Systematic Selection of Waste from Run-of-Mine Coal Processing as Sustainable Raw Materials for Organo-Mineral Fertilizer Production
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Future Perspectives for Waste Valorization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMD | Acid mine drainage |
ROM | Run-of-mine |
CCB | Catarinense Carboniferous Basin |
CEC | Cation exchange capacity |
LoI | Loss on ignition |
OMFs | Organo-mineral fertilizers |
NPK | Nitrogen, phosphorus, and potassium |
References
- Antille, D.L.; Sakrabani, R.; Godwin, R.J. Field-Scale Evaluation of Biosolids-Derived Organomineral Fertilisers Applied to Ryegrass (Lolium perenne L.) in England. Appl. Environ. Soil Sci. 2013, 2013, 960629. [Google Scholar] [CrossRef]
- Cruz, A.C.; Pereira, F.d.S.; Figueiredo, V.S. Fertilizantes Organominerais de Resíduos do Agronegócio: Avaliação do Potencial Económico Brasileiro. Indústria Química|BNDES Setorial 2017, 45, 137–187. [Google Scholar]
- Serviço Público Federal. Instrução Normativa Nº61, de 8 de Julho de 2020; DOU Imprensa Nacional: Brasília, Brazil, 2020. [Google Scholar]
- Weil, R.R.; Brady, N.C. Soil Phosphorus and Potassium. In The Nature and Properties of Soils; Pearson Education: Upper Saddle River, NJ, USA, 2017; pp. 643–695. [Google Scholar]
- Sun, E.; Liao, G.; Zhang, Q.; Qu, P.; Wu, G.; Huang, H. Biodegradable copolymer-based composites made from straw fiber for biocomposite flowerpots application. Compos. Part B 2019, 165, 193–198. [Google Scholar] [CrossRef]
- Luz, A.B.; Lapido-Loureiro, F.E.; Sampaio, J.A.; Castilhos, Z.C.; Bezerra, M.S. Rochas, Minerais e Rotas Tecnológicas Para a Produção de Fertilizantes Alternativos. In Agrominerais para o Brasil; CETEM: Rio de Janeiro, Brazil, 2010; pp. 61–88. [Google Scholar]
- Larney, F.J.; Angers, D.A. The Role of Organic Amendments in Soil Reclamation: A Review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Ulsenheimer, A.; Sordi, A.; Cericato, A.; Lajús, C. Formulação de Fertilizantes Organominerais e Ensaio de Produtividade. Unoesc Ciência-ACET 2016, 7, 195–202. [Google Scholar]
- Kiehl, E.J. Fertilizantes Organominerais; CERES: Piracicaba, Brazil, 1993; Volume 7. [Google Scholar]
- Kiehl, E.J. Fertilizantes Orgânicos; CERES: São Paulo, Brazil, 1985; Volume 7. [Google Scholar]
- Kominko, H.; Gorazda, K.; Wzorek, Z. The Possibility of Organo-Mineral Fertilizer Production from Sewage Sludge. Waste Biomass Valorization 2017, 8, 1781–1791. [Google Scholar] [CrossRef]
- Lee, R. The Outlook for Population Growth. Science 2011, 333, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Vitti, G.C.; Otto, R.; Savietto, J. Manejo Do Enxofre Na Agricultura. J. Informações Agronômicas 2015, 152, 1–14. [Google Scholar]
- Dawson, C.J.; Hilton, J. Fertiliser Availability in a Resource-Limited World: Production and Recycling of Nitrogen and Phosphorus. Food Policy 2011, 36, S14–S22. [Google Scholar] [CrossRef]
- Fonseca, D.S.; Bacic, I.R. Enxofre. In Economia Mineral Do Brasil; DNPM: Brasília, Brazil, 2009; pp. 577–590. [Google Scholar]
- Weiler, J.; Schneider, I.A.H. Pyrite Utilization in the Carboniferous Region of Santa Catarina, Brazil-Potentials, Challenges, and Environmental Advantages. REM—Int. Eng. J. 2019, 72, 515–522. [Google Scholar] [CrossRef]
- Departamento Nacional de Produção Mineral—DNPM. Sumário Mineral 2016; DNPM: Brasília, Brazil, 2016. [Google Scholar]
- Brasil Decreto 10657 24 Marco 2021|Decreto No 10.657, de 24 de Março de 2021, Presidência Da Republica. Available online: https://presrepublica.jusbrasil.com.br/legislacao/1184546522/decreto-10657-24-marco-2021 (accessed on 8 February 2023).
