Livestock Sector in Serbia: Challenges, Structural Gaps, and Strategic Pathways Towards Sustainability
Abstract
1. Introduction
2. Data Sources and Analytical Approach
- National statistical databases, including the Statistical Office of the Republic of Serbia [10], for data on livestock numbers, production volumes, and agricultural output.
- Economic Accounts for Agriculture (EAAs), harmonized with the System of National Accounts [16], are used to assess the contribution of livestock production to the gross value added of the agricultural sector.
Literature Review and Keywords
3. Present Situation in Livestock Production in Serbia
3.1. Global Factors
3.2. Domestic Factors
3.3. Economic Accounts for Agriculture in Serbia
- Strategic and structural factors
- Technological factors
- Economic and financial factors
- Market organization and branding
- Biosecurity and animal health
- Climate and environmental factors
- Demographic factors
- Standard errors: (0.027) (0.034) (0.549)
- t-statistics: (4.841) (1.057) (−3.081)
- R = 0.625; F-statistic = 5.127; DW = 2.464
3.4. Strategic Recommendations for Sustainable Livestock Competitiveness
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. The Future of Food and Agriculture—Alternative Pathways to 2050. 2018. Available online: https://www.fao.org/3/i8429en/i8429en.pdf (accessed on 17 July 2025).
- Food and Agriculture Organization of the United Nations. World Livestock: Transforming the Livestock Sector Through the Sustainable Development Goals. 2018. Available online: https://www.fao.org/3/CA1201EN/ca1201en.pdf (accessed on 17 July 2025).
- Eurostat. Agricultural Production—Livestock and Meat. Statistics Explained. 2024. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Agricultural_production_-_livestock_and_meat (accessed on 17 July 2025).
- European Commission (EC). Monitoring EU Agri-Food Trade; DG Agriculture and Rural Development: Brussels, Belgium, 2024; Available online: https://agriculture.ec.europa.eu/international/agricultural-trade/trade-and-international-policy-analysis_en (accessed on 17 July 2025).
- Eurostat. Agricultural Statistics—Livestock Production. 2025. Available online: https://ec.europa.eu/eurostat (accessed on 17 July 2025).
- European Commission. EU Agricultural Outlook, 2024–2035; DG Agriculture and Rural Development: Brussels, Belgium, 2024; Available online: https://agriculture.ec.europa.eu/data-and-analysis/markets/outlook/medium-term_en (accessed on 17 July 2025).
- Velten, S.; Leventon, J.; Jager, N.; Newig, J. What Is Sustainable Agriculture? A Systematic Review. Sustainability 2015, 7, 7833–7865. [Google Scholar] [CrossRef]
- Milicevic, D.; Udovicki, B.; Susa, A.; Curcic, S. Responsible Consumption and Production: Challenges and Opportunities for Sustainable Development from Serbian Perspectives. Hrana Ishr. 2024, 65, 3–14. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Salık, M.A.; Çakmakçı, S. Assessment and Principles of Environmentally Sustainable Food and Agriculture Systems. Agriculture 2023, 13, 1073. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Statistical Yearbook of the Republic of Serbia 2025. 2025. Available online: https://www.stat.gov.rs/en-US/ (accessed on 17 July 2025).
- Grujić Vučkovski, B.; Paraušić, V.; Jovanović Todorović, M.; Joksimović, M.; Marina, I. Analysis of Influence of Value Indicators Agricultural Production on Gross Value Added in Serbian Agriculture. Custos Agronegocio 2022, 18, 349–372. [Google Scholar]
- Aničić, D.; Nestorović, O.; Aničić, J.; Jovanović, Z. Trends and Perspectives of Agricultural Development in Serbia. Ekon. Polj. 2025, 72, 375–385. [Google Scholar] [CrossRef]
- Bošković, J.; Popović, V.; Mladenović, J.; Stevanović, A.; Ristić, V.; Maksin, M.; Jovanov, D. The Future of Smart Agricultural Production through Applied Information Technologies. In Proceedings of the IRASA Inter-national Scientific Conference Science, Education, Technology and Innovation (SETI V 2023), Belgrade, Serbia, 14 October 2023; International Research Academy of Science and Art (IRASA): Belgrade, Serbia, 2023. Available online: https://hdl.handle.net/21.15107/rcub_fiver_4074 (accessed on 17 July 2025).
