 4.429 | 0.501 | −1.561 | 91.399 | 0.122 | 0.041 | −0.214 | 0.124 |
Eco-anxiety | 18.202 | 3.092 | 0.151 | |||||||
RTC-ES | No eco-anxiety | 13.397 | 3.204 | 0.363 | −3.11 | 93.332 | 0.002 | 0.023 | −0.42 | 0.128 |
Eco-anxiety | 14.582 | 2.378 | 0.116 | |||||||
RTC-SS | No eco-anxiety | 13.385 | 3.252 | 0.368 | −0.604 | 96.193 | 0.547 | 0.05 | −0.08 | 0.123 |
Eco-anxiety | 13.62 | 2.608 | 0.127 | |||||||
RTC-A | No eco-anxiety | 13.462 | 3.631 | 0.411 | −3.478 | 92.518 | <0.001 | 0.005 | −0.473 | 0.129 |
Eco-anxiety | 14.96 | 2.629 | 0.128 | |||||||
RTC-PR | No eco-anxiety | 13.885 | 3.133 | 0.355 | −2.859 | 95.217 | 0.005 | 0.027 | −0.381 | 0.127 |
Eco-anxiety | 14.955 | 2.451 | 0.119 |
HEAS- AS | HEAS- R | HEAS- BS | HEAS- PI | PEB- C | PEB- EC | PEB- F | PEB- T | RTC-PI | RTC- M | RTC- SE | RTC- ES | RTC- SS | RTC- A | RTC-PR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEAS- AS | 0.000 | 0.25 | 0.474 | 0.081 | 0.000 | 0.000 | 0.000 | 0.000 | 0.017 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
HEAS- R | 0.250 | 0.000 | 0.077 | 0.402 | 0.069 | 0.125 | 0.000 | 0.000 | 0.011 | 0.012 | 0.000 | 0.003 | 0.000 | 0.000 | 0.000 |
HEAS- BS | 0.474 | 0.077 | 0.000 | 0.138 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | −0.055 | 0.042 | 0.000 | 0.000 | 0.000 |
HEAS- APS | 0.081 | 0.402 | 0.138 | 0.000 | 0 | 0.077 | 0.007 | 0.045 | 0.03 | 0.048 | 0.000 | 0.000 | −0.007 | 0.07 | 0.000 |
PEB- C | 0.000 | 0.069 | 0.000 | 0.000 | 0.000 | 0.105 | 0.163 | 0.123 | 0.01 | 0.012 | 0.000 | 0.006 | 0.000 | 0.053 | 0.077 |
PEB- EC | 0.000 | 0.125 | 0.000 | 0.077 | 0.105 | 0.000 | 0.213 | 0.000 | 0.033 | 0.000 | 0.032 | 0.002 | 0.000 | 0.083 | 0.077 |
PEB- F | 0.000 | 0.000 | 0.000 | 0.007 | 0.163 | 0.213 | 0.000 | 0.087 | 0.034 | 0.063 | −0.018 | 0.000 | 0.000 | 0.101 | 0.000 |
PEB- T | 0.000 | 0.000 | 0.000 | 0.045 | 0.123 | 0.000 | 0.087 | 0.000 | 0.019 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.047 |
RTC- PI | 0.017 | 0.011 | 0.000 | 0.03 | 0.01 | 0.033 | 0.034 | 0.019 | 0.000 | 0.601 | 0.000 | 0.13 | 0.000 | 0.06 | 0.000 |
RTC- M | 0.000 | 0.012 | 0.000 | 0.048 | 0.012 | 0.000 | 0.063 | 0.000 | 0.601 | 0.000 | 0.027 | 0.057 | 0.041 | 0.131 | 0.169 |
RTC-SE | 0.000 | 0.000 | −0.055 | 0.000 | 0.000 | 0.032 | −0.018 | 0.000 | 0.000 | 0.027 | 0.000 | 0.148 | 0.204 | 0.102 | 0.307 |
RTC-ES | 0.000 | 0.003 | 0.042 | 0.000 | 0.006 | 0.002 | 0.000 | 0.000 | 0.13 | 0.057 | 0.148 | 0.000 | 0.254 | 0.167 | 0.087 |
RTC-SS | 0.000 | 0.000 | 0.000 | −0.007 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.041 | 0.204 | 0.254 | 0.000 | 0.065 | 0.000 |
RTC- A | 0.000 | 0.000 | 0.000 | 0.07 | 0.053 | 0.083 | 0.101 | 0.000 | 0.06 | 0.131 | 0.102 | 0.167 | 0.065 | 0.000 | 0.266 |
RTC-PR | 0.000 | 0.000 | 0.000 | 0.000 | 0.077 | 0.077 | 0.000 | 0.047 | 0.000 | 0.169 | 0.307 | 0.087 | 0.000 | 0.266 | 0.000 |
Betweenness | Closeness | Strength | Expected Influence | |
---|---|---|---|---|
HEAS-AS | −0.470 | −0.982 | −0.031 | 0.064 |
HEAS-R | 1.209 | −0.241 | 0.555 | 0.636 |
HEAS-BS | −0.638 | −1.059 | −0.201 | −0.594 |
HEAS-APS | 0.537 | −0.045 | 0.351 | 0.379 |
PEB-C | 0.034 | −0.02 | −0.964 | −0.845 |
PEB-EC | −0.638 | 0.909 | −0.373 | −0.269 |
PEB-F | −0.47 | 0.893 | −0.656 | −0.704 |
PEB-T | −1.31 | −2.005 | −2.329 | −2.177 |
RTC-PI | −0.974 | −0.585 | 0.536 | 0.618 |
RTC-M | 0.537 | −0.178 | 1.522 | 1.579 |
RTC-SE | 0.369 | 0.738 | 0.298 | −0.268 |
RTC-ES | −0.302 | 0.041 | 0.311 | 0.398 |
RTC-SS | −1.31 | −0.593 | −1.189 | −1.123 |
RTC-A | 1.377 | 1.713 | 1.241 | 1.305 |
RTC-PR | 2.049 | 1.416 | 0.929 | 1.001 |
HEAS- AS | HEAS- R | HEAS- BS | HEAS- PI | PEB- C | PEB- EC | PEB- F | PEB- T | RTC-PI | RTC- M | RTC- SE | RTC- ES | RTC- SS | RTC- A | RTC-PR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEAS- AS | 0 | 0.253 | 0.384 | 0.044 | 0 | 0.03 | 0 | 0 | 0.005 | 0 | 0 | 0 | 0 | 0 | 0 |
HEAS- R | 0.253 | 0 | 0 | 0.377 | 0 | 0.052 | 0 | 0 | 0.096 | 0 | 0 | 0.038 | 0 | 0 | 0 |
HEAS- BS | 0.384 | 0 | 0 | 0.185 | 0 | −0.047 | 0 | 0 | 0 | 0 | −0.034 | 0 | 0 | 0 | 0 |
HEAS- APS | 0.044 | 0.377 | 0.185 | 0 | 0 | 0.117 | 0 | 0 | 0.018 | 0.012 | 0 | 0 | 0 | 0.017 | 0.073 |
PEB- C | 0 | 0 | 0 | 0 | 0 | 0.04 | 0.153 | 0.091 | 0 | 0.055 | 0 | 0 | 0 | 0.04 | 0.102 |
PEB- EC | 0.03 | 0.052 | −0.047 | 0.117 | 0.04 | 0 | 0.223 | 0 | 0 | 0 | 0.039 | 0.027 | 0 | 0.13 | 0.086 |
