From Shoreline to Sea: Evaluating Development Suitability Through Coastal Zoning and a Case Study from Shenzhen, China
Abstract
:1. Introduction
2. Methodology
2.1. Coastal Zone Division System
2.2. Coastal Development Suitability Evaluation
3. Case Study
3.1. Overview of the Study Area and Data
3.2. Results of Coastal Zone Division and Development Suitability Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schlüter, A.; Van Assche, K.; Hornidge, A.K.; Văidianu, N. Land-sea interactions and coastal development: An evolutionary governance perspective. Mar. Policy 2020, 112, 103801. [Google Scholar] [CrossRef]
- Refulio-Coronado, S.; Lacasse, K.; Dalton, T.; Humphries, A.; Basu, S.; Uchida, H.; Uchida, E. Coastal and marine socio-ecological systems: A systematic review of the literature. Front. Mar. Sci. 2021, 8, 648006. [Google Scholar] [CrossRef]
- Singh, G.G.; Cottrell, R.S.; Eddy, T.D.; Cisneros-Montemayor, A.M. Governing the land-sea interface to achieve sustainable coastal development. Front. Mar. Sci. 2021, 8, 709947. [Google Scholar] [CrossRef]
- Mejjad, N.; Rossi, A.; Pavel, A.B. The coastal tourism industry in the Mediterranean: A critical review of the socio-economic and environmental pressures & impacts. Tour. Manag. Perspect. 2022, 44, 101007. [Google Scholar]
- Ward, N.D.; Megonigal, J.P.; Bond-Lamberty, B.; Bailey, V.L.; Butman, D.; Canuel, E.A.; Diefenderfer, H.; Ganju, N.K.; Goñi, M.A.; Graham, E.B.; et al. Representing the function and sensitivity of coastal interfaces in Earth system models. Nat. Commun. 2020, 11, 2458. [Google Scholar] [CrossRef]
- Verschuur, J.; Koks, E.E.; Hall, J.W. Ports’ criticality in international trade and global supply-chains. Nat. Commun. 2022, 13, 4351. [Google Scholar] [CrossRef] [PubMed]
- Saha, R.C. Chattogram Port: A dedicated service institution to evolve the country boldly. Marit. Technol. Res. 2023, 5, 258294. [Google Scholar] [CrossRef]
- Mooser, A.; Anfuso, G.; Williams, A.T.; Molina, R.; Aucelli, P.P. An innovative approach to determine coastal scenic beauty and sensitivity in a scenario of increasing human pressure and natural impacts due to climate change. Water 2021, 13, 49. [Google Scholar] [CrossRef]
- Griggs, G.; Reguero, B.G. Coastal adaptation to climate change and sea-level rise. Water 2021, 13, 2151. [Google Scholar] [CrossRef]
- Koks, E.E.; Le Bars, D.; Essenfelder, A.H.; Nirandjan, S.; Sayers, P. The impacts of coastal flooding and sea level rise on critical infrastructure: A novel storyline approach. Sustain. Resilient Infrastruct. 2023, 8 (Suppl. S1), 237–261. [Google Scholar] [CrossRef]
- Iyiola, A.O.; Akinrinade, A.J.; Ajayi, F.O. Effects of Water pollution on biodiversity along the coastal regions. In Biodiversity in Africa: Potentials, Threats and Conservation; Springer Nature Singapore: Singapore, 2022; pp. 345–367. [Google Scholar]
- de Alencar, N.M.P.; Le Tissier, M.; Paterson, S.K.; Newton, A. Circles of coastal sustainability: A framework for coastal management. Sustainability 2020, 12, 4886. [Google Scholar] [CrossRef]
- Barzehkar, M.; Parnell, K.E.; Soomere, T.; Dragovich, D.; Engström, J. Decision support tools, systems and indices for sustainable coastal planning and management: A review. Ocean. Coast. Manag. 2021, 212, 105813. [Google Scholar] [CrossRef]
- Jattak, Z.U.; Wu, W.; Gao, J.; Zhang, K.; Murtaza, S.H.; Jan, M.; Ahmed, A. Advancing the initiatives of sustainable coastal and marine areas development in Pakistan through marine spatial planning. Sci. Prog. 2023, 106, 00368504231218601. [Google Scholar] [CrossRef] [PubMed]
- Voyer, M.; Farmery, A.K.; Kajlich, L.; Vachette, A.; Quirk, G. Assessing policy coherence and coordination in the sustainable development of a Blue Economy. A case study from Timor Leste. Ocean. Coast. Manag. 2020, 192, 105187. [Google Scholar] [CrossRef]
