Exploring the Impact of New Urbanization on Ecological Resilience from a Spatial Heterogeneity Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Research Mechanism and Framework
2.2.2. NU and ER Evaluation Index
2.2.3. Study on the Effect of NU on ER
- (1)
- Coupling coordination model and spatial autocorrelation analysis
- (2)
- Geodetector and Geographically and Temporally Weighted Regression (GTWR)
2.3. Data and Processing
3. Results
3.1. Spatio-Temporal Evolution of NU and ER
3.2. Analysis of the Effect of NU on ER
3.2.1. Time Series Variation of Coupling Coordination
3.2.2. Spatial Autocorrelation Analysis of NU and ER
3.3. The Spatial Heterogeneity of the Effect of NU on ER
3.3.1. Identification of Main Driving Factors
3.3.2. Spatial Heterogeneity of Main Factors
4. Discussion
4.1. The Effect of NU on ER at Different Scales
4.1.1. Multi-Scale Spatial Pattern Characteristics of NU Development
4.1.2. Scale Effects of NU-ER Interactions
4.2. Spatial Heterogeneity of Dominant Factors and Its Formation Mechanism
4.3. A Comparison with International Cases
4.4. Limitations and Future Research Directions
5. Conclusions
6. Inspiration and Advice
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
NU | New urbanization |
ER | Ecological resilience |
YRB | The Yellow River Basin |
GTWR | Geodetector and Geographically and Temporally Weighted Regression |
Appendix A
Code | Independent Variable | 2005 | 2010 | 2015 | 2020 | q-Means | Explanatory Power Ranking |
---|---|---|---|---|---|---|---|
X1 | Urban population density | 0.7740 | 0.5931 | 0.8860 | 0.8009 | 0.7635 | 1 |
X2 | Proportion of urban population | 0.2039 | 0.2281 | 0.1759 | 0.1799 | 0.1970 | 14 |
X3 | The proportion of employees in the secondary industry | 0.3717 | 0.4163 | 0.645 | 0.5926 | 0.5064 | 7 |
X4 | The proportion of employees in the tertiary industry | 0.0722 | 0.0518 | 0.0530 | 0.0539 | 0.0577 | 15 |
X5 | Per capital gross regional product | 0.5072 | 0.3546 | 0.5244 | 0.6245 | 0.5027 | 8 |
X6 | Proportion of non-agricultural output value | 0.7461 | 0.5608 | 0.4047 | 0.384 | 0.5239 | 6 |
X7 | Urban per capita disposable income | 0.1621 | 0.1149 | 0.3663 | 0.1750 | 0.2046 | 12 |
X8 | Total Social Retail Consumer Goods | 0.1229 | 0.1321 | 0.2651 | 0.4283 | 0.2371 | 11 |
X9 | Number of health institutions per 10,000 people | 0.8660 | 0.1227 | 0.7071 | 0.2739 | 0.4924 | 9 |
X10 | Education expenditure | 0.8208 | 0.7555 | 0.6359 | 0.7541 | 0.7416 | 2 |
X11 | Technology expenditure | 0.7918 | 0.4349 | 0.7000 | 0.8582 | 0.6962 | 3 |
X12 | road area per capita | 0.3388 | 0.2635 | 0.4148 | 0.2725 | 0.3224 | 10 |
X13 | Built-up area | 0.2216 | 0.1911 | 0.1625 | 0.2402 | 0.2039 | 13 |
X14 | Proportion of construction land | 0.7444 | 0.5242 | 0.5754 | 0.5522 | 0.5991 | 4 |
X15 | Greening rate of built-up areas | 0.493 | 0.5897 | 0.6410 | 0.5141 | 0.5395 | 5 |
References
- Zhao, Y.; Song, Z.Y.; Chen, J.; Dai, W. The mediating effect of urbanisation on digital technology policy and economic development: Evidence from China. J. Innov. Knowl. 2023, 8, 100318. [Google Scholar] [CrossRef]
- Sun, B.; Fang, C.L.; Liao, X.; Guo, X.M.; Liu, Z.T. The relationship between urbanization and air pollution affected by intercity factor mobility: A case of the Yangtze River Delta region. Environ. Impact Assess. 2023, 100, 107092. [Google Scholar] [CrossRef]
- Li, L.; Zhan, W.F.; Hu, L.Q.; Chakraborty, T.C.; Wang, Z.H.; Fu, P.; Wang, D.Z.; Liao, W.L.; Huang, F.; Fu, H.Y.; et al. Divergent urbanization-induced impacts on global surface urban heat island trends since 1980s. Remote. Sens. Environ. 2023, 295, 113650. [Google Scholar] [CrossRef]