- MacArthur, E. Towards the Circular Economy: Opportunities for the Consumer Goods Sector; Ellen MacArthur Foundation: Cowes, UK, 2013. [Google Scholar]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2003, 25, 313–337. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring Circular Economy Strategies through Index Methods: A Critical Analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Mathews, J.A.; Tan, H. Circular Economy: Lessons from China. Nature 2016, 531, 440–442. [Google Scholar] [CrossRef] [PubMed]
- ABNT. NBR 10007—Amostragem de Resíduos Sólidos; ABNT: Rio de Janeiro, Brazil, 2004; p. 21. [Google Scholar]
- UTE ENGIE Unidade Termelétrica Engie—Engie Brasil Energia S/A. Relatório de Monitoramento Ambiental: Complexo Termelétrico Jorge Lacerda; Engie Brasil Energia: Florianópolis, Brazil, 2018. [Google Scholar]
- CPRM. Relatório Anual de Atividades 2005; CPRM: Rio de Janeiro, Brazil, 2006. [Google Scholar]
- Raupp-Pereira, F. Valorizaçao de Resíduos Industriais Como Fonte Alternativa Mineral: Composiçoes Cerâmicas e Cimentíceas; Universidade de Aveiro: Aveiro, Portugal, 2006. [Google Scholar]
- ABNT NBR 10004:2004; Resíduos Sólidos—Classificação. ABNT: Rio de Janeiro, Brazil, 2004; p. 71.
- ABNT NBR 10005:2004; Procedimento Para Obtenção de Extrato Lixiviado de Resíduos Sólidos. ABNT: Rio de Janeiro, Brazil, 2004.
- ABNT NBR 10006:2004; Procedimento Para Obtenção de Extrato Solubilizado de Resíduos Sólidos. ABNT: Rio de Janeiro, Brazil, 2004.
- Simão, L.; Souza, M.T.; Ribeiro, M.J.; Klegues Montedo, O.R.; Hotza, D.; Novais, R.M.; Raupp-Pereira, F. Assessment of the Recycling Potential of Stone Processing Plant Wastes Based on Physicochemical Features and Market Opportunities. J. Clean. Prod. 2021, 319, 128678. [Google Scholar] [CrossRef]
- Souza, M.T.; Simão, L.; Montedo, O.R.K.; Raupp Pereira, F.; de Oliveira, A.P.N. Aluminum Anodizing Waste and Its Uses: An Overview of Potential Applications and Market Opportunities. Waste Manag. 2019, 84, 286–301. [Google Scholar] [CrossRef]
- de Oliveira, K.A.; Raupp-Pereira, F. Sistemática CPQvA Para a Valorização de Resíduos Sólidos Industriais: Um Guia Para Tomada de Decisão; Universidade Federal Santa Catarina: Florianópolis, Brazil, 2017. [Google Scholar]
- ASTM D7348:2007; Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. ASTM: West Conshohocken, PA, USA, 2007; p. 6.
- ASTM D2492:2002; Standard Test Methods for Forms of Sulfur in Coal. ASTM: West Conshohocken, PA, USA, 2012; p. 251.