PEB- F | 0 | 0 | 0 | 0 | 0.153 | 0.223 | 0 | 0 | 0.016 | 0.103 | 0 | 0 | 0 | 0.025 | 0.038 |
PEB- T | 0 | 0 | 0 | 0 | 0.091 | 0 | 0 | 0 | 0 | 0 | 0 | 0.114 | 0 | 0.036 | 0 |
RTC- PI | 0.005 | 0.096 | 0 | 0.018 | 0 | 0 | 0.016 | 0 | 0 | 0.575 | 0 | 0.162 | 0.028 | 0 | 0.066 |
RTC- M | 0 | 0 | 0 | 0.012 | 0.055 | 0 | 0.103 | 0 | 0.575 | 0 | 0 | 0 | 0.048 | 0.203 | 0.085 |
RTC-SE | 0 | 0 | −0.034 | 0 | 0 | 0.039 | 0 | 0 | 0 | 0 | 0 | 0.023 | 0.188 | 0.302 | 0.141 |
RTC-ES | 0 | 0.038 | 0 | 0 | 0 | 0.027 | 0 | 0.114 | 0.162 | 0 | 0.023 | 0 | 0.261 | 0.145 | 0.192 |
RTC-SS | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.028 | 0.048 | 0.188 | 0.261 | 0 | 0.019 | 0.009 |
RTC- A | 0 | 0 | 0 | 0.017 | 0.04 | 0.13 | 0.025 | 0.036 | 0 | 0.203 | 0.302 | 0.145 | 0.019 | 0 | 0.257 |
RTC-PR | 0 | 0 | 0 | 0.073 | 0.102 | 0.086 | 0.038 | 0 | 0.066 | 0.085 | 0.141 | 0.192 | 0.009 | 0.257 | 0 |
Betweenness | Closeness | Strength | Expected influence | |
---|---|---|---|---|
HEAS-AS | −0.485 | −1.218 | −0.229 | −0.138 |
HEAS-R | 1.266 | −0.205 | 0.165 | 0.241 |
HEAS-BS | −1.293 | −1.413 | −0.488 | −1.002 |
HEAS-APS | 0.593 | −0.236 | 0.276 | 0.347 |
PEB-C | −1.024 | −0.922 | −1.162 | −1.034 |
PEB-EC | 0.862 | 0.668 | 0.072 | −0.208 |
PEB-F | −0.216 | −0.133 | −0.858 | −0.742 |
PEB-T | −1.293 | −1.581 | −2.105 | −1.939 |
RTC-PI | 1.536 | 1.309 | 0.755 | 0.807 |
RTC-M | 0.189 | 1.231 | 1.215 | 1.248 |
RTC-SE | −0.889 | 0.018 | −0.184 | −0.352 |
RTC-ES | 1.131 | 0.664 | 0.744 | 0.797 |
RTC-SS | −1.024 | −0.491 | −0.872 | −0.755 |
RTC-A | 0.997 | 1.282 | 1.583 | 1.603 |
RTC-PR | −0.35 | 1.027 | 1.088 | 1.126 |
HEAS- AS | HEAS- R | HEAS- BS | HEAS- PI | PEB- C | PEB- EC | PEB- F | PEB- T | RTC-PI | RTC- M | RTC- SE | RTC- ES | RTC- SS | RTC- A | RTC-PR | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HEAS- AS | 0 | 0.246 | 0.497 | 0.066 | 0 | 0 | −0.032 | 0 | 0 | 0 | 0 | 0.016 | 0 | 0 | 0 |
HEAS- R | 0.246 | 0 | 0.126 | 0.403 | 0.091 | 0.14 | 0.028 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
HEAS- BS | 0.497 | 0.126 | 0 | 0.103 | 0 | 0 | 0 | 0 | 0 | 0 | −0.066 | 0.068 | 0.001 | 0 | 0 |
HEAS- API | 0.066 | 0.403 | 0.103 | 0 | 0.006 | 0.071 | 0 | 0.068 | 0.003 | 0.089 | 0 | 0 | −0.064 | 0.059 | 0 |
PEB- C | 0 | 0.091 | 0 | 0.006 | 0 | 0.13 | 0.136 | 0.127 | 0 | 0 | 0.087 | 0 | 0 | 0 | 0.081 |
PEB- EC | 0 | 0.14 | 0 | 0.071 | 0.13 | 0 | 0.218 | 0.041 | 0.064 | 0.019 | 0.002 | 0 | 0 | 0.078 | 0.045 |
PEB- F | −0.032 | 0.028 | 0 | 0 | 0.136 | 0.218 | 0 | 0.15 | 0.037 | 0.005 | −0.079 | 0.029 | −0.024 | 0.146 | 0 |
PEB- T | 0 | 0 | 0 | 0.068 | 0.127 | 0.041 | 0.15 | 0 | 0.045 | 0 | −0.067 | 0 | 0 | 0 | 0.065 |
RTC- PI | 0 | 0 | 0 | 0.003 | 0 | 0.064 | 0.037 | 0.045 | 0 | 0.629 | 0 | 0.07 | 0 | 0.038 | 0 |
RTC- M | 0 | 0 | 0 | 0.089 | 0 | 0.019 | 0.005 | 0 | 0.629 | 0 | 0.054 | 0.117 | 0.025 | 0.145 | 0.141 |
RTC-SE | 0 | 0 | −0.066 | 0 | 0.087 | 0.002 | −0.079 | −0.067 | 0 | 0.054 | 0 | 0.222 | 0.194 | 0.078 | 0.324 |
RTC-ES | 0.016 | 0 | 0.068 | 0 | 0 | 0 | 0.029 | 0 | 0.07 | 0.117 | 0.222 | 0 | 0.236 | 0.15 | 0.027 |
RTC-SS | 0 | 0 | 0.001 | −0.064 | 0 | 0 | −0.024 | 0 | 0 | 0.025 | 0.194 | 0.236 | 0 | 0.108 | 0 |
RTC- A | 0 | 0 | 0 | 0.059 | 0 | 0.078 | 0.146 | 0 | 0.038 | 0.145 | 0.078 | 0.15 | 0.108 | 0 | 0.301 |
RTC-PR | 0 | 0 | 0 | 0 | 0.081 | 0.045 | 0 | 0.065 | 0 | 0.141 | 0.324 | 0.027 | 0 | 0.301 | 0 |
Betweenness | Closeness | Strength | Expected Influence | |
---|---|---|---|---|
HEAS-AS | 0.509 | −1.16 | −0.25 | −0.099 |
HEAS-R | 1.962 | −0.062 | 0.69 | 0.984 |
HEAS-BS | −0.218 | −1.445 | −0.223 | −0.388 |
HEAS-APS | 0.69 | 0.099 | 0.147 | −0.049 |
PEB-C | −1.308 | −0.188 | −1.313 | −0.714 |
PEB-EC | −0.218 | 0.43 | −0.504 | −0.028 |
PEB-F | 0.872 | 1.294 | −0.105 | −0.909 |
PEB-T | −1.308 | −1.874 | −1.818 | −1.745 |
RTC-PI | −1.126 | −0.572 | −0.086 | 0.326 |
RTC-M | 1.417 | 0.381 | 1.704 | 1.844 |
RTC-SE | 0.145 | 0.947 | 1.434 | −0.298 |
RTC-ES | −0.4 | 0.392 | 0.168 | 0.541 |
RTC-SS | −1.126 | −0.727 | −1.336 | −1.526 |
RTC-A | 0.509 | 1.307 | 1.066 | 1.303 |
RTC-PR | −0.4 | 1.177 | 0.424 | 0.759 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: AS → PEB: C | 0.020 | 0.016 | 1.271 | 0.204 | −0.011 | 0.052 |
Indirect effects | ||||||
HEAS: AS → RTC: PI → PEB: C | 0.021 | 0.005 | 3.812 | <0.001 | 0.012 | 0.034 |
