Sustainable Integration of Ora-Pro-Nobis (Pereskia aculeata Miller) in Gluten-Free and Lactose-Free Sweet Bread: Impacts on Quality and Functional Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design: Formulation of Gluten-Free and Lactose-Free Sweet Bread Enriched with OPN
Manufacturing Process of Gluten-Free and Lactose-Free Sweet Bread Enriched with OPN
2.2. Determination of the Physicochemical and Functional Properties of Gluten-Free and Lactose-Free Sweet Bread Enriched with OPN
2.2.1. Determination of the Centesimal Composition
2.2.2. Specific Volume Evaluation
2.2.3. Evaluation of Crust and Crumb Color
2.2.4. Texture Profile Analysis (TPA)
2.2.5. Determination of Total Phenolic Compounds and Antioxidant Capacity
2.3. Sensory Evaluation
2.4. Statistical Analysis
3. Results and Discussion
3.1. Centesimal Composition
3.2. Specific Volume and Color of Crust and Crumb
3.3. Texture Profile Analysis (TPA)
3.4. Total Phenolic Compounds
3.5. Antioxidant Activity (ABTS and DPPH)
3.6. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wandersleben, T.; Morales, E.; Burgos-Díaz, C.; Barahona, T.; Labra, E.; Rubilar, M.; Salvo-Garrido, H. Enhancement of functional and nutritional properties of bread using a mix of natural ingredients from novel varieties of flaxseed and lupine. LWT—Food Sci. Technol. 2018, 91, 48–54. [Google Scholar] [CrossRef]
- Brazil Agência Nacional de Vigilância Sanitária—ANVISA. Resolução RDC nº 263, de 22 de setembro de 2005. Aprova o Regulamento técnico para produtos de cereais, amidos, farinhas e farelos, constante do Anexo desta Resolução. 2005. Available online: https://bvsms.saude.gov.br/bvs/saudelegis/anvisa/2005/rdc0263_22_09_2005.html (accessed on 12 September 2024).
- Ribes, S.; Genot, M.; Vénien, A.; Santé-Lhoutellier, V.; Peyron, M.A. Oral and gastrointestinal nutrient bioaccessibility of gluten-free bread is slightly affected by deficient mastication in the elderly. Food Res. Int. 2023, 165, 112523. [Google Scholar] [CrossRef] [PubMed]
- Tomić, J.; Torbica, A.; Belović, M. Effect of non-gluten proteins and transglutaminase on dough rheological properties and quality of bread based on millet (Panicum miliaceum) flour. LWT—Food Sci. Technol. 2020, 118, 108852. [Google Scholar] [CrossRef]
- Aguiar, E.V.; Santos, F.G.; Faggian, L.; Araujo, M.B.S.; Araújo, V.A.; Conti, A.C.; Capriles, V.D. An integrated instrumental and sensory techniques for assessing liking, softness and emotional related of gluten-free bread based on blended rice and bean flour. Food Res. Int. 2022, 154, 110999. [Google Scholar] [CrossRef] [PubMed]
- Rybicka, I. Comparison of elimination diets: Minerals in gluten-free, dairy-free, egg-free and low-protein breads. J. Food Compos. Anal. 2023, 118, 105204. [Google Scholar] [CrossRef]
- Sato, R.; Cilli, L.P.D.L.; Oliveira, B.E.D.; Maciel, V.B.V.; Venturini, A.C.; Yoshida, C.M.P. Nutritional improvement of pasta with Pereskia aculeata Miller: A non-conventional edible vegetable. Food Sci. Technol. 2018, 39, 28–34. [Google Scholar] [CrossRef]