- Stanković, B.; Bugarski, D.; Ninković, M.; Kureljušić, B.; Kjosevski, M.; Chantziaras, I. Implementation of Biosecurity Measures in Ruminant Farms. In Proceedings of the 26th International Congress of the Mediterranean Federation for Health and Production of Ruminants (FeMeSPRum), Novi Sad, Serbia, 20–23 June 2024; pp. 274–286. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. National Accounts—Economic Accounts for Agriculture. 2025. Available online: https://www.stat.gov.rs/en-US/oblasti/nacionalni-racuni (accessed on 17 July 2025).
- United Nations; European Commission; International Monetary Fund; Organisation for Economic Co-Operation and Development; World Bank. System of National Accounts 2008; United Nations: New York, NY, USA, 2009; Available online: https://unstats.un.org/unsd/nationalaccount/docs/SNA2008.pdf (accessed on 17 July 2025).
- International Trade Centre (ITC). Trade Map—Trade Statistics for International Business Development. 2025. Available online: https://www.trademap.org (accessed on 25 April 2025).
- National Bank of Serbia. Macroeconomic Indicators. 2025. Available online: https://www.nbs.rs (accessed on 17 July 2025).
- International Monetary Fund. Republic of Serbia: Staff Report and Macroeconomic Indicators. 2025. Available online: https://www.imf.org (accessed on 17 July 2025).
- Petrović, M.P.; Petrović, M.M.; Pantelić, V.; Caro Petrović, V.; Ružić-Muslić, D.; Selionova, M.I.; Maksimović, N. Trend and Current Situation in Animal Husbandry of Serbia. In Proceedings of the 4th International Congress “New Perspectives and Challenges of Sustainable Livestock Production”, Belgrade, Serbia, 7–9 October 2015; Institute for Animal Husbandry: Belgrade-Zemun, 2015; pp. 1–7. Available online: https://r.istocar.bg.ac.rs/handle/123456789/692 (accessed on 17 July 2025).
- Vukoje, V.; Miljatović, A.; Tekić, D. Factors Influencing Farm Profitability in the Republic of Serbia. Ekon. Polj. 2022, 69, 1031–1042. [Google Scholar] [CrossRef]
- Andjelković, T.; Janković-Milić, V.; Lepojević, V.; Jovanović, S. Comparative Analysis of Serbian Agriculture and Agriculture of Other High Middle-Income Countries. Ekon. Polj. 2024, 71, 787–801. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT: Livestock Primary Production Data. 2024. Available online: https://www.fao.org/faostat/en/#data (accessed on 5 July 2025).
- Madžar, L. The Significance and Export Potential of Serbian Economy with Special Reference to Condition of Livestock. Škola Biznisa 2014, 2, 124–140. [Google Scholar] [CrossRef]
- FAO. The State of Food and Agriculture 2022; Food and Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- Husen, M.; Yusuf Bekere, H.; Hussen, D.H. Review on Impact of Climate Change on Livestock Health and Productivity. BAOJ Nutr. 2022, 1, 1001. [Google Scholar] [CrossRef]
- Kuraz, B.; Tesfaye, M.; Mekonenn, S. Climate Change Impacts on Animal Production and Contribution of Animal Production Sector to Global Climate Change: A Review. Agric. Sci. Dig. Res. J. 2021, 41, 523–530. [Google Scholar] [CrossRef]
- Samolovac, L.; Nikšić, D.; Ostojić Andrić, D.; Živković, V.; Stanojević, D.; Pantelić, V.; Mićić, N. Organization of Cattle Production in Conditions of Climate Change. In Proceedings of the 14th International Symposium, “Modern Trends in Livestock Production”, Belgrade, Serbia, 4–6 October 2023; Institut za Stočarstvo: Belgrade, Serbia, 2023; pp. 114–128. Available online: https://r.istocar.bg.ac.rs/handle/123456789/921 (accessed on 17 July 2025).