- Demirel, N.; Ulman, A.; Yıldız, T.; Ertör-Akyazi, P. A moving target: Achieving good environmental status and social justice in the case of an alien species, Rapa whelk in the Black Sea. Mar. Policy 2021, 132, 104687. [Google Scholar] [CrossRef]
- Nicolodi, J.L.; Asmus, M.L.; Polette, M.; Turra, A.; Seifert, C.A., Jr.; Stori, F.T.; Shinoda, D.C.; Mazzer, A.; de Souza, V.A.; Gonçalves, R.K. Critical gaps in the implementation of Coastal Ecological and Economic Zoning persist after 30 years of the Brazilian coastal management policy. Mar. Policy 2021, 128, 104470. [Google Scholar] [CrossRef]
- Teng, X.; Zhao, Q.; Zhang, P.; Liu, L.; Hu, H.; Yue, Q.; Ou, L.; Xu, W. Implementing marine functional zoning in China. Mar. Policy 2021, 132, 103484. [Google Scholar] [CrossRef]
- Liu, S.; Cai, F.; He, Y.; Qi, H.; Rangel-Buitrago, N.; Liu, J.; Zheng, J. Integrating marine functional zoning in coastal planning: Lessons from the Xiasha Beach Resort case study. Ocean. Coast. Manag. 2024, 249, 107016. [Google Scholar] [CrossRef]
- Carapuço, M.M.; Taborda, R.; Andrade, C.; de Jonge, V.N. How to foster scientific knowledge integration in coastal management. Ocean. Coast. Manag. 2021, 209, 105661. [Google Scholar] [CrossRef]
- Loch, T.K.; Riechers, M. Integrating indigenous and local knowledge in management and research on coastal ecosystems in the Global South: A literature review. Ocean. Coast. Manag. 2021, 212, 105821. [Google Scholar] [CrossRef]
- Ballad, E.L.; Morooka, Y.; Shinbo, T. Ensuring sustainability of community participation in locally-managed marine protected area in north-western Cagayan, Philippines. Marit. Technol. Res. 2022, 4, 258234. [Google Scholar] [CrossRef]
- Le Tissier, M. Unravelling the relationship between ecosystem-based management, integrated coastal zone management and marine spatial planning. In Ecosystem-Based Management, Ecosystem Services and Aquatic Biodiversity: Theory, Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 403–413. [Google Scholar]
- Ehler, C.N. Two decades of progress in Marine Spatial Planning. Mar. Policy 2021, 132, 104134. [Google Scholar] [CrossRef]
- Moradi, M.; Kazeminezhad, M.H.; Kabiri, K. Integration of Geographic Information System and system dynamics for assessment of the impacts of storm damage on coastal communities-Case study: Chabahar, Iran. Int. J. Disaster Risk Reduct. 2020, 49, 101665. [Google Scholar] [CrossRef]
- Komolafe, A.A.; Apalara, P.A.; Ibitoye, M.O.; Adebola, A.O.; Olorunfemi, I.E.; Diallo, I. Spatio-temporal analysis of shoreline positional change of Ondo State coastline using remote sensing and GIS: A case study of Ilaje coastline at Ondo State in Nigeria. Earth Syst. Environ. 2021, 6, 281–293. [Google Scholar] [CrossRef]
- Nath, A.; Koley, B.; Choudhury, T.; Saraswati, S.; Ray, B.C.; Um, J.S.; Sharma, A. Assessing coastal land-use and land-cover change dynamics using geospatial techniques. Sustainability 2023, 15, 7398. [Google Scholar] [CrossRef]
- Mahrad, B.E.; Newton, A.; Icely, J.D.; Kacimi, I.; Abalansa, S.; Snoussi, M. Contribution of remote sensing technologies to a holistic coastal and marine environmental management framework: A review. Remote Sens. 2020, 12, 2313. [Google Scholar] [CrossRef]
- Ranta, E.; Vidal-Abarca, M.R.; Calapez, A.R.; Feio, M.J. Urban stream assessment system (UsAs): An integrative tool to assess biodiversity, ecosystem functions and services. Ecol. Indic. 2021, 121, 106980. [Google Scholar] [CrossRef]