Total effects | ||||||
HEAS: AS → PEB: C | 0.041 | 0.016 | 2.537 | 0.011 | 0.010 | 0.073 |
Path coefficient | ||||||
RTC: PI → PEB: C | 0.265 | 0.044 | 6.043 | <0.001 | 0.176 | 0.360 |
HEAS: AS → PEB: C | 0.020 | 0.016 | 1.271 | 0.204 | −0.011 | 0.052 |
HEAS: AS → RTC: PI | 0.078 | 0.016 | 4.913 | <0.001 | 0.045 | 0.115 |
R-squared | ||||||
PEB: C | 0.080 | |||||
RTC: PI | 0.046 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: AS → PEB: EC | 0.038 | 0.016 | 2.464 | 0.014 | 0.008 | 0.070 |
Indirect effects | ||||||
HEAS: AS → RTC: PI → PEB: EC | 0.025 | 0.006 | 4.100 | <0.001 | 0.014 | 0.038 |
Total effects | ||||||
HEAS: AS → PEB: EC | 0.063 | 0.016 | 3.943 | <0.001 | 0.031 | 0.097 |
Path coefficient | ||||||
RTC: PI → PEB: EC | 0.318 | 0.043 | 7.439 | <0.001 | 0.232 | 0.414 |
HEAS: AS → PEB: EC | 0.038 | 0.016 | 2.464 | 0.014 | 0.008 | 0.070 |
HEAS: AS → RTC: PI | 0.078 | 0.016 | 4.913 | <0.001 | 0.044 | 0.113 |
R-squared | ||||||
PEB: EC | 0.127 | |||||
RTC: PI | 0.046 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: AS → PEB: F | 0.013 | 0.016 | 0.832 | 0.406 | −0.018 | 0.044 |
Indirect effects | ||||||
HEAS: AS → RTC: PI → PEB: F | 0.022 | 0.006 | 3.939 | <0.001 | 0.012 | 0.036 |
Total effects | ||||||
HEAS: AS → PEB: F | 0.036 | 0.016 | 2.204 | 0.027 | 0.005 | 0.067 |
Path coefficient | ||||||
RTC: PI → PEB: F | 0.288 | 0.044 | 6.590 | <0.001 | 0.202 | 0.372 |
HEAS: AS → PEB: F | 0.013 | 0.016 | 0.832 | 0.406 | −0.018 | 0.044 |
HEAS: AS → RTC: PI | 0.078 | 0.016 | 4.913 | <0.001 | 0.043 | 0.112 |
R-squared | ||||||
PEB: F | 0.089 | |||||
RTC: PI | 0.046 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: AS → PEB: T | 0.011 | 0.016 | 0.667 | 0.505 | −0.021 | 0.042 |
Indirect effects | ||||||
HEAS: AS → RTC: PI → PEB: T | 0.014 | 0.005 | 3.097 | 0.002 | 0.007 | 0.024 |
Total effects | ||||||
HEAS: AS → PEB: T | 0.025 | 0.016 | 1.534 | 0.125 | −0.007 | 0.055 |
Path coefficient | ||||||
RTC: PI → PEB: T | 0.179 | 0.045 | 3.990 | <0.001 | 0.098 | 0.262 |
HEAS: AS → PEB: T | 0.011 | 0.016 | 0.667 | 0.505 | −0.021 | 0.042 |
HEAS: AS → RTC: PI | 0.078 | 0.016 | 4.913 | <0.001 | 0.044 | 0.114 |
R-squared | ||||||
PEB: T | 0.035 | |||||
RTC: PI | 0.046 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: EC | 0.044 | 0.019 | 2.310 | 0.021 | 0.003 | 0.083 |
Indirect effects | ||||||
HEAS: BS → RTC: SE → PEB: EC | −0.004 | 0.006 | −0.693 | 0.488 | −0.016 | 0.007 |
Total effects | ||||||
HEAS: BS → PEB: EC | 0.040 | 0.020 | 1.998 | 0.046 | −0.003 | 0.079 |
Path coefficient | ||||||
RTC: SE → PEB: EC | 0.297 | 0.042 | 6.994 | <0.001 | 0.217 | 0.380 |
HEAS: BS → PEB: EC | 0.044 | 0.019 | 2.310 | 0.021 | 0.003 | 0.083 |
HEAS: BS → RTC: SE | −0.014 | 0.020 | −0.697 | 0.486 | −0.051 | 0.024 |
R-squared | ||||||
PEB: EC | 0.096 | |||||
RTC: SE | 0.0009682 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: F | 0.042 | 0.020 | 2.147 | 0.032 | 0.004 | 0.079 |
Indirect effects | ||||||
HEAS: BS → RTC: SE → PEB: F | −0.002 | 0.002 | −0.672 | 0.502 | −0.007 | 0.002 |
Total effects | ||||||
HEAS: BS → PEB: F | 0.041 | 0.020 | 2.055 | 0.040 | 0.002 | 0.078 |
Path coefficient | ||||||
RTC: SE → PEB: F | 0.113 | 0.044 | 2.546 | 0.011 | 0.029 | 0.197 |
HEAS: BS → PEB: F | 0.042 | 0.020 | 2.147 | 0.032 | 0.004 | 0.079 |
HEAS: BS → RTC: SE | −0.014 | 0.020 | −0.697 | 0.486 | −0.050 | 0.024 |
R-squared | ||||||
PEB: F | 0.021 | |||||
RTC: SE | 0.0009682 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: C | 0.028 | 0.020 | 1.418 | 0.156 | −0.010 | 0.064 |
Indirect effects | ||||||
HEAS: BS → RTC: ES → PEB: C | 0.019 | 0.006 | 3.212 | 0.001 | 0.010 | 0.031 |
Total effects | ||||||
HEAS: BS → PEB: C | 0.046 | 0.020 | 2.337 | 0.019 | 0.008 | 0.083 |
Path coefficient | ||||||
RTC: ES → PEB: C | 0.237 | 0.044 | 5.392 | <0.001 | 0.143 | 0.330 |
HEAS: BS → PEB: C | 0.028 | 0.020 | 1.418 | 0.156 | −0.010 | 0.064 |
HEAS: BS → RTC: ES | 0.078 | 0.020 | 3.999 | <0.001 | 0.042 | 0.117 |
R-squared | ||||||
PEB: C | 0.065 | |||||
RTC: ES | 0.031 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: EC | 0.017 | 0.019 | 0.880 | 0.379 | −0.023 | 0.056 |
Indirect effects | ||||||
HEAS: BS → RTC: ES → PEB: EC | 0.023 | 0.007 | 3.429 | <0.001 | 0.011 | 0.037 |
Total effects | ||||||
HEAS: BS → PEB: EC | 0.040 | 0.020 | 1.998 | 0.046 | −0.003 | 0.079 |