- Wan, M.X.; Han, Y.W.; Song, Y.K.; Hashimoto, S. Estimating and projecting the effects of urbanization on the forest habitat quality in a highly urbanized area. Urban For. Urban Green. 2024, 94, 128270. [Google Scholar] [CrossRef]
- Tong, Y.J.; Shi, T.G.; Zhang, S.B.; Cheng, Y.J.; Liang, J.Y.; Lei, J. Study on the Interaction Mechanism Between Urbanization and Ecological Resilience-The Case of Urban Agglomeration on the North Slope of Tianshan Mountain. Appl. Sci. 2024, 14, 12066. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y. How does urbanization evolve heterogeneously in urbanized, urbanizing, and rural areas of China? Insights from ecosystem service value. Geogr. Sustain. 2025, 6, 100254. [Google Scholar] [CrossRef]
- Lu, C.; Wang, Y.; Liu, X.; Yang, X. Coupling Relationship between New Urbanization and Ecosystem Services: A Case of Lower Yellow River. Ecol. Econ. 2023, 39, 85–92. [Google Scholar]
- Guo, H.H.; Liu, X.X. Coupling and Coordination Mechanism of New Urbanization and Ecological Resilience. East China Econ. Manag. 2023, 37, 101–109. [Google Scholar] [CrossRef]
- Liu, H.H.; Wang, G.Y.; Zhang, P.H.; Wang, Z.L.; Zhang, L.P. Spatio-temporal evolution and coordination influence of coupling coordination between new urbanization and ecological resilience in Fenhe River Basin. J. Nat. Resour. 2024, 39, 640–667. [Google Scholar] [CrossRef]
- Liu, Y.X.; Fu, B.J.; Wang, S.; Zhao, W.W.; Li, Y. Research progress of human-earth system dynamics supported by spatial resilience theory. Acta Geogr. Sin. 2020, 75, 891–903. [Google Scholar]
- Fan, Y.; Wei, G. Assessment of ecological resilience and its response mechanism to land spatial structure conflicts in China’s Southeast Coastal Areas. Ecol. Indic. 2025, 170, 112980. [Google Scholar] [CrossRef]
- Wang, A.; Zhang, M.; Chen, E.; Zhang, C.; Han, Y. Impact of seasonal global land surface temperature (LST) change on gross primary production (GPP) in the early 21st century. Sustain. Cities Soc. 2024, 110, 105572. [Google Scholar] [CrossRef]
- Yu, J.Z.; Hu, W.Z.; Hou, L.C. Towards more resilient cities-analyzing the impact of new-type urbanization on urban resilience: Considering spatial spillover boundaries. Sustain. Cities Soc. 2024, 114, 105735. [Google Scholar] [CrossRef]
- Li, T.N.; Liu, Y.B.; Ouyang, X.; Zhou, Y.J.; Bi, M.; Wei, G.E. Sustainable development of urban agglomerations around lakes in China: Achieving SDGs by regulating Ecosystem Service Supply and Demand through New-type Urbanization. Habitat Int. 2024, 153, 103206. [Google Scholar] [CrossRef]
- Yang, F.; Liu, Z.; Zhou, Y.; Wei, L. Urbanization weakens vegetation resilience in the Pearl River Delta, China. J. Environ. Manag. 2025, 373, 123756. [Google Scholar] [CrossRef]
- Hu, H.; Yan, K.G.; Shi, Y.; Lv, T.G.; Zhang, X.M.; Wang, X.Y. Decrypting resilience: The spatiotemporal evolution and driving factors of ecological resilience in the Yangtze River Delta Urban Agglomeration. Environ. Impact Assess. 2024, 106, 107540. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, M.K.; Li, H.L.; Chen, X.D. Exploring the coupling coordination of urban ecological resilience and new-type urbanization: The case of China’s Chengdu-Chongqing Economic Circle. Environ. Technol. Innov. 2023, 32, 103372. [Google Scholar] [CrossRef]
