Assessing the Impacts of Mulching on Vegetable Production Under Drip Irrigation in Burkina Faso
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design and Data Collection
2.3. Sustainable Intensification Framework
2.4. Weather Data
2.5. Soil Data
2.6. AquaCrop Model and Application
3. Results and Discussion
3.1. SI Radar Charts
3.1.1. Productivity
3.1.2. Economic
3.1.3. Environmental
3.1.4. Human
3.1.5. Social
3.2. AquaCrop Application—Long-Term Cabbage Yields
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Millogo, V.; Kéré, M.; Yé, D.V.; Amoussou, T.O.; Burdick, R.; Harrigan, T.; Srivastava, A. Assessment of Water Distribution Efficiency Using Solar Powered Drip Irrigation System Convenient for West Burkina Faso Small Scale Farming. Irrig. Drain. Syst. Eng. 2021, 10, 1–6. [Google Scholar]
- Wellens, J.; Raes, D.; Traore, F.; Denis, A.; Djaby, B.; Tychon, B. Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment. Agric. Water Manag. 2013, 127, 40–47. [Google Scholar] [CrossRef]
- Nyamekye, C.; Thiel, M.; Schönbrodt-Stitt, S.; Zoungrana, B.J.; Amekudzi, L.K. Soil and water conservation in Burkina Faso, west Africa. Sustainability 2018, 10, 3182. [Google Scholar] [CrossRef]
- Mwangi, L. Impact of Climate Change on Agricultural Food Production. Int. J. Agric. 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Mafongoya, P.; Gubba, A.; Moodley, V.; Chapoto, D.; Kisten, L.; Phophi, M. Climate change and rapidly evolving pests and diseases in Southern Africa. In New Frontiers in Natural Resources Management in Africa; Springer: Berlin/Heidelberg, Germany, 2019; pp. 41–57. [Google Scholar]
- Doso, S.J. Land degradation and agriculture in the Sahel of Africa: Causes, impacts and recommendations. J. Agric. Sci. Appl. 2014, 3, 67–73. [Google Scholar]
- Bizi, A.B.; Sidi, Y.D. Soil Erosion in Northern Nigeria: Potential Impact and Possible Solution: A Review. J. Sci. Res. Rep. 2023, 29, 17–26. [Google Scholar] [CrossRef]
- Abegunde, V.O.; Sibanda, M.; Obi, A. The dynamics of climate change adaptation in Sub-Saharan Africa: A review of climate-smart agriculture among small-scale farmers. Climate 2019, 7, 132. [Google Scholar] [CrossRef]
- Smith, R.B.; Hildreth, L.A.; Savadago, K. Evaluating the Economic Impacts of Water Harvesting in Burkina Faso. In Valuation of Regulating Services of Ecosystems: Methodology and Applications; Kumar, P., Wood, M.D., Eds.; Taylor and Francis: Milton Park, UK, 2010; pp. 67–79. [Google Scholar]
- Kamga, R.T.; Some, S.; Tenkouano, A.; Issaka, Y.B.; Ndoye, O. Assessment of traditional African vegetable production in Burkina Faso. J. Agric. Ext. 2016, 8, 141–150. [Google Scholar]
- Wolka, K.; Mulder, J.; Biazin, B. Effects of soil and water conservation techniques on crop yield, runoff and soil loss in Sub-Saharan Africa: A review. Agric. Water Manag. 2018, 207, 67–79. [Google Scholar] [CrossRef]
- Kuyah, S.; Sileshi, G.W.; Nkurunziza, L.; Chirinda, N.; Ndayisaba, P.C.; Dimobe, K.; Öborn, I. Innovative agronomic practices for sustainable intensification in sub-Saharan Africa. A Review. Agron. Sustain. Dev. 2021, 41, 16. [Google Scholar] [CrossRef]