Path coefficient | ||||||
RTC: ES → PEB: EC | 0.289 | 0.043 | 6.667 | <0.001 | 0.203 | 0.375 |
HEAS: BS → PEB: EC | 0.017 | 0.019 | 0.880 | 0.379 | −0.023 | 0.056 |
HEAS: BS → RTC: ES | 0.078 | 0.020 | 3.999 | <0.001 | 0.038 | 0.116 |
R-squared | ||||||
PEB: EC | 0.089 | |||||
RTC: ES | 0.031 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: C | 0.046 | 0.024 | 1.916 | 0.055 | −0.0006233 | 0.092 |
Indirect effects | ||||||
HEAS: BS → RTC: SE → PEB: C | −0.002 | 0.007 | −0.282 | 0.778 | −0.016 | 0.011 |
Total effects | ||||||
HEAS: BS → PEB: C | 0.044 | 0.025 | 1.773 | 0.076 | −0.006 | 0.091 |
Path coefficient | ||||||
RTC: SE → PEB: C | 0.264 | 0.053 | 4.957 | <0.001 | 0.154 | 0.378 |
HEAS: BS → PEB: C | 0.046 | 0.024 | 1.916 | 0.055 | −0.0006233 | 0.092 |
HEAS: BS → RTC: SE | −0.007 | 0.025 | −0.283 | 0.778 | −0.055 | 0.040 |
R-squared | ||||||
PEB: C | 0.079 | |||||
RTC: SE | 0.0002448 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: EC | 0.069 | 0.024 | 2.922 | 0.003 | 0.022 | 0.116 |
Indirect effects | ||||||
HEAS: BS → RTC: SE → PEB: EC | −0.002 | 0.006 | −0.282 | 0.778 | −0.015 | 0.010 |
Total effects | ||||||
HEAS: BS → PEB: EC | 0.068 | 0.024 | 2.768 | 0.006 | 0.020 | 0.116 |
Path coefficient | ||||||
RTC: SE → PEB: EC | 0.239 | 0.053 | 4.495 | <0.001 | 0.133 | 0.355 |
HEAS: BS → PEB: EC | 0.069 | 0.024 | 2.922 | 0.003 | 0.022 | 0.116 |
HEAS: BS → RTC: SE | −0.007 | 0.025 | −0.283 | 0.778 | −0.054 | 0.041 |
R-squared | ||||||
PEB: EC | 0.080 | |||||
RTC: SE | 0.0002448 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: F | 0.044 | 0.025 | 1.799 | 0.072 | −0.004 | 0.091 |
Indirect effects | ||||||
HEAS: BS → RTC: SE → PEB: F | −0.0004693 | 0.002 | −0.275 | 0.783 | −0.007 | 0.002 |
Total effects | ||||||
HEAS: BS → PEB: F | 0.044 | 0.025 | 1.776 | 0.076 | −0.005 | 0.090 |
Path coefficient | ||||||
RTC: SE → PEB: F | 0.067 | 0.055 | 1.221 | 0.222 | −0.039 | 0.179 |
HEAS: BS → PEB: F | 0.044 | 0.025 | 1.799 | 0.072 | −0.004 | 0.091 |
HEAS: BS → RTC: SE | −0.007 | 0.025 | −0.283 | 0.778 | −0.054 | 0.039 |
R-squared | ||||||
PEB: F | 0.014 | |||||
RTC: SE | 0.0002448 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: T | 0.034 | 0.025 | 1.379 | 0.168 | −0.014 | 0.081 |
Indirect effects | ||||||
HEAS: BS → RTC: SE → PEB: T | −0.0001553 | 0.0006717 | −0.231 | 0.817 | −0.005 | 0.002 |
Total effects | ||||||
HEAS: BS → PEB: T | 0.034 | 0.025 | 1.373 | 0.170 | −0.014 | 0.081 |
Path coefficient | ||||||
RTC: SE → PEB: T | 0.022 | 0.055 | 0.402 | 0.687 | −0.085 | 0.137 |
HEAS: BS → PEB: T | 0.034 | 0.025 | 1.379 | 0.168 | −0.014 | 0.081 |
HEAS: BS → RTC: SE | −0.007 | 0.025 | −0.283 | 0.778 | −0.053 | 0.041 |
R-squared | ||||||
PEB: T | 0.006 | |||||
RTC: SE | 0.0002448 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: F | 0.029 | 0.025 | 1.175 | 0.240 | −0.019 | 0.076 |
Indirect effects | ||||||
HEAS: BS → RTC: ES → PEB: F | 0.015 | 0.006 | 2.351 | 0.019 | 0.005 | 0.031 |
Total effects | ||||||
HEAS: BS → PEB: F | 0.044 | 0.025 | 1.776 | 0.076 | −0.005 | 0.090 |
Path coefficient | ||||||
RTC: ES → PEB: F | 0.185 | 0.055 | 3.350 | <0.001 | 0.077 | 0.295 |
HEAS: BS → PEB: F | 0.029 | 0.025 | 1.175 | 0.240 | −0.019 | 0.076 |
HEAS: BS → RTC: ES | 0.080 | 0.024 | 3.300 | <0.001 | 0.035 | 0.128 |
R-squared | ||||||
PEB: F | 0.043 | |||||
RTC: ES | 0.032 |
Trajectories | Estimate | SE | z | p-Value | 95% Confidence Interval | |
---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||
Direct effects | ||||||
HEAS: BS → PEB: F | 0.043 | 0.025 | 1.743 | 0.081 | −0.006 | 0.089 |
Indirect effects | ||||||
HEAS: BS → RTC: SS → PEB: F | 0.0007253 | 0.002 | 0.386 | 0.699 | −0.002 | 0.008 |
Total effects | ||||||
HEAS: BS → PEB: F | 0.044 | 0.025 | 1.776 | 0.076 | −0.006 | 0.089 |
Path coefficient | ||||||
RTC: SS → PEB: F | 0.022 | 0.055 | 0.404 | 0.686 | −0.083 | 0.130 |
HEAS: BS → PEB: F | 0.043 | 0.025 | 1.743 | 0.081 | −0.006 | 0.089 |
HEAS: BS → RTC: SS | 0.032 | 0.025 | 1.316 | 0.188 | −0.012 | 0.081 |
R-squared | ||||||
PEB: F | 0.010 | |||||
RTC: SS | 0.005 |
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- United Nations Framework Convention on Climate Change. COP 28 Outcomes and Decisions. 2023. Available online: https://unfccc.int/cop28/5-key-takeaways (accessed on 11 April 2025).