- Liu, L.; Lei, Y.; Zhuang, M.; Ding, S. The impact of climate change on urban resilience in the Beijing-Tianjin-Hebei region. Sci. Total Environ. 2022, 827, 154157. [Google Scholar] [CrossRef]
- Zhu, R.M.; Xia, Z.Y.; Liang, F.C.; Yuan, C.C.; Liu, L.M. Non-linear responses and critical thresholds of human well-being to ecosystem services across land-use intensities in urbanizing areas. Environ. Impact Assess. 2025, 114, 107921. [Google Scholar] [CrossRef]
- Chen, M.K.; Xu, X.B.; Tan, Y.; Lin, Y.Y. Assessing ecological vulnerability and resilience-sensitivity under rapid urbanization in China’s Jiangsu province. Ecol. Indic. 2024, 167, 112607. [Google Scholar] [CrossRef]
- Tang, H.X.; Yang, M.; Li, M.D.; Zhang, L.; Shao, Z.G. Research on Coupling Coordination of Urban Resilience and New-type Urbanization in the Shandong Peninsula Urban Agglomeration. Areal Res. Dev. 2024, 43, 85–90+126. [Google Scholar]
- Zhang, C.G.; Zhou, Y.J.; Yin, S.G. Interaction mechanisms of urban ecosystem resilience based on pressure-state-response framework: A case study of the Yangtze River Delta. Ecol. Indic. 2024, 166, 112263. [Google Scholar] [CrossRef]
- Wang, S.M.; Niu, J.L. Spatio-temporal evolution and influence factors of urban ecological resilience in the Yellow Basin. Acta Ecol. Sin. 2023, 43, 8309–8320. [Google Scholar] [CrossRef]
- Feng, X.H.; Zeng, F.S.; Loo, B.P.Y.; Zhong, Y.X. The evolution of urban ecological resilience: An evaluation framework based on vulnerability, sensitivity and self-organization. Sustain. Cities Soc. 2024, 116, 105933. [Google Scholar] [CrossRef]
- Luo, F.H.; Liu, Y.X.; Peng, J.; Wu, J.S. Assessing urban landscape ecological risk through an adaptive cycle framework. Landsc. Urban Plan. 2018, 180, 125–134. [Google Scholar] [CrossRef]
- Xiao, S.; Duo, L.; Guo, X.F.; Zou, Z.L.; Li, Y.A.; Zhao, D.X. Research on the coupling coordination and driving role of urbanization and ecological resilience in the middle and lower reaches of the Yangtze River. PeerJ 2023, 11, 15869. [Google Scholar] [CrossRef]
- Chambers, J.C.; Brown, J.L.; Campbell, S.; Green, S.A.; Reeves, M.C.; Schlaepfer, D.R.; Thacker, V. Indicators of ecological resilience and invasion resistance—Accounting for precipitation seasonality and climate change in southwestern U.S. drylands. Ecol. Indic. 2024, 168, 112749. [Google Scholar] [CrossRef]
- Zhou, L.; Qin, Y.; Cheng, J.L.; Zhu, H.Y.; Li, M.H.; Zhang, J.B.; Lebleu, C.; Shen, G.Q.; Chen, T.; Liu, Y. Urban ecosystem services, ecological security patterns and ecological resilience in coastal cities: The impact of land reclamation in Macao SAR. J. Environ. Manag. 2025, 373, 123750. [Google Scholar] [CrossRef]
- Wang, W.; Wang, Y.; Shen, C. Quantifying the nonlinear and interactive effects of urban form on resilience to extreme precipitation: Evidence from 192 cities of Southern China. Sustain. Cities Soc. 2025, 125, 106366. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, Y.; Li, S.L.; Li, X.L. Spatiotemporal characteristics and driving forces of the coupling of social security and economic development in China. Geogr. Res. 2020, 39, 1401–1417. [Google Scholar]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Anwar, A.M.; Alhosain, N.; Bhatt, Y. Analyzing the interplay of urbanization, economic development, and seaborne trade: Revealing their connection to urban resilience in Saudi Arabia. J. Urban Manag. 2025, 14, 512–529. [Google Scholar] [CrossRef]
- Kyule, B.M.; Wang, X. Quantifying the link between industrialization, urbanization, and economic growth over Kenya. Front. Archit. Res. 2024, 13, 799–808. [Google Scholar] [CrossRef]
