A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. The Intensity Analysis
2.3.2. InVEST Model
2.3.3. PLUS Model
2.3.4. Spatial Correlation Analysis
3. Results
3.1. LUCC Structure Analysis
3.2. Detection of LUCC Size and Intensity
3.2.1. Change Detection at Category Level
3.2.2. LUCC Conversion Mapping Analysis
3.3. Analysis of LUCC Prediction in 2035
3.4. Carbon Storage Dynamics from 2000 to 2020
3.5. Prediction of Carbon Storage in 2035
4. Discussion
4.1. Influence of Diverse Driving Factors on LUCC
4.2. Interpretation of Research
4.3. Suggestions for Future Development
4.4. Limitations and Future Work
5. Conclusions
- (1)
- Significant interrelationships are observed amid a variety of land usage in the central Shanxi urban agglomeration between 2000 and 2020, with cropland and grassland becoming the main categories of land. Grassland exhibits the largest area, followed by cultivated land. During this period, grassland initially increases before later declining, while cultivated land decreases overall, and forest land, water bodies, and construction land display stable growth. In addition to the influence of policy factors, the DEM significantly contributes to the expansion of forest land and constructed land.
- (2)
- Carbon storage in the central Shanxi urban agglomeration stands at 11.14 ×108 t in 2000 and decreases to 11.07 ×108 t by 2020. Within the urban cluster, areas with decreased carbon storage are especially noticeable. Spatial autocorrelation analysis indicates that carbon storage shows an overall clustered distribution, although the degree of clustering gradually weakens. Areas experiencing an increase in carbon storage are mostly found in the mountains around Lüliang, including regions such as western Xinzhou, Lüliang city, and Taiyuan city. Conversely, regions with lower carbon storage are mostly found in the crowded Taiyuan and Xinzhou basins. This suggests that the switch between high and low carbon density land types influences variations in carbon storage in the studied area.
- (3)
- The trends from 2000 to 2010 are consistent with changes in cultivated land area, according to a comparison of changes in carbon storage and the percentage of land area used. This suggests that a major factor influencing carbon storage levels is the decrease in cropland. From 2010 to 2020, carbon storage trends align with the reduction of grassland area, highlighting the impact of significant grassland loss. The transformation of land use types indicates that the conversion between fields and cropland significantly affects carbon storage.
- (4)
- Projections for 2035 under the three scenarios indicate a downward trend in carbon storage, with the CP scenario exhibiting the least decline and the ND scenario showing the most significant decrease. Spatial autocorrelation results suggest that carbon storage distribution becomes more uniform across the three scenarios compared to 2020, with the ND and EP scenarios exhibiting a relatively dispersed distribution, whereas the CP scenario displays a more concentrated distribution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, Y.; Shi, Y.; Sun, W.; Chang, J.; Zhu, J.; Chen, L.; Wang, X.; Guo, Y.; Zhang, H.; Yu, L.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Sci. China Life Sci. 2022, 65, 861–895. [Google Scholar] [CrossRef] [PubMed]
- Stockmann, U.; Padarian, J.; McBratney, A.; Minasny, B.; De-Brogniez, D.; Montanarella, L.; Hong, S.Y.; Rawlins, B.G.; Field, D.J. Global soil organic carbon assessment. Glob. Food Secur. 2015, 6, 9–16. [Google Scholar] [CrossRef]
- Wang, X.; Feng, Z.; Ouyang, Z. Vegetation carbon storage and density of forest ecosystems in China. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2001, 12, 13–16. [Google Scholar]
- Domke, G.M.; Perry, C.H.; Walters, B.F.; Woodall, C.W.; Russell, M.B.; Smith, J.E. Estimating litter carbon stocks on forest land in the United States. Sci. Total Environ. 2016, 557, 469–478. [Google Scholar] [CrossRef] [PubMed]