- UNFCCC. Adoption of the Paris Agreement. In Proceedings of the United Nations Framework Convention on Climate Change, Paris, France, 12 December 2015. [Google Scholar]
- Adger, W.N.; Barnett, J.; Heath, S.; Jarillo, S. Climate Change Affects Multiple Dimensions of Well-Being through Impacts, Information and Policy Responses. Nat. Hum. Behav. 2022, 6, 1465–1473. [Google Scholar] [CrossRef]
- Ma, T.; Moore, J.; Cleary, A. Climate Change Impacts on the Mental Health and Wellbeing of Young People: A Scoping Review of Risk and Protective Factors. Soc. Sci. Med. 2022, 301, 114888. [Google Scholar] [CrossRef]
- Martin, G.; Reilly, K.; Everitt, H.; Gilliland, J.A. Review: The Impact of Climate Change Awareness on Children’s Mental Well-being and Negative Emotions—A Scoping Review. Child Adolesc. Ment. Health 2022, 27, 59–72. [Google Scholar] [CrossRef]
- Hogg, T.L.; Stanley, S.K.; O’Brien, L.V.; Watsford, C.R.; Walker, I. Clarifying the Nature of the Association between Eco-Anxiety, Wellbeing and pro-Environmental Behaviour. J. Environ. Psychol. 2024, 95, 102249. [Google Scholar] [CrossRef]
- Proulx, K.; Daelmans, B.; Baltag, V.; Banati, P. Climate Change Impacts on Child and Adolescent Health and Well-Being: A Narrative Review. J. Glob. Health 2024, 14, 04061. [Google Scholar] [CrossRef]
- Searle, K.; Gow, K. Do Concerns about Climate Change Lead to Distress? Int. J. Clim. Change Strateg. Manag. 2010, 2, 362–379. [Google Scholar] [CrossRef]
- Randall, R. Climate Anxiety or Climate Distress? Coping with the Pain of the Climate Emergency. 2019. Available online: https://rorandall.org/2019/10/19/climate-anxiety-or-climate-distress-coping-with-the-pain-of-the-climate-emergency/ (accessed on 15 April 2025).
- Pihkala, P. Anxiety and the Ecological Crisis: An Analysis of Eco-Anxiety and Climate Anxiety. Sustainability 2020, 12, 7836. [Google Scholar] [CrossRef]
- Albrecht, G. Chronic Environmental Change: Emerging ‘Psychoterratic’ Syndromes. In Climate Change and Human Well-Being; Weissbecker, I., Ed.; International and Cultural Psychology; Springer: New York, NY, USA, 2011; pp. 43–56. ISBN 978-1-4419-9741-8. [Google Scholar]
- Albrecht, G. Psychoterratic Conditions in a Scientific and Technological World. In Ecopsychology: Science, Totems, and the Technological Species; Kahn, P.H., Hasbach, P.H., Eds.; MIT Press: Cambridge, UK, 2012; pp. 241–264. [Google Scholar]
- Clayton, S. Climate Anxiety: Psychological Responses to Climate Change. J. Anxiety Disord. 2020, 74, 102263. [Google Scholar] [CrossRef]
- Grupe, D.W.; Nitschke, J.B. Uncertainty and Anticipation in Anxiety: An Integrated Neurobiological and Psychological Perspective. Nat. Rev. Neurosci. 2013, 14, 488–501. [Google Scholar] [CrossRef]
- Pihkala, P. Eco-Anxiety, Tragedy, and Hope: Psychological and Spiritual Dimensions of Climate Change. Zygon J. Relig. Sci. 2018, 53, 545–569. [Google Scholar] [CrossRef]
- Clayton, S.; Manning, C.; Speiser, M.; Hill, A.N. Mental Health and Our Changing Climate: (507892021-001). 2021. Available online: https://ecoamerica.org/mental-health-and-our-changing-climate-2021-edition/ (accessed on 20 April 2025).
- Cunsolo, A.; Harper, S.L.; Minor, K.; Hayes, K.; Williams, K.G.; Howard, C. Ecological Grief and Anxiety: The Start of a Healthy Response to Climate Change? Lancet Planet. Health 2020, 4, e261–e263. [Google Scholar] [CrossRef]
- Duradoni, M.; Fiorenza, M.; Bellotti, M.; Severino, F.P.; Valdrighi, G.; Guazzini, A. Highly Sensitive People and Nature: Identity, Eco-Anxiety, and Pro-Environmental Behaviors. Sustainability 2025, 17, 2740. [Google Scholar] [CrossRef]
- Verplanken, B.; Marks, E.; Dobromir, A.I. On the Nature of Eco-Anxiety: How Constructive or Unconstructive Is Habitual Worry about Global Warming? J. Environ. Psychol. 2020, 72, 101528. [Google Scholar] [CrossRef]
- Stanley, S.K.; Hogg, T.L.; Leviston, Z.; Walker, I. From Anger to Action: Differential Impacts of Eco-Anxiety, Eco-Depression, and Eco-Anger on Climate Action and Wellbeing. J. Clim. Change Health 2021, 1, 100003. [Google Scholar] [CrossRef]
- Schwartz, S.E.O.; Benoit, L.; Clayton, S.; Parnes, M.F.; Swenson, L.; Lowe, S.R. Climate Change Anxiety and Mental Health: Environmental Activism as Buffer. Curr. Psychol. 2023, 42, 16708–16721. [Google Scholar] [CrossRef]
- Innocenti, M.; Santarelli, G.; Lombardi, G.S.; Ciabini, L.; Zjalic, D.; Di Russo, M.; Cadeddu, C. How Can Climate Change Anxiety Induce Both Pro-Environmental Behaviours and Eco-Paralysis? The Mediating Role of General Self-Efficacy. Int. J. Environ. Res. Public Health 2023, 20, 3085. [Google Scholar] [CrossRef]
- Pavani, J.-B.; Nicolas, L.; Bonetto, E. Eco-Anxiety Motivates pro-Environmental Behaviors: A Two-Wave Longitudinal Study. Motiv. Emot. 2023, 47, 1062–1074. [Google Scholar] [CrossRef]
- Hogg, T.L.; Stanley, S.K.; O’Brien, L.V.; Wilson, M.S.; Watsford, C.R. The Hogg Eco-Anxiety Scale: Development and Validation of a Multidimensional Scale. Glob. Environ. Change 2021, 71, 102391. [Google Scholar] [CrossRef]
- Rocchi, G.; Pileri, J.; Luciani, F.; Gennaro, A.; Lai, C. Insights into Eco-Anxiety in Italy: Preliminary Psychometric Properties of the Italian Version of the Hogg Eco-Anxiety Scale, Age and Gender Distribution. J. Environ. Psychol. 2023, 92, 102180. [Google Scholar] [CrossRef]
- Boluda-Verdú, I.; Senent-Valero, M.; Casas-Escolano, M.; Matijasevich, A.; Pastor-Valero, M. Fear for the Future: Eco-Anxiety and Health Implications, a Systematic Review. J. Environ. Psychol. 2022, 84, 101904. [Google Scholar] [CrossRef]
- Kurth, C.; Pihkala, P. Eco-Anxiety: What It Is and Why It Matters. Front. Psychol. 2022, 13, 981814. [Google Scholar] [CrossRef]
- Duradoni, M.; Valdrighi, G.; Donati, A.; Fiorenza, M.; Puddu, L.; Guazzini, A. Development and Validation of the Readiness to Change Scale (RtC) for Sustainability. Sustainability 2024, 16, 4519. [Google Scholar] [CrossRef]
- Schaefer, A.L.; Anderson, J.E.; Simms, L.M. Are They Ready? Discharge Planning for Older Surgical Patients. J. Gerontol. Nurs. 1990, 16, 16–19. [Google Scholar] [CrossRef]
- Armenakis, A.A.; Harris, S.G.; Mossholder, K.W. Creating Readiness for Organizational Change. Hum. Relat. 1993, 46, 681–703. [Google Scholar] [CrossRef]
- Prescott, P.A.; Soeken, K.L.; Griggs, M. Identification and Referral of Hospitalized Patients in Need of Home Care. Res. Nurs. Health 1995, 18, 85–95. [Google Scholar] [CrossRef]