- Snapp, S.S.; Grabowski, P.; Chikowo, R.; Smith, A.; Anders, E.; Sirrine, D.; Chimonyo, V.; Bekunda, M. Maize yield and profitability tradeoffs with social, human and environmental performance: Is sustainable intensification feasible? Agric. Syst. 2018, 162, 77–88. [Google Scholar] [CrossRef]
- Mungai, L.M.; Snapp, S.; Messina, J.P.; Chikowo, R.; Smith, A.; Anders, E.; Richardson, R.B.; Li, G. Smallholder farms and the potential for sustainable intensification. Front. Plant Sci. 2016, 7, 1720. [Google Scholar] [CrossRef]
- Rahman, N.A.; Larbi, A.; Kotu, B.; Kizito, F.; Hoeschle-Zeledon, I. Evaluating sustainable intensification of groundnut production in northern Ghana using the sustainable intensification assessment framework approach. Sustainability 2020, 12, 5970. [Google Scholar] [CrossRef]
- Musumba, M.; Grabowski, P.; Palm, C.; Snapp, S. Guide for the Sustainable Intensification Assessment Framework; Kansas State University: Manhattan, NY, USA, 2017. [Google Scholar]
- Jha, P.K.; Araya, A.; Stewart, Z.P.; Faye, A.; Traore, H.; Middendorf, B.J.; Prasad, P.V. Projecting potential impact of COVID-19 on major cereal crops in Senegal and Burkina Faso using crop simulation models. Agric. Syst. 2021, 190, 103107. [Google Scholar] [CrossRef] [PubMed]
- International Research Institute for Climate and Society (IRI); Michigan State University (MSU); HarvestChoice, International Food Policy Research Institute (IFPRI). Global High-Resolution Soil Profile Database for Crop Modeling Applications. Harvard Dataverse, V2. 2015. Available online: https://doi.org/10.7910/DVN/1PEEY0 (accessed on 21 June 2023).
- Parkes, B.; Higginbottom, T.P.; Hufkens, K.; Ceballos, F.; Kramer, B.; Foster, T. Weather dataset choice introduces uncertainty to estimates of crop yield responses to climate variability and change. Environ. Res. Lett. 2019, 14, 124089. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Dobermann, A.; Yang, H.; Cassman, K.G.; Zhang, F. Evaluation of NASA satellite-and model-derived weather data for simulation of maize yield potential in China. Agron. J. 2010, 102, 9–16. [Google Scholar] [CrossRef]
- Han, E.; Ines, A.V.; Koo, J. Development of a 10-km resolution global soil profile dataset for crop modeling applications. Environ. Model. Softw. 2019, 119, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Steduto, P.; Hsiao, T.C.; Fereres, E.; Raes, D. Crop Yield Response to Water; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012. [Google Scholar]
- Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E. AquaCrop—The FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agron. J. 2009, 101, 438–447. [Google Scholar] [CrossRef]
- Masasi, B.; Taghvaeian, S.; Gowda, P.H.; Moriasi, D.N.; Starks, P.J. Assessment of heat unit availability and potential lint yield of cotton in Oklahoma. Appl. Eng. Agric. 2020, 36, 943–954. [Google Scholar] [CrossRef]
- Millogo, V.; Kéré, M.; Sanfo, O.; Amoussou, T.O.; Harrigan, T.; Burdick Robert Srivastava, A. Effects of Cereal-Legume Intercropping and Mulching on Maize (Zea mays L.) Productivity in Dry Season using Drip Irrigation in South-Sudanian Climatic Zone of Burkina Faso. Glob. J. Sci. Front. Res. 2021, 21, 1–16. [Google Scholar] [CrossRef]
- Barche, S.; Nair, R.; Jain, P.K. A review of mulching on vegetable crops production. EM Int. 2015, 21, 859–866. [Google Scholar]