- Kalkreuth, W.; Holz, M.; Mexias, A.; Balbinot, M.; Levandowski, J.; Willett, J.; Finkelman, R.; Burger, H. Depositional Setting, Petrology and Chemistry of Permian Coals from the Paraná Basin: 2. South Santa Catarina Coalfield, Brazil. Int. J. Coal. Geol. 2010, 84, 213–236. [Google Scholar] [CrossRef]
- Amaral Filho, J.R.; Schneider, I.A.H.; de Brum, I.A.S.; Sampaio, C.H.; Miltzarek, G.; Schneider, C. Caracterização de Um Depósito de Rejeitos Para o Gerenciamento Integrado Dos Resíduos de Mineração Na Região Carbonífera de Santa Catarina, Brasil. REM Rev. Esc. Minas 2013, 66, 347–353. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Ward, C.R.; Sampaio, C.H.; Querol, X.; Cutruneo, C.M.N.L.; Taffarel, S.R.; Silva, L.F.O. Partitioning of Mineralogical and Inorganic Geochemical Components of Coals from Santa Catarina, Brazil, by Industrial Beneficiation Processes. Int. J. Coal. Geol. 2013, 116–117, 75–92. [Google Scholar] [CrossRef]
- Costa, S.; Zocche, J.J. Fertilidade de Solos Construídos Em Áreas de Mineração de Carvão Na Região Sul de Santa Catarina. Rev. Árvore 2009, 33, 665–674. [Google Scholar] [CrossRef]
- Silva, L.F.O.; Izquierdo, M.; Querol, X.; Finkelman, R.B.; Oliveira, M.L.S.; Wollenschlager, M.; Towler, M.; Pérez-López, R.; MacIas, F. Leaching of Potential Hazardous Elements of Coal Cleaning Rejects. Environ. Monit. Assess. 2011, 175, 109–126. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Müller, T.G.; André, R.A.; de Oliveira, E.M.; de Oliveira, E.M.; Peterson, M.; Raupp-Pereira, F. Pyrite from Coal Mining: High-Energy Milling and Analysis of the Electrical and Optical Properties. Mater. Lett. 2019, 253, 339–342. [Google Scholar] [CrossRef]
- Pes, L.Z.; Arenhardt, M.H. Fisiologia Vegetal; Politécnico, C., Ed.; UFSM: Santa Maria, Brazil, 2015; ISBN 9788563573902. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants: Fourth Edition; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Puente-Rivera, J.; Cruz-Ortega, R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. Plants 2021, 10, 635. [Google Scholar] [CrossRef] [PubMed]
- Thalassinos, G.; Petropoulos, S.A.; Grammenou, A.; Antoniadis, V. Potentially Toxic Elements: A Review on Their Soil Behavior and Plant Attenuation Mechanisms against Their Toxicity. Agriculture 2023, 13, 1684. [Google Scholar] [CrossRef]
- Moses, C.O.; Kirk Nordstrom, D.; Herman, J.S.; Mills, A.L. Aqueous Pyrite Oxidation by Dissolved Oxygen and by Ferric Iron. Geochim. Cosmochim. Acta 1987, 51, 1561–1571. [Google Scholar] [CrossRef]
- Fan, G.; Zhang, D.; Wang, X. Reduction and Utilization of Coal Mine Waste Rock in China: A Case Study in Tiefa Coalfield. Resour. Conserv. Recycl. 2014, 83, 24–33. [Google Scholar] [CrossRef]
- Fallavena, V.L.V.; De Abreu, C.S.; Inácio, T.D.; Pires, M.; Azevedo, C.M.N.; Fernandes, I.D.; Ferret, L.S.; Tarazona, M.R.M. Caracterização Detalhada de Material de Referência Certificado de Carvão Brasileiro. Quim. Nova 2013, 36, 859–864. [Google Scholar] [CrossRef]