- Baumann, M.; Gasparri, I.; Piquer-Rodríguez, M.; Gavier Pizarro, G.; Griffiths, P.; Hostert, P.; Kuemmerle, T. Carbon emissions from agricultural expansion and intensification in the Chaco. Glob. Change Biol. 2017, 23, 1902–1916. [Google Scholar] [CrossRef] [PubMed]
- Gray, V. Climate Change 2007: The Physical Science Basis Summary for Policymakers. Energy Environ. 2007, 18, 433–440. [Google Scholar] [CrossRef]
- Zhang, S.; Bai, X.; Zhao, C.; Tan, Q.; Luo, G.; Wu, L.; Xi, H.; Li, C.; Chen, F.; Ran, C.; et al. China’s carbon budget inventory from 1997 to 2017 and its challenges to achieving carbon neutral strategies. J. Clean. Prod. 2022, 347, 130966. [Google Scholar] [CrossRef]
- Li, X.; Huang, C.; Jin, H.; Han, Y.; Kang, S.; Liu, J.; Cai, H.; Hu, T.; Yang, G.; Yu, H.; et al. Spatio-temporal patterns of carbon storage derived using the InVEST model in Heilongjiang Province, Northeast China. Front. Earth Sci. 2022, 10, 846456. [Google Scholar] [CrossRef]
- Setiawan, O.; Rahayu, A.A.D.; Samawandana, G.; Tata, H.L.; Dharmawan, I.W.S.; Rachmat, H.H.; Suharti, S.; Windyoningrum, A.; Khotimah, H. Unraveling land use land cover change, their driving factors, and implication on carbon storage through an integrated modelling approach. Egypt. J. Remote Sens. Space Sci. 2024, 27, 615–627. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, L.; Huang, J. Integrating the SD-CLUE-S and InVEST models into assessment of oasis carbon storage in northwestern China. PLoS ONE 2017, 12, e0172494. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, M.; Gong, D.; Lin, H.; Fan, Y.; Du, W. Dynamic simulation and prediction of carbon storage based on land use/land cover change from 2000 to 2040: A case study of the Nanchang urban agglomeration. Remote Sens. 2023, 15, 4645. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Liang, Y.; Hashimoto, S.; Liu, L. Integrated assessment of land-use/land-cover dynamics on carbon storage services in the Loess Plateau of China from 1995 to 2050. Ecol. Indic. 2021, 120, 106939. [Google Scholar] [CrossRef]
- Jiang, P.; Cheng, L.; Li, M.; Zhao, R.; Duan, Y. Impacts of LUCC on soil properties in the riparian zones of desert oasis with remote sensing data: A case study of the middle Heihe River basin, China. Sci. Total Environ. 2015, 506, 259–271. [Google Scholar] [CrossRef]
- Ouyang, N.; Rui, X.; Zhang, X.; Tang, H.; Xie, Y. Spatiotemporal evolution of ecosystem health and its driving factors in the southwestern karst regions of China. Ecol. Indic. 2024, 166, 112530. [Google Scholar] [CrossRef]
- Yu, Z.; Deng, X.; Cheshmehzangi, A.; Mangi, E. Structural succession of land resources under the influence of different policies: A case study for Shanxi Province, China. Land Use Policy 2023, 132, 106810. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, L.; Tang, F.; Wang, G.; Li, M. Construction of an ecological security network in the Fenhe River Basin and its temporal and spatial evolution characteristics. J. Clean. Prod. 2023, 417, 137961. [Google Scholar] [CrossRef]
- Ge, X.J.; Liu, X. Urban land use efficiency under resource-based economic transformation—A case study of Shanxi Province. Land 2021, 10, 850. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, J.; Li, Z.; Ming, L.; Li, C.; Li, C. Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China. Land 2023, 12, 1658. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, M.; Zhu, D.; Altan, O. Integrating remote sensing and a markov-FLUS model to simulate future land use changes in Hokkaido, Japan. Remote Sens. 2021, 13, 2621. [Google Scholar] [CrossRef]
- Quan, B.; Bai, Y.; Römkens, M.J.M.; Chang, K.T.; Song, H.; Guo, T.; Lei, S. Urban land expansion in Quanzhou city, China, 1995–2010. Habitat Int. 2015, 48, 131–139. [Google Scholar] [CrossRef]