- Kosterna, E. The effect of soil mulching with straw on the yield and selected components of nutritive value in broccoli and tomatoes. Sciendo 2014, 26, 31–42. [Google Scholar] [CrossRef]
- Hudu, A.I.; Futuless, K.N.; Gworgwor, N.A. Effect of mulching intensity on the growth and yield of irrigated tomato (Lycopersicon esculentum Mill.) and weed infestation in semi-arid zone of Nigeria. J. Sustain. Agric. 2002, 21, 37–45. [Google Scholar] [CrossRef]
- Ikeh, A.O.; Udoh, E.I.; Opara, A.C. Effect of mulching on weed, fruit yield and economic returns of garden egg (Solanium melogena) in Okigwe Southeastern Nigeria. J. Res. Weed Sci. 2019, 2, 52–64. [Google Scholar]
- Awodoyin, R.O.; Ogbeide, F.I.; Oluwole, O. Effects of three mulch types on the growth and yield of tomato (Lycopersicon esculentum Mill.) and weed suppression in Ibadan, rainforest-savanna transition zone of Nigeria. Trop. Agric. Res. Ext. 2010, 10, 53–60. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Niu, J.; Tong, L.; Kang, S.; Du, T.; Li, S.; Ding, R. Irrigation water productivity is more influenced by agronomic practice factors than by climatic factors in Hexi Corridor, Northwest China. Sci. Rep. 2016, 6, 37971. [Google Scholar] [CrossRef] [PubMed]
- Inusah, B.I.; Wiredu, A.N.; Yirzagla, J.; Mawunya, M.; Haruna, M. Effects of different mulches on the yield and productivity of drip irrigated onions under tropical conditions. Int. J. Adv. Agric. Res. 2013, 1, 133–140. [Google Scholar]
- Parida, P.K.; Ray, L.I.; Shirisha, K. Effect of organic mulches on yield, water productivity and economy of garden pea cultivars. Int. J. Environ. Clim. Chang. 2023, 13, 1773–1783. [Google Scholar] [CrossRef]
- Bunclark, L.; Gowing, J.; Oughton, E.; Ouattara, K.; Ouoba, S.; Benao, D. Understanding farmers’ decisions on adaptation to climate change: Exploring adoption of water harvesting technologies in Burkina Faso. Glob. Environ. Chang. 2018, 48, 243–254. [Google Scholar] [CrossRef]
- Food and Agriculture Organization (FAO). International Food Composition Table/Database Directory. INFOODS. 2016. Available online: http://www.fao.org/infoods/infoods/tables-and-databases/en/ (accessed on 21 June 2023).
- Turner, M.D.; Teague, M.; Ayantunde, A. Livelihood, culture and patterns of food consumption in rural Burkina Faso. J. Food Secur. 2021, 13, 1193–1213. [Google Scholar] [CrossRef]
- Verma, V.K.; Jha, A.K.; Verma, B.C.; Nonglait, D.; Chaudhuri, P. Effect of Mulching materials on soil health, yield and quality attributes of broccoli grown under the mid-hill conditions. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 1589–1596. [Google Scholar] [CrossRef]
- Franczuk, J.; Jabłońska-Ceglarek, R.; Zaniewicz-Bajkowska, A.; Kosterna, E.; Rosa, R. The effect of plant mulches on the nutritive value of red cabbage and onion. Sciendo 2009, 70, 125–134. [Google Scholar] [CrossRef]
- Nkwake, A.; Magistro, J.; Horjus, P. Adapting to the Sahel’s Changing Climate: Local Approaches an Economic and Technical Feasibility Analysis of Adaptation Techniques in Niger, Burkina Faso and Mali; Catholic Relief Services Report. 2014. Available online: https://www.crs.org/our-work-overseas/research-publications/adapting-sahels-changing-climate (accessed on 21 June 2023).