- Korndorfer, G.H. Elementos Benéficos. In Nutrição Mineral de Plantas; UFC: Viçosa, Brazil, 2006; pp. 355–374. [Google Scholar]
- Piau, W.C. Viabilidade Do Uso Das Escorias Como Corretivo e Fertilizante, Uniwersytet Śląski; Wydział Matematyki, Fizyki i Chemii: Piracicaba, Brazil, 1991; Volume 7. [Google Scholar]
- Amaral Sobrinho, N.M.B.; Costa, L.M.; Dias, L.E.; Barros, N.F. Aplicação de Resíduo Siderúrgico Em Um Latossolo: Efeitos Na Correção Do Solo e Na Disponibilidade de Nutrientes e Metais Pesados. Rev. Bras. Cienc. Solo 1993, 17, 299–304. [Google Scholar]
- Pejon, O.J.; Rodrigues, V.G.S.; Zuquette, L.V. Impactos Ambientais Sobre o Solo. Engenharia Ambiental: Conceitos, Tecnologia e Gestão; Elsevier Editora Ltd.: Amsterdam, The Netherlands, 2013; pp. 741–765. [Google Scholar]
- Carvalho, J.B.Q. de Fundamentos Da Mecânica Dos Solos; Marcone; Campina Grande: Paraíba, Brazil, 1997. [Google Scholar]
- Gillott, J.E. Clay in Engineering Geology; The University of Calgary: Calgary, AB, Canada, 1987; Volume 41, pp. 1–484. [Google Scholar]
- TSI Sulphur—The Fourth Major Plant Nutrient. Available online: https://www.sulphurinstitute.org/sulphur-in-agriculture/sulphur-the-fourth-major-crop-nutrient/ (accessed on 9 February 2023).
- Calkins, W.H. The Chemical Forms of Sulfur in Coal: A Review. Fuel 1994, 73, 475–484. [Google Scholar] [CrossRef]
- Ward, C.R.; Bocking, M.; Ruan, C. De Mineralogical Analysis of Coals as an Aid to Seam Correlation in the Gloucester Basin, New South Wales, Australia. Int. J. Coal. Geol. 2001, 47, 31–49. [Google Scholar] [CrossRef]
- Pinetown, K.L.; Ward, C.R.; van der Westhuizen, W.A. Quantitative Evaluation of Minerals in Coal Deposits in the Witbank and Highveld Coalfields, and the Potential Impact on Acid Mine Drainage. Int. J. Coal. Geol. 2007, 70, 166–183. [Google Scholar] [CrossRef]
- Czycza, R.V.; Fontaniva, S.; Lana, M.C.; Frandoloso, J.F.; Vale, F. Eficiência Agronômica de Diferentes Fertilizantes Contendo Enxofre Para a Cultura Do Milho. Agronomic Efficiency of Different Fertilizers Containing Sulphur for the Corn Culture. 2008. Available online: http://www.diadecampo.com.br/arquivos/materias/%7BC203E713-5A5B-4D35-8759-DE6A16475A69%7D_68_1.pdf (accessed on 26 December 2024).
- Daminato, B.; Benitiz, L. Caracterização Das Movimentações de Fertilizantes No Brasil; Grupo de Extensão e Pesquisa em Logística Agroindustrial—ESALQ-LOG: Piracicaba, Brazil, 2015. [Google Scholar]
- CONAB Série Histórica de Produção. Available online: https://portaldeinformacoes.conab.gov.br/precos-agropecuarios-serie-historica.html (accessed on 26 December 2024).
- Ministério do Desenvolvimento, Indústria e Comércio Exterior. Secretaria de Comércio Exterior, M. Sistema de Análise Das Informações de Comércio Exterior. Available online: http://comexstat.mdic.gov.br/pt/comex-vis (accessed on 26 December 2024).