- Aldwaik, S.Z.; Pontius, R.G., Jr. Intensity analysis to unify measurements of size and stationarity of land changes by interval, category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B. Intensity Analysis to Communicate Detailed Detection of Land Use and Land Cover Change in Chang-Zhu-Tan Metropolitan Region, China. Forests 2023, 14, 939. [Google Scholar] [CrossRef]
- Chen, L.; Ma, Y. Current and future characteristics of land use based on intensity analysis and PLUS model: A case study of Foshan city, China. SN Appl. Sci. 2023, 5, 83. [Google Scholar] [CrossRef]
- Quan, B.; Pontius, R.G., Jr.; Song, H. Intensity Analysis to communicate land change during three time intervals in two regions of Quanzhou City, China. GIScience Remote Sens. 2020, 57, 21–36. [Google Scholar] [CrossRef]
- Deng, Z.; Quan, B. Intensity characteristics and multi-scenario projection of land use and land cover change in Hengyang, China. Int. J. Environ. Res. Public Health 2022, 19, 8491. [Google Scholar] [CrossRef]
- Houghton, R.A. The annual net flux of carbon to the atmosphere from changes in land use 1850–1990. Tellus B 1999, 51, 298–313. [Google Scholar] [CrossRef]
- Schimel, D.S.; House, J.I.; Hibbard, K.A.; Bousquet, P.; Ciais, P.; Peylin, P.; Braswell, B.H.; Apps, M.J.; Baker, D.; Bondeau, A.; et al. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 2001, 414, 169–172. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, S.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 044022. [Google Scholar] [CrossRef]
- Basyuni, M.; Wirasatriya, A.; Iryanthony, S.B.; Amelia, R.; Slamet, B.; Sulistiyono, N.; Pribadi, R.; Sumarga, E.; Eddy, S.; Al Mustaniroh, S.S.; et al. Aboveground biomass and carbon stock estimation using UAV photogrammetry in Indonesian mangroves and other competing land uses. Ecol. Inform. 2023, 77, 102227. [Google Scholar] [CrossRef]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in China: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Lyu, R.; Mi, L.; Zhang, J.; Xu, M.; Li, J. Modeling the effects of urban expansion on regional carbon storage by coupling SLEUTH-3r model and InVEST model. Ecol. Res. 2019, 34, 380–393. [Google Scholar] [CrossRef]
- Lin, J.; Chen, Q. Analyzing and Simulating the Influence of a Water Conveyance Project on Land Use Conditions in the Tarim River Region. Land 2023, 12, 2073. [Google Scholar] [CrossRef]
- Fu, Y.; Li, Q.; Li, J.; Zeng, K.; Wang, L.; Wang, Y. Multi-Scenario Simulation of the Production-Living-Ecological Spaces in Sichuan Province Based on the PLUS Model and Assessment of Its Ecological and Environmental Effects. Sustainability 2024, 16, 10322. [Google Scholar] [CrossRef]
- Wang, C.; Li, T.; Guo, X.; Xia, L.; Lu, C.; Wang, C. Plus-InVEST Study of the Chengdu-Chongqing urban agglomeration’s land-use change and carbon storage. Land 2022, 11, 1617. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Zhang, Y.; Gao, Y.; Liu, Y.; Sun, X.; Zhi, J.; Yin, S. Simulating land use change for sustainable land management in rapid urbanization regions: A case study of the Yangtze River Delta region. Landsc. Ecol. 2023, 38, 1807–1830. [Google Scholar] [CrossRef]
- Lin, Y.; Hu, Z.; Li, W.; Chen, H.; Wang, F.; Nan, X.; Yang, X.; Zhang, W. Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin, China. J. Arid Land 2024, 16, 110–130. [Google Scholar] [CrossRef]
- Zhang, J.; Li, F.; Zhang, H.; Sun, X. Conservation strategies for the North China leopard: Establishing effective ecological corridors in Shanxi Province. Ecol. Indic. 2024, 169, 112908. [Google Scholar] [CrossRef]
- Pan, L.B.; Ma, J.; Wang, X.L.; Hou, H. Heavy metals in soils from a typical county in Shanxi Province, China: Levels, sources and spatial distribution. Chemosphere 2016, 148, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Jie, Y.; Xin, H. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar]