- Dalton, C.C.; Gottlieb, L.N. The Concept of Readiness to Change. J. Adv. Nurs. 2003, 42, 108–117. [Google Scholar] [CrossRef]
- Walinga, J. Toward a Theory of Change Readiness: The Roles of Appraisal, Focus, and Perceived Control. J. Appl. Behav. Sci. 2008, 44, 315–347. [Google Scholar] [CrossRef]
- Duradoni, M.; Baroni, M.; Valdrighi, G.; Guazzini, A. Readiness to Change and Pro-Environmental Transportation Behaviors: A Multidimensional and Gender-Sensitive Analysis. Sustainability 2025, 17, 3021. [Google Scholar] [CrossRef]
- Saulick, P.; Bekaroo, G.; Bokhoree, C.; Beeharry, Y.D. Investigating Pro-Environmental Behaviour among Students: Towards an Integrated Framework Based on the Transtheoretical Model of Behaviour Change. Environ. Dev. Sustain. 2023, 26, 6751–6780. [Google Scholar] [CrossRef]
- Van Valkengoed, A.M.; Steg, L. Meta-Analyses of Factors Motivating Climate Change Adaptation Behaviour. Nat. Clim. Change 2019, 9, 158–163. [Google Scholar] [CrossRef]
- Zeng, J.; Jiang, M.; Yuan, M. Environmental Risk Perception, Risk Culture, and Pro-Environmental Behavior. Int. J. Environ. Res. Public Health 2020, 17, 1750. [Google Scholar] [CrossRef]
- Osbaldiston, R.; Sheldon, K.M. Promoting Internalized Motivation for Environmentally Responsible Behavior: A Prospective Study of Environmental Goals. J. Environ. Psychol. 2003, 23, 349–357. [Google Scholar] [CrossRef]
- Tagkaloglou, S.; Kasser, T. Increasing Collaborative, pro-Environmental Activism: The Roles of Motivational Interviewing, Self-Determined Motivation, and Self-Efficacy. J. Environ. Psychol. 2018, 58, 86–92. [Google Scholar] [CrossRef]
- Emery, D.N. Self-Affirmation, Self-Efficacy and Response-Efficacy in Relation to Pro-Environmental Behavior. Ph.D. Thesis, Towson University, Towson, MD, USA, 2013. [Google Scholar]
- Bradley, G.L.; Babutsidze, Z.; Chai, A.; Reser, J.P. The Role of Climate Change Risk Perception, Response Efficacy, and Psychological Adaptation in pro-Environmental Behavior: A Two Nation Study. J. Environ. Psychol. 2020, 68, 101410. [Google Scholar] [CrossRef]
- Yu, T.-K.; Chang, Y.-J.; Chang, I.-C.; Yu, T.-Y. A Pro-Environmental Behavior Model for Investigating the Roles of Social Norm, Risk Perception, and Place Attachment on Adaptation Strategies of Climate Change. Environ. Sci. Pollut. Res. 2019, 26, 25178–25189. [Google Scholar] [CrossRef]
- Shi, J.; Lu, C.; Wei, Z. Effects of Social Capital on Pro-Environmental Behaviors in Chinese Residents. Sustainability 2022, 14, 13855. [Google Scholar] [CrossRef]
- Van Der Werff, E.; Steg, L.; Keizer, K. I Am What I Am, by Looking Past the Present: The Influence of Biospheric Values and Past Behavior on Environmental Self-Identity. Environ. Behav. 2014, 46, 626–657. [Google Scholar] [CrossRef]
- Lauren, N.; Fielding, K.S.; Smith, L.; Louis, W.R. You Did, so You Can and You Will: Self-Efficacy as a Mediator of Spillover from Easy to More Difficult pro-Environmental Behaviour. J. Environ. Psychol. 2016, 48, 191–199. [Google Scholar] [CrossRef]
- Tan, L.P.; Johnstone, M.-L.; Yang, L. Barriers to Green Consumption Behaviours: The Roles of Consumers’ Green Perceptions. Australas. Mark. J. 2016, 24, 288–299. [Google Scholar] [CrossRef]
- Arli, D.; Tan, L.P.; Tjiptono, F.; Yang, L. Exploring Consumers’ Purchase Intention towards Green Products in an Emerging Market: The Role of Consumers’ Perceived Readiness. Int. J. Consum. Stud. 2018, 42, 389–401. [Google Scholar] [CrossRef]
- Schwarzer, R. Modeling Health Behavior Change: How to Predict and Modify the Adoption and Maintenance of Health Behaviors. Appl. Psychol. 2008, 57, 1–29. [Google Scholar] [CrossRef]
- Miller, W.R.; Tonigan, J.S. Assessing Drinkers’ Motivation for Change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). In Addictive Behaviors: Readings on Etiology, Prevention, and Treatment.; Marlatt, G.A., VandenBos, G.R., Eds.; American Psychological Association: Washington, DC, USA, 1997; pp. 355–369. ISBN 978-1-55798-468-5. [Google Scholar]
- Rosenstock, I.M. Historical Origins of the Health Belief Model. Health Educ. Monogr. 1974, 2, 328–335. [Google Scholar] [CrossRef]
- Wittenstein, R.D. Factors Influencing Individual Readiness for Change in a Health Care Environment. Ph.D. Thesis, The George Washington University, Washington, DC, USA, 2008. [Google Scholar]
- Duradoni, M.; Baroni, M.; Fiorenza, M.; Bellotti, M.; Neri, G.; Guazzini, A. Readiness to Change and the Intention to Consume Novel Foods: Evidence from Linear Discriminant Analysis. Sustainability 2025, 17, 4902. [Google Scholar] [CrossRef]
- Bouman, T.; Verschoor, M.; Albers, C.J.; Böhm, G.; Fisher, S.D.; Poortinga, W.; Whitmarsh, L.; Steg, L. When Worry about Climate Change Leads to Climate Action: How Values, Worry and Personal Responsibility Relate to Various Climate Actions. Glob. Environ. Change 2020, 62, 102061. [Google Scholar] [CrossRef]
- Ogunbode, C.A.; Doran, R.; Hanss, D.; Ojala, M.; Salmela-Aro, K.; Van Den Broek, K.L.; Bhullar, N.; Aquino, S.D.; Marot, T.; Schermer, J.A.; et al. Climate Anxiety, Wellbeing and pro-Environmental Action: Correlates of Negative Emotional Responses to Climate Change in 32 Countries. J. Environ. Psychol. 2022, 84, 101887. [Google Scholar] [CrossRef]
- Parreira, N.; Mouro, C. Living by the Sea: Place Attachment, Coastal Risk Perception, and Eco-Anxiety When Coping with Climate Change. Front. Psychol. 2023, 14, 1155635. [Google Scholar] [CrossRef]
- Henschel, L.D.; Franke, G.H.; Jagla-Franke, M. Psychometric Properties of the German Hogg Eco-Anxiety Scale and Its Associations with Psychological Distress, Self-Efficacy and Social Support. BMC Public Health 2025, 25, 1624. [Google Scholar] [CrossRef]
- Neale, C.; Austin, M.M.K.; Roe, J.; Converse, B.A. Making People Aware of Eco-Innovations Can Decrease Climate Despair. Clim. Change 2023, 176, 162. [Google Scholar] [CrossRef]
- Sapiains, R.; Beeton, R.J.S.; Walker, I.A. The Dissociative Experience: Mediating the Tension Between People’s Awareness of Environmental Problems and Their Inadequate Behavioral Responses. Ecopsychology 2015, 7, 38–47. [Google Scholar] [CrossRef]
- The Anxious MindAn Investigation into the Varieties and Virtues of Anxiety|Books Gateway|MIT Press. Available online: https://direct.mit.edu/books/monograph/3605/The-Anxious-MindAn-Investigation-into-the (accessed on 2 May 2025).