- SPA/MAPA. Projeções Do Agronegócio: Brasil 2017/18 a 2027/28 Projeções de Longo Prazo: Ministério Da Agricultura, Pecuária e Abastecimento; Secretaria de Política Agrícola: Brasília, Brazil, 2018; ISBN 9788579911163. [Google Scholar]
- Fernandes, E.; Guimarães, B.d.A.; Matheus, R.R. Principais Empresas e Grupos Brasileiros Do Setor de Fertilizantes; BNDES Setorial: Piracicaba, Brazil, 2009. [Google Scholar]
- Wang, T.; Zhang, H.; Liu, Q.; Yang, H. Experimental Studies on Phase Transformation during Pyrite Concentrate Oxidation under Circulating Fluidized Bed (CFB) Roasting Conditions. Ind. Eng. Chem. Res. 2011, 50, 14168–14174. [Google Scholar] [CrossRef]
ID | pH | Chemical Composition (%) | % LoI | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Collection | Stock | SiO2 | Al2O3 | SO3 | Fe2O3 | CaO | K2O | TiO2 | MgO | MnO | P2O5 | ZrO2 | ||
A1 | 7.7 | 3.1 | 49.6 | 20.8 | 0.6 | 6.7 | 1.5 | 2.8 | 1.6 | - | - | - | 0.1 | 16.0 |
A2 | 8.0 | 7.0 | 36.7 | 16.1 | 1.9 | 11.3 | 7.6 | 2.3 | 1.3 | - | - | - | - | 22.4 |
A3 | 7.5 | 7.0 | 48.7 | 22.2 | 0.5 | 4.2 | 1.4 | 3.0 | 1.4 | - | - | - | - | 18.3 |
B1 | 6.0 | 3.3 | 36.4 | 12.7 | 10.8 | 8.4 | 6.4 | 3.9 | 1.1 | 0.5 | 0.2 | 0.1 | - | 19.5 |
B2 | 4.8 | 2.9 | 37.9 | 13.4 | 3.7 | 18.7 | 2.1 | 3.0 | 0.7 | 0.5 | 0.1 | - | - | 19.7 |
B3 | 3.4 | 2.8 | 37.5 | 13.9 | 10.2 | 12.6 | 5.4 | 3.6 | 0.8 | - | 0.1 | 0.1 | 15.7 | |
B4 | 5.4 | 3.0 | 47.6 | 16.8 | 1.7 | 10.1 | 1.2 | 4.5 | 0.9 | 0.5 | - | - | - | 16.5 |
C1 | 6.1 | 2.6 | 47.2 | 18.0 | 0.5 | 11.7 | 1.0 | 4.4 | 1.1 | 0.6 | - | - | - | 15.2 |
C2 | 8.2 | 7.2 | 37.3 | 13.8 | 0.9 | 18.0 | 2.1 | 3.3 | 0.8 | - | 0.1 | - | 0.1 | 23.4 |
C3 | 4.2 | 2.7 | 44.6 | 20.5 | 0.1 | 12.8 | 0.3 | 2.7 | 1.4 | - | - | - | 0.1 | 17.3 |
C4 | 3.1 | 2.7 | 47.0 | 23.8 | 0.1 | 6.0 | 0.4 | 3.2 | 1.6 | - | - | - | - | 17.7 |
D1 | 2.9 | 2.4 | 42.4 | 16.9 | 4.3 | 8.8 | 2.1 | 2.7 | 1.4 | - | - | - | 0.1 | 21.1 |
D2 | 3.2 | 2.6 | 40.5 | 18.1 | 4.3 | 9.9 | 2.6 | 2.6 | 1.3 | - | - | - | 0.1 | 20.4 |
D3 | 3.6 | 2.5 | 35.5 | 15.7 | 2.2 | 16.9 | 1.2 | 2.0 | 1.0 | - | - | - | 0.1 | 25.2 |
D4 | 3.2 | 2.5 | 45.3 | 16.9 | 3.0 | 5.4 | 1.8 | 2.5 | 1.2 | - | - | - | 0.1 | 23.7 |
D5 | 3.2 | 2.6 | 40.3 | 14.9 | 4.8 | 8.0 | 2.3 | 2.7 | 1.3 | - | - | - | 0.1 | 25.5 |
D6 | 2.8 | 2.7 | 43.2 | 17.2 | 0.8 | 8.5 | 0.7 | 3.1 | 1.3 | - | - | - | - | 24.9 |
E1 | 3.7 | 3.0 | 39.3 | 15.3 | 2.5 | 10.7 | 5.0 | 3.5 | 1.0 | 0.5 | 0.1 | - | - | 22.0 |