- Garcia, J.A.; Corrêa, R.C.; Barros, L.; Pereira, C.; Abreu, R.M.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C. Phytochemical profile and biological activities of ’Ora-pro-nobis’ leaves (Pereskia aculeata Miller), an underexploited superfood from the Brazilian Atlantic Forest. Food Chem. 2019, 294, 302–308. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Rebelo, K.S.; Bisconsin-Junior, A.; de Morais, J.S.; Magnani, M.; Maldonade, I.R.; Madeira, N.R.; Tiengo, A.; Maróstica, M.R., Jr.; Cazarin, C.B.B. The use of alternative food sources to improve health and guarantee access and food intake. Food Res. Int. 2021, 149, 110709. [Google Scholar] [CrossRef]
- Sandri, L.T.; Santos, F.G.; Fratelli, C.; Capriles, V.D. Development of gluten-free bread formulations containing whole chia flour with acceptable sensory properties. Food Sci. Nutr. 2017, 5, 1021–1028. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists—AACC. American Association of Cereal Chemists International Approved Methods of Analysis, 11th ed.; AACC: Saint Paul, MN, USA, 2010. [Google Scholar]
- Association of Official Analytical Chemists—AOAC. Official Methods of the Association of Official Analytical Chemists International, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- American Oil Chemists’ Society—AOCS. Official Method Am 5-04, Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction; AOCS: Urbana, IL, USA, 2005. [Google Scholar]
- Chikpah, S.K.; Korese, J.K.; Hensel, O.; Sturm, B.; Pawelzik, E. Rheological properties of dough and bread quality characteristics as influenced by the proportion of wheat flour substitution with orange-fleshed sweet potato flour and baking conditions. LWT—Food Sci. Technol. 2021, 147, 111515. [Google Scholar] [CrossRef]
- Gonçalves, D.J.R.; Costa, N.A.; Paiva, M.J.D.A.; de Oliveira, V.C.; Maia, N.M.A.; Magalhães, I.S.; Borges, L.L.R.; Stringheta, P.C.; Martins, E.M.F.; Vieira, É.N.R.; et al. Ultrasonic pre-treatment to enhance drying of potentially probiotic guava (Psidium guajava): Impact on drying kinetics, Lacticaseibacillus rhamnosus GG viability, and functional quality. Food Res. Int. 2023, 173, 113374. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Milião, G.L.; de Oliveira, A.P.H.; Soares, L.S.; Arruda, T.R.; Vieira, É.N.R.; Leite Junior, B.R.C. Unconventional food plants: Nutritional aspects and perspectives for industrial applications. Future Foods 2022, 5, 100124. [Google Scholar] [CrossRef]
- Takeiti, C.Y.; Antonio, G.C.; Motta, E.M.; Collares-Queiroz, F.P.; Park, K.J. Nutritive evaluation of a non-conventional leafy vegetable (Pereskia aculeata Miller). Int. J. Food Sci. Nutr. 2009, 60, 148–160. [Google Scholar] [CrossRef]
- Souza, L.F.; Caputo, L.; Barros, I.B.I.; Fratianni, F.; Nazzaro, F.; De Feo, V. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical composition and biological activities. Int. J. Mol. Sci. 2016, 17, 1478. [Google Scholar] [CrossRef]
- Lise, C.C.; Marques, C.; da Cunha, M.A.A.; Mitterer-Daltoé, M.L. Alternative protein from Pereskia aculeata Miller leaf mucilage: Technological potential as an emulsifier and fat replacement in processed mortadella meat. Eur. Food Res. Technol. 2021, 247, 851–863. [Google Scholar] [CrossRef]
- Chockchaisawasdee, S.; Mendoza, M.C.; Beecroft, C.A.; Kerr, A.C.; Stathopoulos, C.E.; Fiore, A. Development of a gluten free bread enriched with faba bean husk as a fibre supplement. LWT—Food Sci. Technol. 2023, 173, 114362. [Google Scholar] [CrossRef]