- Uddin, M.S.; Haque, C.E.; Khan, M.N. Good governance and local level policy implementation for disaster-risk-reduction: Actual, perceptual and contested perspectives in coastal communities in Bangladesh. Disaster Prev. Manag. Int. J. 2021, 30, 94–111. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Zhao, X. How does environmental regulation moderate the relationship between foreign direct investment and marine green economy efficiency: An empirical evidence from China’s coastal areas. Ocean. Coast. Manag. 2022, 219, 106077. [Google Scholar] [CrossRef]
- Riera-Spiegelhalder, M.; Campos-Rodrigues, L.; Ensenado, E.M.; Dekker-Arlain, J.D.; Papadopoulou, O.; Arampatzis, S.; Vervoort, K. Socio-economic assessment of ecosystem-based and other adaptation strategies in coastal areas: A systematic review. J. Mar. Sci. Eng. 2023, 11, 319. [Google Scholar] [CrossRef]
- Wu, W.; Wan, L. Coastal ecological and environmental management under multiple anthropogenic pressures: A review of theory and evaluation methods. Curr. Trends Estuar. Coast. Dyn. 2024, 4, 385–415. [Google Scholar]
- Gissi, E.; Manea, E.; Mazaris, A.D.; Fraschetti, S.; Almpanidou, V.; Bevilacqua, S.; Coll, M.; Guarnieri, G.; Lloret-Lloret, E.; Pascual, M.; et al. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 2021, 755, 142564. [Google Scholar] [CrossRef]
- Palit, K.; Rath, S.; Chatterjee, S.; Das, S. Microbial diversity and ecological interactions of microorganisms in the mangrove ecosystem: Threats, vulnerability, and adaptations. Environ. Sci. Pollut. Res. 2022, 29, 32467–32512. [Google Scholar] [CrossRef] [PubMed]
- Nurhidayah, L.; Davies, P.; Alam, S.; Saintilan, N.; Triyanti, A. Responding to sea level rise: Challenges and opportunities to govern coastal adaptation strategies in Indonesia. Marit. Stud. 2022, 21, 339–352. [Google Scholar] [CrossRef]
- Zanin, G.M.; Barbanente, A.; Romagnoli, C.; Parisi, A.; Archetti, R. Traditional vs. novel approaches to coastal risk management: A review and insights from Italy. J. Environ. Manag. 2023, 346, 119003. [Google Scholar] [CrossRef]
- Doelle, M.; Puthucherril, T.G. Nature-based solutions to sea level rise and other climate change impacts on oceanic and coastal environments: A law and policy perspective. Nord. J. Bot. 2023, 2023, e03051. [Google Scholar] [CrossRef]
- Van der Meulen, F.; IJff, S.; van Zetten, R. Nature-based solutions for coastal adaptation management, concepts and scope, an overview. Nord. J. Bot. 2023, 2023, e03290. [Google Scholar] [CrossRef]
- Kenchington, R.; Crawford, D. On the meaning of integration in coastal zone management. Ocean. Coast. Manag. 1993, 21, 109–127. [Google Scholar] [CrossRef]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The coasts of our world: Ecological, economic and social importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Hobohm, C.; Schaminée, J.; van Rooijen, N. Coastal habitats, shallow seas and inland saline steppes: Ecology, distribution, threats and challenges. In Perspectives for Biodiversity and Ecosystems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 279–310. [Google Scholar]
- Zou, L.; Liu, Y.; Wang, J.; Yang, Y. An analysis of land use conflict potentials based on ecological-production-living function in the southeast coastal area of China. Ecol. Indic. 2021, 122, 107297. [Google Scholar] [CrossRef]
- Wei, B.; Li, Y.; Suo, A.; Zhang, Z.; Xu, Y.; Chen, Y. Spatial suitability evaluation of coastal zone, and zoning optimisation in ningbo, China. Ocean. Coast. Manag. 2021, 204, 105507. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Li, R.; Yu, H.; Chen, Y.; Yu, H. Comprehensive Ecological Functional Zoning: A Data-Driven Approach for Sustainable Land Use and Environmental Management—A Case Study in Shenzhen, China. Land 2024, 13, 1413. [Google Scholar]