F1 | 2.6 | 2.4 | 29.2 | 14.5 | 0.1 | 18.3 | 0.1 | 1.3 | 0.7 | - | - | - | - | 35.6 |
F2 | 3.6 | 2.5 | 40.4 | 18.0 | 0.1 | 12.5 | - | 1.8 | 1.0 | - | - | - | - | 26.0 |
F3 | 3.2 | 2.3 | 8.2 | 3.4 | 0.1 | 46.7 | 0.1 | 0.3 | - | - | - | - | 0.1 | 41.0 |
F4 | 3.5 | 2.7 | 49.8 | 22.8 | 0.1 | 2.9 | - | 2.5 | 1.6 | - | - | - | 0.1 | 20.1 |
F5 | 3.4 | 2.5 | 40.6 | 17.4 | 0.3 | 10.1 | 0.2 | 1.7 | 1.0 | - | - | - | - | 28.5 |
F6 | 8.5 | 7.1 | 47.9 | 22.0 | 1.2 | 3.2 | 1.0 | 2.2 | 1.4 | 0.7 | - | - | 0.1 | 20.2 |
Residuals Fractions | SO3 (%) | Sulfur Forms and Content (%) | |||
---|---|---|---|---|---|
Pyritic | Sulfate | Organic | Total | ||
A3 | 0.5 | 80.0 | 10.0 | 10.0 | 100.0 |
F6 | 1.2 | 60.0 | 10.0 | 30.0 | 100.0 |
Minimum Content (%) | Micronutrients and Macronutrients | ||||||||||||||||
N | P2O5 | K2O | Ca | Mg | S | B | Cl | Co | Cu | Fe | Mn | Mo | Ni | Se | Si | Zn | |
1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.01 | 0.1 | 0.005 | 0.02 | 0.02 | 0.02 | 0.005 | 0.005 | 0.003 | 0.05 | 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivo, E.F.; Acordi, J.; Faraco, M.N.S.; Simão, L.; Ribeiro, M.J.; Fernandes, É.M.R.; Zocche, J.J.; Raupp-Pereira, F. Systematic Selection of Waste from Run-of-Mine Coal Processing as Sustainable Raw Materials for Organo-Mineral Fertilizer Production. Sustainability 2025, 17, 1350. https://doi.org/10.3390/su17041350
Olivo EF, Acordi J, Faraco MNS, Simão L, Ribeiro MJ, Fernandes ÉMR, Zocche JJ, Raupp-Pereira F. Systematic Selection of Waste from Run-of-Mine Coal Processing as Sustainable Raw Materials for Organo-Mineral Fertilizer Production. Sustainability. 2025; 17(4):1350. https://doi.org/10.3390/su17041350
Chicago/Turabian StyleOlivo, Eduarda Fraga, Juliana Acordi, Morgana Nuernberg Sartor Faraco, Lisandro Simão, Manuel Joaquim Ribeiro, Élia Maria Raposo Fernandes, Jairo José Zocche, and Fabiano Raupp-Pereira. 2025. "Systematic Selection of Waste from Run-of-Mine Coal Processing as Sustainable Raw Materials for Organo-Mineral Fertilizer Production" Sustainability 17, no. 4: 1350. https://doi.org/10.3390/su17041350
APA StyleOlivo, E. F., Acordi, J., Faraco, M. N. S., Simão, L., Ribeiro, M. J., Fernandes, É. M. R., Zocche, J. J., & Raupp-Pereira, F. (2025). Systematic Selection of Waste from Run-of-Mine Coal Processing as Sustainable Raw Materials for Organo-Mineral Fertilizer Production. Sustainability, 17(4), 1350. https://doi.org/10.3390/su17041350