- Salavrakos, I.D.; Palmadessa, A.; Radvila, E. A Global Animal Farm: Situating International Instability. In Politics Between Nations; Akande, A., Ed.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Novaković, D.; Milić, D.; Tomaš Simin, M.; Jocic, B.; Novaković, T. Factors Influencing the Profitability of SMEs from the Republic of Serbia: Food Industry. Ekon. Polj. 2025, 72, 409–423. [Google Scholar] [CrossRef]
- Radović, G.; Subić, J.; Pejanović, V. Analysis of Implementation of the IPARD II Program in Serbia. Ekon. Polj. 2024, 71, 1017–1031. [Google Scholar] [CrossRef]
- Marković, M.; Simonović, Z. Competitiveness of the Agri-Food Sector of Serbia through the Perspective of Unit Values of Exports and Imports. Ekon. Polj. 2025, 72, 469–481. [Google Scholar] [CrossRef]
- Đurić, K.; Cvijanović, D.; Prodanović, R.; Čavlin, M.; Kuzman, B.; Lukač Bulatović, M. Serbian Agriculture Policy: Economic Analysis Using the PSE Approach. Sustainability 2019, 11, 309. [Google Scholar] [CrossRef]
- Bešić, C.; Ćoćkalo, D.; Bakator, M.; Stanisavljev, S.; Bogetić, S. Society 5.0 and Its Impact on Agricultural Business and Innovation: A New Paradigm for Rural Development. Ekon. Polj. 2024, 71, 803–819. [Google Scholar] [CrossRef]
- Radišić, R.; Sredojević, Z.; Perišić, P. Some Economic Indicators of Production of Cow’s Milk in the Republic of Serbia. Ekon. Polj. 2021, 68, 113–126. [Google Scholar] [CrossRef]
- Županić, F.Ž.; Radić, D.; Podbregar, I. Climate Change and Agriculture Management: Western Balkan Region Analysis. Energy Sustain. Soc. 2021, 11, 51. [Google Scholar] [CrossRef]
- Živanovic, V.; Joksimovic, M.; Golic, R.; Malinic, V.; Krstic, F.; Sedlak, M.; Kovjanic, A. Depopulated and Abandoned Areas in Serbia in the 21st Century—From a Local to a National Problem. Sustainability 2022, 14, 10765. [Google Scholar] [CrossRef]
- Gajić, A.; Krunić, N.; Protić, B. Classification of Rural Areas in Serbia: Framework and Implications for Spatial Planning. Sustainability 2021, 13, 1596. [Google Scholar] [CrossRef]
- Vučić, V.; Dašić, D.; Mladenović, M. Economic Challenges and Potentials for Sustainable Development in Rural Areas of Serbia. Ekon. Poljopr. 2025, 72, 775–789. [Google Scholar] [CrossRef]
- Milićević, D. Foreign Exchange Rate and Inflation as Factors of Movements in Imports of Agricultural and Food Products in the Period 2006–2024. 2025. Available online: http://www.makroekonomija.org (accessed on 17 July 2025).