- Bagheri, M.; Zaiton Ibrahim, Z.; Mansor, S.; Manaf, L.A.; Akhir, M.F.; Talaat, W.I.A.W.; Beiranvand Pour, A. Land-use suitability assessment using Delphi and analytical hierarchy process (D-AHP) hybrid model for coastal city management: Kuala Terengganu, Peninsular Malaysia. ISPRS Int. J. Geo-Inf. 2021, 10, 621. [Google Scholar] [CrossRef]
- Shunmugapriya, K.; Panneerselvam, B.; Muniraj, K.; Ravichandran, N.; Prasath, P.; Thomas, M.; Duraisamy, K. Integration of multi criteria decision analysis and GIS for evaluating the site suitability for aquaculture in southern coastal region, India. Mar. Pollut. Bull. 2021, 172, 112907. [Google Scholar] [CrossRef] [PubMed]
- Furlan, E.; Dalla Pozza, P.; Michetti, M.; Torresan, S.; Critto, A.; Marcomini, A. Development of a Multi-Dimensional Coastal Vulnerability Index: Assessing vulnerability to inundation scenarios in the Italian coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef] [PubMed]
- Wekpe, V.O.; Whitworth, M.; Baily, B. Terrestrial environmental sensitivity index mapping (TESIM) of the coastal areas of the Niger Delta region of Nigeria. Sci. Afr. 2024, 24, e02152. [Google Scholar] [CrossRef]
- Fiorentino, S.; Sielker, F.; Tomaney, J. Coastal towns as ‘left-behind places’: Economy, environment and planning. Camb. J. Reg. Econ. Soc. 2024, 17, 103–116. [Google Scholar] [CrossRef]
- Leotaud, N.; Laidlow-Ferdinand, A.; Clauzel, S.; Vaughan, N. Towards sustainable blue tourism in the Caribbean: Policy pathways to support community-based coastal and marine tourism. 2024. Available online: https://bluetourisminitiative.org/wp-content/uploads/2024/08/BlueTourismCaribbean_Study_BTI.pdf (accessed on 22 December 2024).
- Galluccio, G.; Bisaro, A.; Fiorini Beckauser, E.; Biancardi Aleu, R.; Hinkel, J.; Casas, M.F.; Espin, O.; Vafeidis, A.T.; Campostrini, P. Sea Level Rise in Europe: Adaptation Measures and Decision Making Principles. State Planet Discuss. 2024, 2024, 1–36. [Google Scholar] [CrossRef]
- Sauve, P.; Bernatchez, P.; Glaus, M. Multicriteria decision analysis to assist in the selection of coastal defence measures: Involving coastal managers and professionals in the identification and weighting of criteria. Front. Mar. Sci. 2022, 9, 845348. [Google Scholar] [CrossRef]
- Ghosh, S.; Mistri, B. Assessing coastal vulnerability to environmental hazards of Indian Sundarban delta using multi-criteria decision-making approaches. Ocean. Coast. Manag. 2021, 209, 105641. [Google Scholar] [CrossRef]
- Baig, M.R.I.; Shahfahad; Ahmad, I.A.; Tayyab, M.; Asgher, M.S.; Rahman, A. Coastal vulnerability mapping by integrating geospatial techniques and analytical hierarchy process (AHP) along the Vishakhapatnam coastal tract, Andhra Pradesh, India. J. Indian Soc. Remote Sens. 2021, 49, 215–231. [Google Scholar] [CrossRef]
- Yi, L.; Chen, J.; Jin, Z.; Quan, Y.; Han, P.; Guan, S.; Jiang, X. Impacts of human activities on coastal ecological environment during the rapid urbanization process in Shenzhen, China. Ocean. Coast. Manag. 2018, 154, 121–132. [Google Scholar] [CrossRef]
- Yi, L.; Qian, J.; Kobuliev, M.; Han, P.; Li, J. Dynamic evaluation of the impact of human interference during rapid urbanisation of coastal zones: A case study of Shenzhen. Sustainability 2020, 12, 2254. [Google Scholar] [CrossRef]
- Miranda, N.A.; Bintoro, R.S.; Prasita, V.D. The pattern of coastline changes and wave modelling around the expansion of PPI Popoh Tulung Agung, East Java. Marit. Technol. Res. 2023, 5, 262926. [Google Scholar] [CrossRef]
- Wu, X.; Liu, C.; Wu, G. Spatial-temporal analysis and stability investigation of coastline changes: A case study in Shenzhen, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 11, 45–56. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Yang, Z.; Marinello, F. Exploration of eco-environment and urbanization changes in coastal zones: A case study in China over the past 20 years. Ecol. Indic. 2020, 119, 106847. [Google Scholar] [CrossRef]