- Pontius, R.G., Jr. Metrics That Make a Difference: How to Analyze Change and Error; Springer International Publishing: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Wang, N.; Chen, X.; Zhang, Z.; Pang, J. Spatiotemporal dynamics and driving factors of county-level carbon storage in the Loess Plateau: A case study in Qingcheng County, China. Ecol. Indic. 2022, 144, 109460. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.Y.; Tang, Q. Carbon storage assessment in the upper reaches of the Fenhe River under different land use scenarios. Acta Ecol. Sin 2021, 41, 360–373. [Google Scholar]
- Zhang, J.; Yang, J.; Liu, P.; Liu, Y.; Zheng, Y.; Shen, X.; Li, B.; Song, H.; Liang, Z. Effects of Land Use/Cover Change on Terrestrial Carbon Stocks in the Yellow River Basin of China from 2000 to 2030. Remote Sens. 2024, 16, 1810. [Google Scholar] [CrossRef]
- Chuai, X.; Huang, X.; Lai, L.; Wang, W.; Peng, J.; Zhao, R. Land use structure optimization based on carbon storage in several regional terrestrial ecosystems across China. Environ. Sci. Policy 2013, 25, 50–61. [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Dong, G.; Ge, Y.; Jia, H.; Sun, C.; Pan, S. Land use multi-suitability, land resource scarcity and diversity of human needs: A new framework for land use conflict identification. Land 2021, 10, 1003. [Google Scholar] [CrossRef]
- He, Y.; Ma, J.; Zhang, C.; Yang, H. Spatiotemporal evolution and prediction of carbon storage in Guilin based on FLUS and InVEST models. Remote Sens. 2023, 15, 1445. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, J.; Xiong, N.; Sun, L.; Xu, J. Impacts of land use changes on net primary productivity in urban agglomerations under multi-scenarios simulation. Remote Sens. 2022, 14, 1755. [Google Scholar] [CrossRef]
- Knudsen, M.T.; Meyer-Aurich, A.; Olesen, J.E.; Chirinda, N.; Hermansen, J.E. Carbon footprints of crops from organic and conventional arable crop rotations–using a life cycle assessment approach. J. Clean. Prod. 2014, 64, 609–618. [Google Scholar] [CrossRef]
- Lebourgeois, F.; Gomez, N.; Pinto, P.; Mérian, P. Mixed stands reduce Abies alba tree-ring sensitivity to summer drought in the Vosges mountains, western Europe. For. Ecol. Manag. 2013, 303, 61–71. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of road network expansion on landscape eco-logical risk in a megacity, China: A case study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Phat, N.K.; Knorr, W.; Kim, S. Appropriate measures for conservation of terrestrial carbon stocks—Analysis of trends of forest management in Southeast Asia. For. Ecol. Manag. 2004, 191, 283–299. [Google Scholar] [CrossRef]
- Keith, H.; Mackey, B.G.; Lindenmayer, D.B. Re-evaluation of forest biomass carbon stocks and lessons from the world’s most carbon-dense forests. Proc. Natl. Acad. Sci. USA 2009, 106, 11635–11640. [Google Scholar] [CrossRef]
- Robinson, D.T.; Zhang, J.; MacDonald, D.; Samson, C. Estimating Settlement carbon stock and density using an inventory approach and quantifying their variation by land use and parcel size. Urban For. Urban Green. 2023, 82, 127878. [Google Scholar] [CrossRef]
- Koga, N.; Shimoda, S.; Shirato, Y.; Kusaba, T.; Shima, T.; Niimi, H.; Yamane, T.; Wakabayashi, K.; Niwa, K.; Kohyama, K.; et al. Assessing changes in soil carbon stocks after land use conversion from forest land to agricultural land in Japan. Geoderma 2020, 377, 114487. [Google Scholar] [CrossRef]
- Jiang, Y.; Ouyang, B.; Yan, Z. The Response of Carbon Storage to Multi-Objective Land Use/Cover Spatial Optimization and Vulnerability Assessment. Sustainability 2024, 16, 2235. [Google Scholar] [CrossRef]
- Wu, Z.; Lin, F.; Niu, J.; Geng, T. Response of ecosystem service to land use pattern change in the Shanxi central urban agglomeration. Arid Zone Res. 2024, 41, 1153–1166. [Google Scholar]