- Vlaicu, P.A.; Gras, M.A.; Untea, A.E.; Lefter, N.A.; Rotar, M.C. Advancing Livestock Technology: Intelligent Systemization for Enhanced Productivity, Welfare, and Sustainability. AgriEngineering 2024, 6, 1479–1496. [Google Scholar] [CrossRef]
- Akinsulie, O.C.; Idris, I.; Aliyu, V.A.; Shahzad, S.; Banwo, O.G.; Ogunleye, S.C.; Olorunshola, M.; Okedoyin, D.O.; Ugwu, C.; Oladapo, I.P.; et al. The Potential Application of Artificial Intelligence in Veterinary Clinical Practice and Biomedical Research. Front. Vet. Sci. 2024, 11, 1347550. [Google Scholar] [CrossRef]
- Hossein-Zadeh, N.G. Artificial Intelligence in Veterinary and Animal Science: Applications, Challenges, and Future Prospects. Comput. Electron. Agric. 2025, 235, 110395. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, W.; Lv, C.; Guo, M.; Yang, M.; Fu, Q.; Liu, X. Advancements in Artificial Intelligence Technology for Improving Animal Welfare: Current Applications and Research Progress. Anim. Res. One Health 2024, 2, 93–109. [Google Scholar] [CrossRef]
- Ali, A.A. Artificial Intelligence and Its Application in the Prediction and Diagnosis of Animal Diseases: A Review. Indian J. Anim. Res. 2023, 57, 1265–1271. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A Review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Munz, J.; Gindele, N.; Doluschitz, R. Exploring the Characteristics and Utilisation of Farm Management Information Systems (FMIS) in Germany. Comput. Electron. Agric. 2020, 170, 105246. [Google Scholar] [CrossRef]
- Goller, M.; Caruso, C.; Harteis, C. Digitalisation in Agriculture: Knowledge and Learning Requirements of German Dairy Farmers. Int. J. Res. Vocat. Educ. Train. 2021, 8, 208–223. [Google Scholar] [CrossRef]
- Verdouw, C.; Sundmaeker, H.; Tekinerdogan, B.; Conzon, D.; Montanaro, T. Architecture Framework of IoT-Based Food and Farm Systems: A Multiple Case Study. Comput. Electron. Agric. 2019, 165, 104939. [Google Scholar] [CrossRef]
- Mukhamedova, K.R.; Cherepkova, N.P.; Korotkov, A.V.; Dagasheva, Z.B.; Tvaronavičienė, M. Digitalisation of Agricultural Production for Precision Farming: A Case Study. Sustainability 2022, 14, 14802. [Google Scholar] [CrossRef]
- Schwering, D.S.; Bergmann, L.; Sonntag, W.I. How to Encourage Farmers to Digitize? A Study on User Typologies and Motivations of Farm Management Information Systems. Comput. Electron. Agric. 2022, 199, 107133. [Google Scholar] [CrossRef]
- Özentürk, U.; Chen, Z.; Jamone, L.; Versace, E. Robotics for Poultry Farming: Challenges and Opportunities. Comput. Electron. Agric. 2024, 226, 109411. [Google Scholar] [CrossRef]
- Ocran, J.N. Livestock and Poultry Production in the Age of Artificial Intelligence (AI): Transforming the Livestock and Poultry Sector through Modern Innovation. Int. J. Appl. Res. 2025, 11, 112–115. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Gebremikael, M.B.; Varijakshapanicker, P.; Vyas, D. Climate-Smart Approaches for Enhancing Livestock Productivity, Human Nutrition, and Livelihoods in Low- and Middle-Income Countries. Anim. Prod. Sci. 2025, 65, AN24215. [Google Scholar] [CrossRef]
- Katsini, L.; López, C.A.M.; Bhonsale, S.; Roufou, S.; Griffin, S.; Valdramidis, V.; Akkermans, S.; Polanska, M.; Van Impe, J. Modeling Climatic Effects on Milk Production. Comput. Electron. Agric. 2024, 225, 109218. [Google Scholar] [CrossRef]
- Langemeier, M. Measuring Farm Profitability. Farmdoc Dly. 2016, 6, 63. [Google Scholar]
- Constantin, M.; Sapena, J.; Apetrei, A.; Pătărlăgeanu, S.R. Deliver Smart, Not More! Building Economically Sustainable Competitiveness on the Ground of High Agri-Food Trade Specialization in the EU. Foods 2023, 12, 232. [Google Scholar] [CrossRef] [PubMed]