- Qiao, B.; Cao, X.Y.; Yang, H.; Wang, N.A.; Liu, X.J.; Zhou, B.R.; Zhao, H.; Liu, X.; Wang, Y.P.; Wang, Z.; et al. Nonlinear threshold effects of environmental drivers on vegetation cover in mountain ecosystems: From constraint mechanisms to adaptive management. Ecol. Indic. 2025, 173, 113328. [Google Scholar] [CrossRef]
- Wang, G.M.; Salman, M.; Zhang, K.W. Exploring the dynamic spatial spillover and nonlinear threshold effect of urbanization on urban green development efficiency in China. Ecol. Indic. 2025, 175, 113570. [Google Scholar] [CrossRef]
- Li, S.S.; Li, L.Z.; Liu, Y.B.; Deng, W.F.; Liu, C.H.; Wei, G.E. Impact of urbanization on carbon balance in the Poyang Lake Region. Geogr. Res. 2023, 42, 2245–2263. [Google Scholar]
- Wang, S.J.; Cui, Z.T.; Lin, J.J.; Xie, J.Y.; Su, K. The coupling relationship between urbanization and ecological resilience in the Pearl River Delta. J. Geogr. Sci. 2022, 32, 44–64. [Google Scholar] [CrossRef]
- Li, W.J.; Zhou, L.F.; Zhao, X.L.; Wu, X.W.; Liu, L.L.; Liu, W.F.; Wu, F.C. Current Status and Challenges in Diagnostic Research on Water Environment Problems in the Yellow River Basin. Res. Environ. Sci. 2024, 37, 32–41. [Google Scholar] [CrossRef]
- Cao, L. The Current Situation, Problems and Countermeasures of Ecological Protection and high-quality Development in the Yellow River Basin. China Natl. Cond. Strength 2024, 8, 20–24. [Google Scholar] [CrossRef]
- Men, D.; Pan, J.H. Incorporating network topology and ecosystem services into the optimization of ecological network: A case study of the Yellow River Basin. Sci. Total Environ. 2024, 912, 169004. [Google Scholar] [CrossRef]
- Zhang, C.H.; Wang, G.Q. Thoughts on Ecological Protection and High-Quality Development in the Yelliw River Basin. Yellow River 2024, 46, 1–7. [Google Scholar]
- Yan, X.; Xin, B.Q.; Cheng, C.G.; Han, Z.Y. Unpacking energy consumption in China’s urbanization: Industry development, population growth, and spatial expansion. Res. Int. Bus. Financ. 2024, 70, 102342. [Google Scholar] [CrossRef]
- Ran, Z.; Gao, S.; Zhang, B.F.; Guo, C.Y.; Ouyang, X.; Gao, J.H. Non-linear effects of multi-dimensional urbanization on ecosystem services in mega-urban agglomerations and its threshold identification. Ecol. Indic. 2023, 154, 110846. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, Y.X.; Zhang, X.B.; Yin, L.; Zhang, B.L. Potential heterogeneity of urban ecological resilience and urbanization in multiple urban agglomerations from a landscape perspective. J. Environ. Manag. 2023, 342, 118129. [Google Scholar] [CrossRef]
- Cui, L.; Weng, S.; Nadeem, A.M.; Rafique, M.Z.; Shahzad, U. Exploring the role of renewable energy, urbanization and structural change for environmental sustainability: Comparative analysis for practical implications. Renew. Energy 2022, 184, 215–224. [Google Scholar] [CrossRef]
- Krishnadas, M.; Agarwala, M.; Sridhara, S.; Eastwood, E. Parks protect forest cover in a tropical biodiversity hotspot, but high human population densities can limit success. Biol. Conserv. 2018, 223, 147–155. [Google Scholar] [CrossRef]
- Hu, Y.Y.; Li, Y.; Li, Y.J.; Wu, J.C.; Zheng, H.Z.; He, H.M. Balancing urban expansion with a focus on ecological security: A case study of Zhaotong City, China. Ecol. Indic. 2023, 156, 111105. [Google Scholar] [CrossRef]