Types of Second-Level Coastline | Types of Third-Level Coastlines | Definitions |
---|---|---|
Production Coastlines | Agricultural Coastlines | Coastlines used for agricultural production, including farmland and orchards along the coast. |
Fisheries Coastlines | Coastlines designated for fishery production and the protection of important fish species. | |
Industrial Coastlines | Coastlines utilized for industrial production activities. | |
Living Coastlines | Urban Coastlines | Coastlines primarily used for infrastructure development in cities, towns, and new coastal areas. |
Transportation Coastlines | Coastlines developed for transportation facilities and infrastructure. | |
Tourism and Recreation Coastlines | Coastlines designated for various tourism, entertainment, and leisure activities. | |
Developed but Unused Coastlines | Coastlines that have been reclaimed or modified but remain unused. | |
Ecological Coastlines | Biological Coastlines | Coastlines formed by intertidal vegetation such as mangroves, coral reefs, and shell banks. |
Bedrock Coastlines | Coastlines characterized by undeveloped intertidal zones primarily composed of rock. | |
Sandy Coastlines | Coastlines made up mainly of sand and gravel, shaped by wave action in a relatively flat configuration. | |
Silty and Muddy Coastlines | Coastlines where the intertidal zone is primarily composed of silt and mud, formed through tidal and runoff processes. |
Types of Second-Level Coastline | Index | Highly Suitable | Generally Suitable | Not Suitable |
---|---|---|---|---|
Production Coastlines | Ecological Importance | Natural Coastlines | Scenic Tourism Areas and Resort Coast Segments | Scenic Tourism Areas and Resort Coast Segments Biological Coastlines, Estuarine Coastlines, Wetland Ecosystems Important Fishing Coast Segments Important Sandy Coastlines Mangrove Eco-Redline Areas |
Disaster Risk | Slope < 5° | Slope 5–20° | Slope > 20° | |
Living Coastlines | Agricultural Land Types | Non-Agricultural Coast Segments | General Agricultural Coast Segments | Basic Farmland Coast Segments |
Aquaculture Types | Reclaimed Coastal Areas Awaiting Aquaculture | General Aquaculture Coast Segments | Fishery Marine Eco-Redline Areas, Important Fish Species Protection Areas | |
Ecological Coastlines | Developable Width of the Coastal Stripe | Developable Width over 1000 m | Developable Width between 500 and 1000 m | Developable Width less than 500 m |
Shoreline Stability | Bedrock-Type Coastlines | Slow Accretion/Erosion Coastlines | Accreting/Eroding Coastlines |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Zhang, F.; Yu, H.; Li, Y. From Shoreline to Sea: Evaluating Development Suitability Through Coastal Zoning and a Case Study from Shenzhen, China. Sustainability 2025, 17, 1204. https://doi.org/10.3390/su17031204
Yu H, Zhang F, Yu H, Li Y. From Shoreline to Sea: Evaluating Development Suitability Through Coastal Zoning and a Case Study from Shenzhen, China. Sustainability. 2025; 17(3):1204. https://doi.org/10.3390/su17031204
Chicago/Turabian StyleYu, Han, Fenghao Zhang, Hongbing Yu, and Yu Li. 2025. "From Shoreline to Sea: Evaluating Development Suitability Through Coastal Zoning and a Case Study from Shenzhen, China" Sustainability 17, no. 3: 1204. https://doi.org/10.3390/su17031204
APA StyleYu, H., Zhang, F., Yu, H., & Li, Y. (2025). From Shoreline to Sea: Evaluating Development Suitability Through Coastal Zoning and a Case Study from Shenzhen, China. Sustainability, 17(3), 1204. https://doi.org/10.3390/su17031204