- Istudor, N.; Constantin, M.; Privitera, D.; Ignat, R.; Petrescu, I.-E.; Teodor, C. Systemic Competitiveness in the EU Cereal Value Chain: A Network Perspective for Policy Alignment. Land 2025, 14, 731. [Google Scholar] [CrossRef]
- Tolimir, N.; Maslovarić, M.; Jovanović, R.; Tomić, V.; Popović, N.; Stanimirović, I.; Beskorovajni, R. Transfer Naučnih Znanja kroz Programe Obuke Savetodavaca u Oblasti Stočarstva. Biotechnol. Anim. Husb. 2025, 41, 89–100. [Google Scholar] [CrossRef]
- Kovačević, V.; Vidojević, D.; Strićević, R.; Vimić, A.V.; Bogdanović, V. Adaptation to Climate Change in Agriculture—Status, Gaps and Recommendations in Serbia. In Climate Change Adaptation in Agriculture—Status and Prospects in Western; Umweltbundesamt GmbH: Vienna, Austria, 2024; p. 271. [Google Scholar]
- Milić, D.M.; Glavaš Trbić, D.B.; Tomaš Simin, M.J.; Zekić, V.N.; Novaković, T.J.; Vukelić, N.B. Economic Indicators of Production of Semi-Hard and Hard Cheeses in Small Capacity Dairies in Serbia. J. Agric. Sci. 2020, 65, 283–296. [Google Scholar] [CrossRef]
- Radović, Č.; Petrović, M.; Gogić, M.; Radojković, D.; Živković, V.; Stojiljković, N.; Savić, R. Autochthonous Breeds of Republic of Serbia and Valuation in Food Industry: Opportunities and Challenges. In Food Processing; Marc, R.A., Díaz, A.V., Izquierdo, G.D.P., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
Period | Beef | Pork | Lamb | Chicken | Beef | Pork | Lamb | Chicken | N | Beef | Pork | Lamb | Chicken |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Meat Production in Tons | Consumption per Household in Kg | Total Consumption in Tons | |||||||||||
2013 | 35,574 | 131,942 | 936 | 56,678 | 10.9 | 47.8 | 2.0 | 46.9 | 2,465,799 | 26,877 | 117,865 | 4932 | 115,646 |
2014 | 36,844 | 150,294 | 1296 | 62,847 | 12.4 | 50.5 | 2.7 | 46.8 | 2,466,316 | 30,582 | 124,549 | 6659 | 115,424 |
2015 | 40,014 | 166,350 | 1260 | 66,876 | 13.9 | 46.4 | 2.5 | 47.2 | 2,466,316 | 34,282 | 114,437 | 6166 | 116,410 |
2016 | 42,160 | 163,688 | 1404 | 70,550 | 14.4 | 46.0 | 2.4 | 47.5 | 2,466,316 | 35,515 | 113,451 | 5919 | 117,150 |
2017 | 45,034 | 155,925 | 1768 | 86,139 | 13.9 | 45.4 | 2.3 | 50.0 | 2,466,316 | 34,282 | 111,971 | 5673 | 123,316 |
2018 | 44,461 | 170,709 | 2006 | 93,245 | 16.2 | 47.2 | 6.2 | 48.6 | 2,466,316 | 39,954 | 116,410 | 15,291 | 119,863 |
2019 | 46,537 | 173,082 | 2312 | 101,662 | 16.8 | 49.6 | 6.5 | 50.2 | 2,466,316 | 41,434 | 122,239 | 16,031 | 123,809 |
2020 | 47,300 | 169,728 | 2465 | 100,409 | |||||||||
2021 | 48,327 | 168,630 | 3723 | 100,405 | 21.3 | 49.9 | 12.0 | 47.2 | 2,466,316 | 52,533 | 123,069 | 29,596 | 116,410 |
2022 | 43,952 | 139,524 | 3893 | 115,328 | 20.0 | 46.0 | 9.6 | 47.3 | 2,589,344 | 51,787 | 119,110 | 23,304 | 122,476 |
2023 | 43,040 | 136,752 | 3468 | 124,609 | 19.8 | 47.5 | 8.6 | 48.4 | 2,589,344 | 51,269 | 122,994 | 22,268 | 125,324 |
2024 | 45,592 | 140,067 | 3179 | 137,228 | 2,589,344 |
Period | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 |
---|---|---|---|---|---|---|---|---|---|---|---|
Current Prices in Millions of Dinars | |||||||||||
Output | 599,638 | 624,425 | 584,834 | 643,686 | 590,707 | 640,862 | 653,184 | 700,488 | 785,423 | 918,689 | 842,083 |
IC | 349,334 | 367,327 | 344,056 | 371,854 | 336,109 | 366,069 | 377,541 | 399,919 | 437,684 | 514,034 | 490,408 |
GVA | 250,304 | 257,098 | 240,778 | 271,832 | 254,598 | 274,793 | 275,642 | 300,570 | 347,739 | 404,655 | 351,675 |
FI | 225,787 | 236,171 | 217,348 | 243,416 | 228,284 | 246,111 | 246,158 | 267,437 | 299,920 | 357,482 | 333,868 |
EEA (%) | 6.50 | 6.60 | 5.60 | 6.00 | 5.40 | 5.40 | 5.40 | 5.50 | 5.50 | 5.70 | 4.00 |