- Castro, W.; Oblitas, J.; Chuquizuta, T.; Avila-George, H. Application of image analysis to optimization of the bread-making process based on the acceptability of the crust color. J. Cereal Sci. 2017, 74, 194–199. [Google Scholar] [CrossRef]
- Pico, J.; Reguilón, M.P.; Bernal, J.; Gómez, M. Effect of rice, pea, egg white and whey proteins on crust quality of rice flour-corn starch based gluten-free breads. J. Cereal Sci. 2019, 86, 92–101. [Google Scholar] [CrossRef]
- Krupa-Kozak, U.; Bączek, N.; Rosell, C.M. Application of dairy proteins as technological and nutritional improvers of calcium-supplemented gluten-free bread. Nutrients 2013, 5, 4503–4520. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.H.; Kim, G.H.; Lee, H.S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage. Food Res. Int. 2002, 35, 753–759. [Google Scholar] [CrossRef]
- Korus, J.; Chmielewska, A.; Witczak, M.; Ziobro, R.; Juszczak, L. Rapeseed protein as a novel ingredient of gluten-free bread. Eur. Food Res. Technol. 2021, 247, 2015–2025. [Google Scholar] [CrossRef]
- Mancebo, C.M.; San Miguel, M.Á.; Martínez, M.M.; Gómez, M. Optimisation of rheological properties of gluten-free doughs with HPMC, psyllium and different levels of water. J. Cereal Sci. 2015, 61, 8–15. [Google Scholar] [CrossRef]
- Waghmare, R.; Moses, J.A.; Anandharamakrishnan, C. Mucilages: Sources, extraction methods, and characteristics for their use as encapsulation agents. Crit. Rev. Food Sci. Nutr. 2022, 62, 4186–4207. [Google Scholar] [CrossRef]
- Fratelli, C.; Muniz, D.G.; Santos, F.G.; Capriles, V.D. Modelling the effects of psyllium and water in gluten-free bread: An approach to improve the bread quality and glycemic response. J. Funct. Foods 2018, 42, 339–345. [Google Scholar] [CrossRef]
- Beltrão Martins, R.; Gouvinhas, I.; Nunes, M.C.; Alcides Peres, J.; Raymundo, A.; Barros, A.I. Acorn flour as a source of bioactive compounds in gluten-free bread. Molecules 2020, 25, 3568. [Google Scholar] [CrossRef]
- Skendi, A.; Mouselemidou, P.; Papageorgiou, M.; Papastergiadis, E. Effect of a corn meal-water combinations on technological properties and fine structure of gluten-free bread. Food Chem. 2018, 253, 119–126. [Google Scholar] [CrossRef]
- Martin, A.A.; de Freitas, R.A.; Sassaki, G.L.; Evangelista, P.H.L.; Sierakowski, M.R. Chemical structure and physical-chemical properties of mucilage from the leaves of Pereskia aculeata. Food Hydrocoll. 2017, 70, 20–28. [Google Scholar] [CrossRef]
- Silva, D.O.; Di Primio, E.M.; Botelho, F.T.; Gularte, M.A. Nutritional composition and sensory analysis of bread rolls added Pereskia aculeata. Demetra Food Nutr. Health 2014, 9, 1027–1041. [Google Scholar]
Ingredients | F1 (0% OPN) | F2 (6% OPN) | F3 (12% OPN) | F4 (18% OPN) | F5 (24% OPN) |
---|---|---|---|---|---|
Rice flour (g) | 190 | 190 | 190 | 190 | 190 |
Potato starch (g) | 150 | 150 | 150 | 150 | 150 |
Cassava starch (g) | 80 | 80 | 80 | 80 | 80 |
Water (g) | 400 | 400 | 400 | 400 | 400 |
Eggs (g) | 100 | 100 | 100 | 100 | 100 |
Sugar (g) | 50 | 50 | 50 | 50 | 50 |
Oil (g) | 40 | 40 | 40 | 40 | 40 |
Ora-pro-nobis (g) | 0 | 25 | 50 | 75 | 100 |
Yeast (g) | 10 | 10 | 10 | 10 | 10 |
Salt (g) | 5 | 5 | 5 | 5 | 5 |