- Ndeke, A.M. Gender Influence on Soil Fertility and Water Management Technologies Uptake among Smallholder Farmers in Tharaka Nithi County. Ph.D. Thesis, University of Embu, Embu, Kenya, 2021. [Google Scholar]
- Berre, D.; Diarisso, T.; Andrieu, N.; Le Page, C.; Corbeels, M. Biomass flows in an agro-pastoral village in West-Africa: Who benefits from crop residue mulching? Agric. Syst. 2021, 187, 102981. [Google Scholar] [CrossRef]
- Wanvoeke, J.; Venot, J.P.; Zwarteveen, M.; de Fraiture, C. Performing the success of an innovation: The case of smallholder drip irrigation in Burkina Faso. Water Int. 2015, 40, 432–445. [Google Scholar] [CrossRef]
- Pawar, G.S.; Kale, M.U.; Lokhande, J.N. Response of AquaCrop model to different irrigation schedules for irrigated cabbage. Agric. Res. J. 2017, 6, 73–81. [Google Scholar] [CrossRef]
Domain | Indicator | Metric | Units |
---|---|---|---|
Productivity | Yield | Yield cuts on-farm trials | kg/ha |
Productivity | Crop Biomass Productivity | Plant height | cm |
Economic | Profitability | Gross income | USD/ha |
Economic | Labor Requirement | Labor requirement | hours/ha |
Environmental | Pest Level | Weed biomass | kg/ha |
Environmental | Water Availability | Irrigation water productivity | kg/m3 |
Human | Nutrition | Protein production | g/ha |
Human | Food security | Food production | kCal/ha |
Social | Gender Equality | Women who prefer the system | % |
Social | Lack of Conflict | Probability of no conflict | probability |
Month | Tmin (°C) | Tmax (°C) | Rain (mm) |
---|---|---|---|
November | 18.9 | 33.7 | 1.0 |
December | 16.2 | 33.9 | 2.6 |
January | 16.5 | 34.6 | 10.0 |
February | 19.5 | 37.2 | 47.7 |
March | 23.3 | 39.1 | 3.9 |
April | 25.6 | 38.9 | 0.3 |
Layer (m) | Water Content (m3 m−3) | Ksat (mm d−1) | ||
---|---|---|---|---|
Sat. | FC | WP | ||
0.00–0.20 | 0.40 | 0.27 | 0.16 | 135.6 |
0.20–0.30 | 0.41 | 0.30 | 0.18 | 91.2 |
0.30–0.60 | 0.41 | 0.31 | 0.20 | 69.6 |
0.60–1.00 | 0.41 | 0.31 | 0.20 | 69.6 |
1.00–2.00 | 0.41 | 0.30 | 0.19 | 84.4 |
Parameter | Units | Value |
---|---|---|
Base temperature | °C | 12 |
Cut-off temperature | °C | 35 |
Canopy cover per seedling at 90% emergence | cm2 | 6 |
Canopy growth coefficient | % GDD−1 | 0.624 |
Canopy decline coefficient | % GDD−1 | 0.247 |
Sowing to emergence | GDD | 12 |
Sowing to maximum canopy cover | GDD | 1156 |
Maximum canopy cover | % | 98 |
Maximum transpiration coefficient (KcTr,x) | unitless | 1.10 |
Sowing to flowering | GDD | 502 |
Length of flowering | GDD | 709 |
Sowing to max rooting depth | GDD | 956 |
Sowing to senescence | GDD | 1601 |
Sowing to maturity | °C | 1956 |
Normalized crop water productivity, WP* | g m−2 | 35 |
Canopy expansion function | ||
P-upper | fraction of TAW | 0.20 |
P-lower | fraction of TAW | 0.70 |
Shape | unitless | 0 |
Stomatal closure function | ||
P-upper | unitless | 0.75 |
Shape | unitless | 3 |
Stomatal closure function | ||
P-upper | unitless | 0.7 |
Shape | unitless | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masasi, B.; Aryal, N.; Millogo, V.; Masasi, J.; Srivastava, A.; Kalita, P.K. Assessing the Impacts of Mulching on Vegetable Production Under Drip Irrigation in Burkina Faso. Sustainability 2025, 17, 916. https://doi.org/10.3390/su17030916
Masasi B, Aryal N, Millogo V, Masasi J, Srivastava A, Kalita PK. Assessing the Impacts of Mulching on Vegetable Production Under Drip Irrigation in Burkina Faso. Sustainability. 2025; 17(3):916. https://doi.org/10.3390/su17030916
Chicago/Turabian StyleMasasi, Blessing, Niroj Aryal, Vinsoun Millogo, Jonathan Masasi, Ajit Srivastava, and Prasanta K. Kalita. 2025. "Assessing the Impacts of Mulching on Vegetable Production Under Drip Irrigation in Burkina Faso" Sustainability 17, no. 3: 916. https://doi.org/10.3390/su17030916
APA StyleMasasi, B., Aryal, N., Millogo, V., Masasi, J., Srivastava, A., & Kalita, P. K. (2025). Assessing the Impacts of Mulching on Vegetable Production Under Drip Irrigation in Burkina Faso. Sustainability, 17(3), 916. https://doi.org/10.3390/su17030916