- Peng, B.H.; Li, Y.; Elahi, E.; Wei, G. Dynamic evolution of ecological carrying capacity based on the ecological footprint theory: A case study of Jiangsu province. Ecol. Indic. 2019, 99, 19–26. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, S.D.; Zhang, J.; Fan, F.F.; Zheng, H. Exploration of ecosystem asset-economy coupling coordination and its endogenous and exogenous drivers in mountainous regions. J. Clean. Prod. 2025, 486, 144460. [Google Scholar] [CrossRef]
- Wei, J.M.; Miao, Y.D.; Zhang, J.B.; Wu, J.; Shen, Z.L.; Bai, J.W.; Zhu, D.F.; Ren, R.Z.; Li, X.R.; Zhen, M.Y.; et al. Spatial heterogeneity of blood pressure control and its influencing factors in elderly patients with essential hypertension: A small-scale spatial analysis. Health Place 2025, 92, 103428. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Feng, H.B.; Arashpour, M.; Zhang, F. Enhancing urban flood resilience: A coupling coordinated evaluation and geographical factor analysis under SES-PSR framework. Int. J. Disaster Risk Reduct. 2024, 101, 104243. [Google Scholar] [CrossRef]
- Liu, H.L.; An, Z.X.; Wang, H.K.; Zhang, P.H.; Wang, G.Y.; Wang, Z. The coupling of urban resilience and innovation efficiency for coordinated spatio-temporal evolution and spatial heterogeneity in the Beijing-Tianjin-Hebei urban agglomeration. Geogr. Res. 2025, 44, 577–602. [Google Scholar]
- Chen, L.; Yu, W.; Zhang, X. Spatio-temporal patterns of High-Quality urbanization development under water resource constraints and their key Drivers: A case study in the Yellow River Basin, China. Ecol. Indic. 2024, 166, 112441. [Google Scholar] [CrossRef]
- Li, M.B.; Sun, J.R.; Baldan, D.; Olden, J.D.; Liu, Q.; Ding, C.Z.; Tao, J. Human barriers fragment three-quarters of all rivers in the Mekong basin. Renew. Sustain. Energy Rev. 2025, 210, 115158. [Google Scholar] [CrossRef]
- Sun, Y.F.; Wang, N.L. Sustainable urban development of the π-shaped Curve Area in the Yellow River basin under ecological constraints: A study based on the improved ecological footprint model. J. Clean. Prod. 2022, 337, 130452. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.Y.; Zhan, J.Y.; Liu, W.; Teng, Y.M.; Chu, X.; Wang, H.H. Spatial heterogeneity of urbanization impacts on ecosystem services in the urban agglomerations along the Yellow River, China. Ecol. Eng. 2022, 182, 106717. [Google Scholar] [CrossRef]
- Wang, S.B.; Li, Z.Y.; Long, Y.; Yang, L.; Ding, X.Y.; Sun, X.L.; Chen, T. Impacts of urbanization on the spatiotemporal evolution of ecological resilience in the Plateau Lake Area in Central Yunnan, China. Ecol. Indic. 2024, 160, 111836. [Google Scholar] [CrossRef]
- Alfalih, A.A.; Hadj, T.B. Ecological impact assessment of green technological innovation under different thresholds of human capital in G20 countries. Technol. Forecast. Soc. 2024, 201, 123276. [Google Scholar] [CrossRef]
- Yin, S.G.; Zhou, Y.J.; Zhang, C.G.; Wu, N.N. Impact of regional integration policy on urban ecological resilience: A case study of the Yangtze River Delta region, China. J. Clean. Prod. 2024, 485, 144375. [Google Scholar] [CrossRef]
- Xu, C.; Huo, X.X.; Hong, Y.X.X.; Yu, C.; de Jong, M.; Cheng, B.D. How urban greening policy affects urban ecological resilience: Quasi-natural experimental evidence from three megacity clusters in China. J. Clean. Prod. 2024, 452, 142233. [Google Scholar] [CrossRef]
- Yang, P.Q.; Bai, Y.Y. The History, Characteristics and Path of New-Type Urbanization in the Yellow River Basin. J. Xi’an Univ. Financ. Econ. 2023, 36, 71–84. [Google Scholar] [CrossRef]
- Hu, H.; Tian, G.L.; Wu, Z.; Xia, Q. A study of ecological compensation from the perspective of land use/cover change in the middle and lower Yellow River, China. Ecol. Indic. 2022, 143, 109382. [Google Scholar] [CrossRef]