Output | 389,186 | 398,499 | 367,717 | 398,347 | 354,914 | 377,498 | 377,582 | 399,731 | 415,383 | 422,123 | 359,594 |
IC | 226,730 | 234,423 | 216,327 | 230,123 | 201,944 | 215,632 | 218,243 | 228,212 | 231,476 | 236,190 | 209,419 |
GVA | 162,456 | 164,076 | 151,391 | 168,224 | 152,970 | 161,866 | 159,339 | 171,519 | 183,907 | 185,932 | 150,175 |
FI | 146,544 | 150,721 | 136,681 | 150,639 | 137,160 | 144,971 | 142,295 | 152,612 | 158,617 | 164,257 | 142,572 |
Strengths | Weaknesses |
Existing capacities in the dairy and meat sectors with long-standing tradition and expertise. Favorable geographic and agro-climatic conditions for livestock production. Potential for integration into EU value chains. Presence of indigenous breeds suitable for geographical indications (GI) and traditional branding. | Highly fragmented farm structure with economically non-viable smallholdings. Low productivity, e.g., average milk yield per cow of 3500–4500 L/year vs. >7000 L in the EU. Outdated housing systems and insufficient technological modernization. Limited adoption of Precision Livestock Farming technologies, AI, IoT, and robotics. Weak market organisation with few producer groups and clusters. Lack of a dedicated livestock development strategy aligned with EU CAP Strategic Plans and the Green Deal. Insufficient implementation of biosecurity and animal welfare standards. |
Opportunities | Threats |
Alignment with EU Farm to Fork Strategy, Green Deal, and CAP Strategic Plans. Potential for harmonization with EU CAP green architecture (eco-schemes, environmental conditionality) could facilitate access to future funding and enhance farm sustainability. Utilization of IPARD and other EU funds for farm modernization and digital transformation. Development of GI-certified and traditionally branded products for domestic and export markets. Implementation of AI, IoT, precision feeding, and robotics to increase productivity and sustainability. Growing demand for high-quality animal products within the EU and regional markets. | Ongoing rural depopulation and an ageing farming population reducing available labor and innovation capacity. Climate change impacts, including droughts and heat stress, reducing forage yields and pasture productivity. Geopolitical and macroeconomic instabilities affecting feed costs, exchange rates, and market competitiveness. Increased risk of transboundary animal diseases (e.g., African Swine Fever, Avian Influenza) with insufficient biosecurity. Rising imports of cheaper animal products due to real appreciation of the dinar. Lack of adaptation to EU sustainability standards and delayed digital transformation may widen the competitiveness gap with EU livestock sectors. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milićević, D.; Samolovac, L.; Lukić, M.; Milićević, D. Livestock Sector in Serbia: Challenges, Structural Gaps, and Strategic Pathways Towards Sustainability. Sustainability 2025, 17, 7751. https://doi.org/10.3390/su17177751
Milićević D, Samolovac L, Lukić M, Milićević D. Livestock Sector in Serbia: Challenges, Structural Gaps, and Strategic Pathways Towards Sustainability. Sustainability. 2025; 17(17):7751. https://doi.org/10.3390/su17177751
Chicago/Turabian StyleMilićević, Dragovan, Ljiljana Samolovac, Miloš Lukić, and Dragan Milićević. 2025. "Livestock Sector in Serbia: Challenges, Structural Gaps, and Strategic Pathways Towards Sustainability" Sustainability 17, no. 17: 7751. https://doi.org/10.3390/su17177751
APA StyleMilićević, D., Samolovac, L., Lukić, M., & Milićević, D. (2025). Livestock Sector in Serbia: Challenges, Structural Gaps, and Strategic Pathways Towards Sustainability. Sustainability, 17(17), 7751. https://doi.org/10.3390/su17177751