- Baroni, M.; Valdrighi, G.; Guazzini, A.; Duradoni, M. Eco-Sensitive Minds: Clustering Readiness to Change and Environmental Sensitivity for Sustainable Engagement. Sustainability 2025, 17, 5662. [Google Scholar] [CrossRef]
- Larionow, P.; Mackiewicz, J.; Mudło-Głagolska, K.; Michalak, M.; Mazur, M.; Gawrych, M.; Komorowska, K.; Preece, D.A. Measuring Eco-Anxiety with the Polish Version of the 13-Item Hogg Eco-Anxiety Scale (HEAS-13): Latent Structure, Correlates, and Psychometric Performance. Healthcare 2024, 12, 2255. [Google Scholar] [CrossRef]
- Law Decree DL-101/2018; Provisions for the Adaptation of National Legislation to the Provisions of Regulation (EU). Italian Republic: Rome, Italy, 2018.
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Martin, G.; Cosma, A.; Roswell, T.; Anderson, M.; Treble, M.; Leslie, K.; Card, K.G.; Closson, K.; Kennedy, A.; Gislason, M. Measuring Negative Emotional Responses to Climate Change among Young People in Survey Research: A Systematic Review. Soc. Sci. Med. 2023, 329, 116008. [Google Scholar] [CrossRef]
- Spano, G.; Ricciardi, E.; Tinella, L.; Caffò, A.O.; Sanesi, G.; Bosco, A. Normative Data and Comprehensive Psychometric Evaluation of the Hogg Eco-Anxiety Scale in a Large Italian Sample. Heliyon 2025, 11, e41406. [Google Scholar] [CrossRef]
- Markle, G.L. Pro-Environmental Behavior: Does It Matter How It’s Measured? Development and Validation of the Pro-Environmental Behavior Scale (PEBS). Hum. Ecol. 2013, 41, 905–914. [Google Scholar] [CrossRef]
- Babin, B.J.; Black, W.C. Multivariate Data Analysis: A Global Perspective, 7th ed.; Hair, J.F., Ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2010; ISBN 978-0-13-515309-3. [Google Scholar]
- Dimock, M. Pew Research Center. Defining Generations: Where Millennials End and Generation Z Begins. 2019, Volume 17, pp. 1–7. Available online: https://www.pewresearch.org/fact-tank/2019/01/17/where-millennials-end-and-generation-z-begins (accessed on 20 April 2025).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon, UK, 2013; ISBN 978-1-134-74270-7. [Google Scholar]
- Cohen, J. Anales de Psicología/Annals of Psychology. Cosas Que He Aprendido Hasta Ahora 1992, 8, 3–18. [Google Scholar]
- Benjamini, Y.; Yekutieli, D. The Annals of Statistics. Control False Discov. Rate Mult. Test. Depend. 2001, 29, 1165–1188. [Google Scholar]
- Epskamp, S.; Borsboom, D.; Fried, E.I. Estimating Psychological Networks and Their Accuracy: A Tutorial Paper. Behav. Res. Methods 2018, 50, 195–212. [Google Scholar] [CrossRef]
- Biesanz, J.C.; Falk, C.F.; Savalei, V. Assessing Mediational Models: Testing and Interval Estimation for Indirect Effects. Multivar. Behav. Res. 2010, 45, 661–701. [Google Scholar] [CrossRef]
- Nitschke, J.B. Distinguishing Dimensions of Anxiety and Depression. Cogn. Ther. Res. 2001, 25, 1–22. [Google Scholar] [CrossRef]
- Coffey, Y.; Bhullar, N.; Durkin, J.; Islam, M.S.; Usher, K. Understanding Eco-Anxiety: A Systematic Scoping Review of Current Literature and Identified Knowledge Gaps. J. Clim. Change Health 2021, 3, 100047. [Google Scholar] [CrossRef]
- Rothschild, J.; Haase, E. The Mental Health of Women and Climate Change: Direct Neuropsychiatric Impacts and Associated Psychological Concerns. Int. J. Gynecol. Obstet. 2023, 160, 405–413. [Google Scholar] [CrossRef]
- McLean, C.P.; Anderson, E.R. Brave Men and Timid Women? A Review of the Gender Differences in Fear and Anxiety. Clin. Psychol. Rev. 2009, 29, 496–505. [Google Scholar] [CrossRef]
- Carver, C.S.; Scheier, M.F. Origins and Functions of Positive and Negative Affect: A Control-Process View. Psychol. Rev. 1990, 97, 19–35. [Google Scholar] [CrossRef]
- Tallis, F.; Eysenck, M.W. Worry: Mechanisms and Modulating Influences. Behav. Cogn. Psychother. 1994, 22, 37–56. [Google Scholar] [CrossRef]
- Martin, L.L.; Tesser, A. Some Ruminative Thoughts. In Ruminative Thoughts; Advances in social cognition; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1996; Volume 9, pp. 1–47. ISBN 978-0-8058-1815-4. [Google Scholar]
- Watkins, E.R. Constructive and Unconstructive Repetitive Thought. Psychol. Bull. 2008, 134, 163–206. [Google Scholar] [CrossRef]
- Tabernero, C.; Hernández, B. Self-Efficacy and Intrinsic Motivation Guiding Environmental Behavior. Environ. Behav. 2011, 43, 658–675. [Google Scholar] [CrossRef]
- Taufik, D.; Bolderdijk, J.W.; Steg, L. Acting Green Elicits a Literal Warm Glow. Nat. Clim. Change 2015, 5, 37–40. [Google Scholar] [CrossRef]
- Kwahk, K.-Y.; Kim, H.-W. Managing Readiness in Enterprise Systems-Driven Organizational Change. Behav. Inf. Technol. 2008, 27, 79–87. [Google Scholar] [CrossRef]
- Abraham, J.; Pane, M.M.; Chairiyani, R.P. An Investigation on Cynicism and Environmental Self-Efficacy as Predictors of Pro-Environmental Behavior. Psychology 2015, 06, 234–242. [Google Scholar] [CrossRef]
- Farhane-Medina, N.Z.; Luque, B.; Tabernero, C.; Castillo-Mayén, R. Factors Associated with Gender and Sex Differences in Anxiety Prevalence and Comorbidity: A Systematic Review. Sci. Prog. 2022, 105, 00368504221135469. [Google Scholar] [CrossRef]
- Smith, A.R.; Jones, E.L.; Subar, A.R.; Do, Q.B.; Kircanski, K.; Leibenluft, E.; Brotman, M.A.; Pine, D.S.; Silk, J.S. The Role of Anxiety and Gender in Anticipation and Avoidance of Naturalistic Anxiety-provoking Experiences during Adolescence: An Ecological Momentary Assessment Study. JCPP Adv. 2022, 2, e12084. [Google Scholar] [CrossRef]
- Rodríguez Quiroga, A.; Peña Loray, J.S.; Moreno Poyato, A.; Roldán Merino, J.; Botero, C.; Bongiardino, L.; Aufenacker, S.I.; Stanley, S.K.; Costa, T.; Luís, S.; et al. Mental Health during Ecological Crisis: Translating and Validating the Hogg Eco-Anxiety Scale for Argentinian and Spanish Populations. BMC Psychol. 2024, 12, 227. [Google Scholar] [CrossRef]
- Stake, J.E.; Eisele, H. Gender and Personality. In Handbook of Gender Research in Psychology, Vol 2: Gender Research in Social and Applied Psychology; Springer Science + Business Media: New York, NY, USA, 2010; pp. 19–40. ISBN 978-1-4419-1466-8. [Google Scholar]
- Berke, D.S.; Reidy, D.; Zeichner, A. Masculinity, Emotion Regulation, and Psychopathology: A Critical Review and Integrated Model. Clin. Psychol. Rev. 2018, 66, 106–116. [Google Scholar] [CrossRef]
- Gender and Health. Available online: https://www.who.int/news-room/questions-and-answers/item/gender-and-health (accessed on 2 May 2025).