- Zhao, Y.; Ke, Z.H.; Zhang, N. Green productivity divergence and factor endowments: Evidence from the Yellow River Basin, China. Sci. Total Environ. 2023, 901, 165895. [Google Scholar] [CrossRef]
- Wang, Y.P.; Yuan, L.H.; Lu, Y.J.; Liu, H.X.; Zeng, Y.H. Structural succession and functional changes in the river ecosystem of the Yellow River estuary under the influence of ecological restoration measures. Ecol. Indic. 2025, 173, 113428. [Google Scholar] [CrossRef]
- Feng, Y.X.; Li, G.D. Interaction between urbanization and eco-environment in the Tibetan Plateau. J. Geogr. Sci. 2021, 31, 298–324. [Google Scholar] [CrossRef]
- Feng, Z.W.; Yang, X.L.; Li, S.B. New insights of eco-environmental vulnerability in China’s Yellow River Basin: Spatio-temporal pattern and contributor identification. Ecol. Indic. 2024, 167, 112655. [Google Scholar] [CrossRef]
- Tu, D.H.; Cai, Y.Y.; Liu, M.B. Coupling coordination analysis and spatiotemporal heterogeneity between ecosystem services and new-type urbanization: A case study of the Yangtze River Economic Belt in China. Ecol. Indic. 2023, 154, 110535. [Google Scholar] [CrossRef]
- Bille, R.A.; Jensen, K.E.; Buitenwerf, R. Global patterns in urban green space are strongly linked to human development and population density. Urban For. Urban Green. 2023, 86, 127980. [Google Scholar] [CrossRef]
- Liu, C.; Ni, T.H. Further exploring the driving mechanism of ecological carrying capacity changes at the urban agglomeration level. Ecol. Indic. 2023, 150, 110231. [Google Scholar] [CrossRef]
- Han, C.; Lyu, J.; Zhong, D.J. The impact of financial support and innovation awareness on farmers’ adoption of green production technology. Financ. Res. Lett. 2025, 79, 107259. [Google Scholar] [CrossRef]
- Fu, X.X.; Li, Z.H.; Ma, J.H.; Zhou, M.L.; Chen, L.L.; Peng, J.B. Divergent trends in vegetation greenness and resilience across China’s forestry ecological engineering regions. Ecol. Eng. 2025, 215, 107614. [Google Scholar] [CrossRef]
- Guo, T.J.; Tong, Y.; Yu, Y.Z. The influence of government health investment on economic resilience: A perspective from health human capital. Int. Rev. Econ. Financ. 2025, 99, 104050. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, J.J.; Geng, X.L.; Wang, T.; Wang, K.; Liu, S.D. Increasing green infrastructure-based ecological resilience in urban systems: A perspective from locating ecological and disturbance sources in a resource-based city. Sustain. Cities Soc. 2020, 61, 102354. [Google Scholar] [CrossRef]
- Wang, S.Y.; Yang, Y.M.; Tang, Z.Y.; Wang, C.S.; Wang, F. Evolution of urban network patterns in the Yellow River Basin based on human mobility over 1300 years. Appl. Geogr. 2025, 178, 103587. [Google Scholar] [CrossRef]
- Yu, Y.; Hua, T.; Chen, L.D.; Zhang, Z.Q.; Pereira, P. Divergent Changes in Vegetation Greenness, Productivity, and Rainfall Use Efficiency Are Characteristic of Ecological Restoration Towards High-Quality Development in the Yellow River Basin, China. Engineering 2024, 34, 109–119. [Google Scholar] [CrossRef]
- Zhang, R.; Ying, W.H.; Wu, K.R.; Sun, H.P. The impact of innovative human capital agglomeration on urban green development efficiency: Based on panel data of 278 Cities in China. Sustain. Cities Soc. 2024, 111, 105566. [Google Scholar] [CrossRef]
- Ju, S.J.; Ma, J.; Li, Q.F.; Hu, S.G. Pattern evolution and driving mechanism of urbanization quality at county level in the middle reaches of Yangtze River. Econ. Geogr. 2023, 43, 93–102. [Google Scholar] [CrossRef]