Sample | Total Color Difference (ΔE) | |
---|---|---|
Bread Crust | Bread Crumb | |
F1 (0% OPN) | Reference * | Reference * |
F2 (6% OPN) | 7.3 ± 2.1 d | 12.6 ± 2.5 c |
F3 (12% OPN) | 14.3 ± 2.2 c | 18.9 ± 3.1 b |
F4 (18% OPN) | 20.9 ± 1.1 b | 23.2 ± 1.5 ab |
F5 (24% OPN) | 24.7 ± 2.3 a | 26.9 ± 2.7 a |
Sample | Hardness (g) | Cohesiveness | Elasticity | Resilience | Chewability |
---|---|---|---|---|---|
F1 (0% OPN) | 230 ± 22 a | 0.48 ± 0.04 c | 0.93 ± 0.01 c | 0.12 ± 0.01 b | 102.6 ± 13.2 a |
F2 (6% OPN) | 179 ± 14 b | 0.56 ± 0.04 bc | 0.95 ± 0.01 bc | 0.14 ± 0.01 b | 94.3 ± 12.2 a |
F3 (12% OPN) | 132 ± 15 c | 0.63 ± 0.04 b | 0.95 ± 0.02 abc | 0.18 ± 0.02 a | 79.0 ± 14.2 ab |
F4 (18% OPN) | 102 ± 14 c | 0.71 ± 0.03 a | 0.97 ± 0.01 ab | 0.20 ± 0.01 a | 70.6 ± 10.7 b |
F5 (24% OPN) | 58 ± 11 d | 0.74 ± 0.04 a | 0.98 ± 0.02 a | 0.22 ± 0.02 a | 41.6 ± 9.7 c |
Sample | Sensory Attributes | Purchase Intent | |||||
---|---|---|---|---|---|---|---|
Appearance | Color | Aroma | Taste | Texture | Overall Impression | ||
F1 (0% OPN) | 7.7 ± 1.0 a | 8.1 ± 0.7 a | 7.1 ± 1.1 a | 6.3 ± 1.1 a | 6.1 ± 1.1 a | 6.7 ± 1.0 a | 3.4 ± 0.8 a |
F2 (6% OPN) | 7.0 ± 1.2 a | 7.6 ± 0.8 ab | 6.4 ± 0.8 a | 6.1 ± 1.1 a | 6.4 ± 1.4 a | 6.1 ± 1.1 a | 3.3 ± 0.8 a |
F3 (12% OPN) | 7.0 ± 1.0 a | 7.4 ± 0.8 ab | 6.7 ± 1.0 a | 6.4 ± 1.3 a | 6.1 ± 1.1 a | 6.4 ± 0.8 a | 3.4 ± 0.8 a |
F4 (18% OPN) | 7.1 ± 1.2 a | 7.6 ± 0.8 ab | 6.7 ± 0.8 a | 6.4 ± 1.4 a | 6.4 ± 1.4 a | 6.7 ± 1.1 a | 3.4 ± 0.8 a |
F5 (24% OPN) | 7.3 ± 1.1 a | 7.3 ± 0.5 b | 6.3 ± 1.4 a | 6.0 ± 1.6 a | 6.6 ± 1.5 a | 6.0 ± 1.4 a | 3.0 ± 0.9 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, L.D.S.; Pacheco, F.C.; Oliveira, T.O.d.; Martins, E.M.F.; Martins, M.L.; Castro, W.d.F.; Felisberto, M.H.F.; Leite Júnior, B.R.d.C. Sustainable Integration of Ora-Pro-Nobis (Pereskia aculeata Miller) in Gluten-Free and Lactose-Free Sweet Bread: Impacts on Quality and Functional Properties. Sustainability 2025, 17, 1338. https://doi.org/10.3390/su17031338
Silva LDS, Pacheco FC, Oliveira TOd, Martins EMF, Martins ML, Castro WdF, Felisberto MHF, Leite Júnior BRdC. Sustainable Integration of Ora-Pro-Nobis (Pereskia aculeata Miller) in Gluten-Free and Lactose-Free Sweet Bread: Impacts on Quality and Functional Properties. Sustainability. 2025; 17(3):1338. https://doi.org/10.3390/su17031338
Chicago/Turabian StyleSilva, Luciene Dias Santos, Flaviana Coelho Pacheco, Thais Odete de Oliveira, Eliane Mauricio Furtado Martins, Maurilio Lopes Martins, Wellington de Freitas Castro, Mária Herminia Ferrari Felisberto, and Bruno Ricardo de Castro Leite Júnior. 2025. "Sustainable Integration of Ora-Pro-Nobis (Pereskia aculeata Miller) in Gluten-Free and Lactose-Free Sweet Bread: Impacts on Quality and Functional Properties" Sustainability 17, no. 3: 1338. https://doi.org/10.3390/su17031338
APA StyleSilva, L. D. S., Pacheco, F. C., Oliveira, T. O. d., Martins, E. M. F., Martins, M. L., Castro, W. d. F., Felisberto, M. H. F., & Leite Júnior, B. R. d. C. (2025). Sustainable Integration of Ora-Pro-Nobis (Pereskia aculeata Miller) in Gluten-Free and Lactose-Free Sweet Bread: Impacts on Quality and Functional Properties. Sustainability, 17(3), 1338. https://doi.org/10.3390/su17031338