- Leaper, C.; Farkas, T. The Socialization of Gender during Childhood and Adolescence. In Handbook of Socialization: Theory and Research, 2nd ed.; The Guilford Press: New York, NY, USA, 2015; pp. 541–565. ISBN 978-1-4625-1834-0. [Google Scholar]
- Anyan, F.; Hjemdal, O. Stress of Home Life and Gender Role Socializations, Family Cohesion, and Symptoms of Anxiety and Depression. Women Health 2018, 58, 548–564. [Google Scholar] [CrossRef]
- Shields, S.A. Gender and Emotion: What We Think We Know, What We Need to Know, and Why It Matters. Psychol. Women Q. 2013, 37, 423–435. [Google Scholar] [CrossRef]
- Richmond, K.; Levant, R.; Smalley, B.; Cook, S. The Femininity Ideology Scale (FIS): Dimensions and Its Relationship to Anxiety and Feminine Gender Role Stress. Women Health 2015, 55, 263–279. [Google Scholar] [CrossRef]
- Vogel, D.L.; Heimerdinger-Edwards, S.R.; Hammer, J.H.; Hubbard, A. “Boys Don’t Cry”: Examination of the Links between Endorsement of Masculine Norms, Self-Stigma, and Help-Seeking Attitudes for Men from Diverse Backgrounds. J. Couns. Psychol. 2011, 58, 368–382. [Google Scholar] [CrossRef]
- Clark, L.H.; Hudson, J.L.; Dunstan, D.A.; Clark, G.I. Barriers and Facilitating Factors to Help-seeking for Symptoms of Clinical Anxiety in Adolescent Males. Aust. J. Psychol. 2018, 70, 225–234. [Google Scholar] [CrossRef]
- Herreen, D.; Rice, S.; Currier, D.; Schlichthorst, M.; Zajac, I. Associations between Conformity to Masculine Norms and Depression: Age Effects from a Population Study of Australian Men. BMC Psychol. 2021, 9, 32. [Google Scholar] [CrossRef]
- Ford, P.A.; Keane, C.A. Australian Men’s Help-Seeking Intentions for Anxiety Symptoms: The Impact of Masculine Norm Conformity and Gender Role Conflict. Heliyon 2024, 10, e29114. [Google Scholar] [CrossRef]
- Van der Linden, S. Determinants and Measurement of Climate Change Risk Perception, Worry, and Concern; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Parmentier, M.-L.; Weiss, K.; Aroua, A.; Betry, C.; Rivière, M.; Navarro, O. The Influence of Environmental Crisis Perception and Trait Anxiety on the Level of Eco-Worry and Climate Anxiety. J. Anxiety Disord. 2024, 101, 102799. [Google Scholar] [CrossRef]
- Moscarello, J.M.; Hartley, C.A. Agency and the Calibration of Motivated Behavior. Trends Cogn. Sci. 2017, 21, 725–735. [Google Scholar] [CrossRef]
- Lawrance, E.L.; Jennings, N.; Kioupi, V.; Thompson, R.; Diffey, J.; Vercammen, A. Psychological Responses, Mental Health, and Sense of Agency for the Dual Challenges of Climate Change and the COVID-19 Pandemic in Young People in the UK: An Online Survey Study. Lancet Planet. Health 2022, 6, e726–e738. [Google Scholar] [CrossRef]
- Asbrand, J.; Spirkl, N.; Reese, G.; Spangenberg, L.; Shibata, N.; Dippel, N. Understanding Coping with the Climate Crisis: An Experimental Study with Young People on Agency and Mental Health. Anxiety Stress Coping 2025, 38, 1–16. [Google Scholar] [CrossRef]
- Sarrasin, O.; Henry, J.L.A.; Masserey, C.; Graff, F. The Relationships between Adolescents’ Climate Anxiety, Efficacy Beliefs, Group Dynamics, and Pro-Environmental Behavioral Intentions after a Group-Based Environmental Education Intervention. Youth 2022, 2, 422–440. [Google Scholar] [CrossRef]
- Jarrett, J.; Gauthier, S.; Baden, D.; Ainsworth, B.; Dorey, L. Eco-Anxiety and Climate-Anxiety Linked to Indirect Exposure: A Scoping Review of Empirical Research. J. Environ. Psychol. 2024, 96, 102326. [Google Scholar] [CrossRef]
- Sinclair, A.H.; Cosme, D.; Lydic, K.; Reinero, D.A.; Carreras-Tartak, J.; Mann, M.E.; Falk, E.B. Behavioral Interventions Motivate Action to Address Climate Change. Proc. Natl. Acad. Sci. USA 2025, 122, e2426768122. [Google Scholar] [CrossRef]
- Nelson, S.-M.; Ira, G.; Merenlender, A.M. Adult Climate Change Education Advances Learning, Self-Efficacy, and Agency for Community-Scale Stewardship. Sustainability 2022, 14, 1804. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baroni, M.; Valdrighi, G.; Guazzini, A.; Duradoni, M. “More than a Feeling”: How Eco-Anxiety Shapes Pro-Environmental Behaviors and the Role of Readiness to Change. Sustainability 2025, 17, 6154. https://doi.org/10.3390/su17136154
Baroni M, Valdrighi G, Guazzini A, Duradoni M. “More than a Feeling”: How Eco-Anxiety Shapes Pro-Environmental Behaviors and the Role of Readiness to Change. Sustainability. 2025; 17(13):6154. https://doi.org/10.3390/su17136154
Chicago/Turabian StyleBaroni, Marina, Giulia Valdrighi, Andrea Guazzini, and Mirko Duradoni. 2025. "“More than a Feeling”: How Eco-Anxiety Shapes Pro-Environmental Behaviors and the Role of Readiness to Change" Sustainability 17, no. 13: 6154. https://doi.org/10.3390/su17136154
APA StyleBaroni, M., Valdrighi, G., Guazzini, A., & Duradoni, M. (2025). “More than a Feeling”: How Eco-Anxiety Shapes Pro-Environmental Behaviors and the Role of Readiness to Change. Sustainability, 17(13), 6154. https://doi.org/10.3390/su17136154