- Sha, A.M.; Zhang, J.J.; Pan, Y.J.; Zhang, S.G. How to recognize and measure the impact of phasing urbanization on eco-environment quality: An empirical case study of 19 urban agglomerations in China. Technol. Forecast. Soc. 2025, 210, 123845. [Google Scholar] [CrossRef]
- Zhu, H.; Jiang, S.Y. Navigating urban sustainable development: Exploring the impact of low carbon policies on the urban ecological carrying capacity. J. Clean. Prod. 2024, 469, 143162. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y. Can the resource and environmental dilemma due to water-energy-carbon constraints be solved in the process of new urbanization? Sustain. Cities Soc. 2024, 114, 105748. [Google Scholar] [CrossRef]
- Qiu, M.; Yang, Z.L.; Zuo, Q.T.; Wu, Q.S.; Jiang, L.; Zhang, Z.Z.; Zhang, J.W. Evaluation on the relevance of regional urbanization and ecological security in the nine provinces along the Yellow River, China. Ecol. Indic. 2021, 132, 108346. [Google Scholar] [CrossRef]
- Zhou, Z.X.; Sun, X.R.; Zhang, X.T.; Wang, Y. Inter-regional ecological compensation in the Yellow River Basin based on the value of ecosystem services. J. Environ. Manag. 2022, 322, 116073. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.D.; Deng, H.B. The Enlightenment of the Yangtze River Belt’s Development Based on the Mode of Typical River Basins’Development in the World. Reg. Econ. Rev. 2016, 2, 145–151. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.J.; Guo, L.; Lam, N.S.-N.; Xu, K.; Yang, S.; Yao, Q.; Liu, K.-B. Comparing the Yangtze and Mississippi River Deltas in the light of coupled natural-human dynamics: Lessons learned and implications for management. Geomorphology 2022, 339, 108075. [Google Scholar] [CrossRef]
- Kok, S.; Le Clec’h, S.; Penning, W.E.; Buijse, A.D.; Hein, L. Trade-offs in ecosystem services under various river management strategies of the Rhine Branches. Ecosyst. Serv. 2025, 72, 101692. [Google Scholar] [CrossRef]
- Bhusal, S.; Shrestha, S.; Aryal, T. Climate change impacts on flood hazards and surface-subsurface water interactions in the Lancang Mekong River Basin. J. Hydrol. 2025, 658, 133082. [Google Scholar] [CrossRef]
- Liu, C.L.; Li, Y.W.; He, D.M.; Deng, B.W.; Zhang, E.W.; Wei, S.Z.; Duan, X.W. Dynamic monitoring of eco-environmental quality in the Greater Mekong Subregion: Evolutionary characteristics and country differences. Environ. Impact Assess. 2025, 110, 107700. [Google Scholar] [CrossRef]
- Liu, J.G.; Chen, D.L.; Mao, G.Q.; Irannezhad, M.; Pokhrel, Y. Past and Future Changes in Climate and Water Resources in the Lancang-Mekong River Basin: Current Understanding and Future Research Directions. Engineering 2022, 13, 144–152. [Google Scholar] [CrossRef]
- Gaber, M.; Özden, Ö. Urban Growth and Its Environmental Impacts: Case of the Nile River, Egypt. J. Urban Cult. Res. 2023, 26, 237–244. [Google Scholar]
- Peng, F.; Liang, J. The Predicament and Institutional Improvement of Horizontal Ecological Protection Compensation in River Basins under Contractual Governance. J. Nanjing Technol. Univ. 2024, 23, 54–67+113–114. [Google Scholar]
Index | First Grade Indexes | Weight or Formula | Explanation |
---|---|---|---|
NU | Population urbanization | 0.2385 | The secondary indicators include urban population density, urban population proportion, proportion of employees in the secondary industry, and proportion of employees in the tertiary industry. |
Economic urbanization | 0.2082 | The secondary indicators are per capita GDP, non-agricultural output value ratio, and per capita disposable income of urban residents. | |
Social urbanization | 0.2863 | The secondary indicators include the total amount of social retail consumer goods, the number of health institutions per 10,000 people, education expenditure, and technology expenditure. | |
Space urbanization | 0.2670 | The secondary indicators include per capita road area, built-up area, proportion of construction land, and green coverage rate of built-up area. | |
ER | Scale resilience | Ls is the suitable construction land area, and Ld represents the constructed land area. | |
Density resilience | Yj and Aj are the average productivity and per capita biological production area of the j-th type of land, respectively. rj and ri were yield factor and equilibrium factor, respectively. Ci and Pi represent the annual per capita consumption of the i-th consumer goods and the annual average productivity of the corresponding productive land, respectively. | ||
Morphological resilience | Lij is the average distance index of the source–sink landscape, dij is the distance between source patch i and sink patch j. The m and n are the number of grids of source and sink patches, respectively, and L is a constant. The value is the average distance index of the source–sink landscape in the study area in 2000, that is, 2500.86. | ||
Total ecological resilience | Rx is scale resilience, Rd is urban density resilience, Rm is morphological resilience. |
Year | 2005 | 2010 | 2015 | 2020 |
---|---|---|---|---|
YRB | −0.084 | −0.083 | −0.046 | 0.057 |
Upstream | −0003 | −0.005 | −0.03 | −0.037 |
Midstream | 0.019 | −0.018 | 0.052 | 0.163 |
Downstream | 0.115 | 0.18 | 0.229 | 0.228 |
Driving Factor | Direction of Action | Spatial Pattern | Formation Mechanism | Policy Implications |
---|---|---|---|---|
Urban population density | negative direction | strong east and weak west | Population agglomeration pressure | Implement differentiated population control |
Educational expenditure | positive direction | strong west and weak east | Law of diminishing marginal benefit | Optimize education resource allocation |
Technology expenditure | positive direction | core–periphery structure | Innovation diffusion effects | Strengthen regional innovation synergy |
Urban greening rate | positive direction | strong west and weak east | Differences in ecological compensation policies | Perfect transverse compensation machine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tian, Y.; Yang, Y.; Yin, L.; Zhang, B. Exploring the Impact of New Urbanization on Ecological Resilience from a Spatial Heterogeneity Perspective. Sustainability 2025, 17, 6197. https://doi.org/10.3390/su17136197
Wang X, Tian Y, Yang Y, Yin L, Zhang B. Exploring the Impact of New Urbanization on Ecological Resilience from a Spatial Heterogeneity Perspective. Sustainability. 2025; 17(13):6197. https://doi.org/10.3390/su17136197
Chicago/Turabian StyleWang, Xinyu, Yuan Tian, Yong Yang, Le Yin, and Baolei Zhang. 2025. "Exploring the Impact of New Urbanization on Ecological Resilience from a Spatial Heterogeneity Perspective" Sustainability 17, no. 13: 6197. https://doi.org/10.3390/su17136197
APA StyleWang, X., Tian, Y., Yang, Y., Yin, L., & Zhang, B. (2025). Exploring the Impact of New Urbanization on Ecological Resilience from a Spatial Heterogeneity Perspective. Sustainability, 17(13), 6197. https://doi.org/10.3390/su17136197