- Ren, J.; Zhao, X.; Xu, X.; Ma, P.; Du, Y. Spatial-temporal evolution, tradeoffs and synergies of ecosystem services in the middle Yellow River. J. Earth Environ. 2022, 13, 477–490. [Google Scholar]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, Z.; Peng, C. Land use induced changes of organic carbon storage in soils of China. Glob. Change Biol. 2003, 9, 305–315. [Google Scholar] [CrossRef]
- Gao, X.; Meng, T.; Zhao, X. Variations of soil organic carbon following land use change on deep-loess hill sopes in China. Land Degrad. Dev. 2017, 28, 1902–1912. [Google Scholar] [CrossRef]
Category | Data | Data Resource | Original Resolution (m) |
---|---|---|---|
Land use data | Land use in 2000–2020 | Jie et al. [41] (https://zenodo.org/records/4417810, accessed on 8 April 2022) | 30 |
Natural factors | DEM slope | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 1 April 2022) | 90 |
Temperature | Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 14 April 2022) | 30 | |
Precipitation | |||
Soil type | |||
Socioeconomic factors | Population GDP | Data Center for Resources and Environmental Sciences of the Chinese Academy of Sciences (https://www.resdc.cn/, accessed on 14 April 2022) | 30 |
Distance to primary roads Distance to secondary roads Distance to tertiary roads Distance to class IV roads Distance to highways Distance to government sites Distance to rivers | Open Street Map (https://www.openstreetmap.org, accessed on 14 April 2022) | 1000 |
Letters | Means |
---|---|
the carbon density of land type (t/hm2) | |
aboveground carbon pool (t/hm2) | |
belowground carbon pool (t/hm2) | |
soil carbon pool (t/hm2) | |
dead organic carbon pool (t/hm2) | |
the total carbon stock (t) | |
the area of land type (hm2) | |
the number of land use types |
Land Use Type | |||||
---|---|---|---|---|---|
Cropland | 3.02 | 42.74 | 98.13 | 0 | 143.89 |
Forestland | 22.46 | 61.38 | 75.86 | 0 | 159.70 |
Grassland | 18.7 | 45.81 | 90.43 | 0 | 154.94 |
Water bodies | 1.59 | 0 | 0 | 0 | 1.59 |
Built-up land | 1.32 | 0 | 70.61 | 0 | 71.93 |
Unused land | 0.69 | 9.37 | 28.42 | 0 | 38.48 |
Scenarios | Details |
---|---|
Natural Development Scenario (ND) | Without establishing any restricted areas, LUCC continues the trends observed from 2000 to 2020, allowing for mutual transitions among various land uses, except for built-up land. |
Cultivated Land Protection Scenario (CP) | Emphasis is placed on the protection of stable and high-quality croplands within the central Shanxi urban agglomeration. Areas that remain cropland across five time periods are designated as long-term stable croplands within the study region. Additionally, following previous research [49], croplands with slopes less than 6° are extracted as high-quality croplands. These stable and high-quality croplands are then combined and designated as restricted conversion zones, ensuring the rigorous implementation of cropland protection policies. |
Ecological Protection Scenario (EP) | Prioritizing ecological and environmental conservation, the expansion of urban built-up land is restricted, and the growth rates of forest and grassland are accelerated. According to the ecological benefits of various land uses, the order ranks as forest land, grassland, cropland, and water bodies. Taking into account policies like the return of cropland to forestry and grassland in the Yellow river basin and Shanxi province’s ecological framework of “one axis, two screens, and multiple corridors”, the possibility of forest and grassland converting to cropland is ultimately reduced by 40% based on natural development scenarios. Additionally, water bodies and long-term stable forest areas identified from 2005–2020 are designated as restricted zones. |
ND | CP | EP | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
e | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Type | Time | Development Scenarios | Cropland | Forest Land | Grassland | Water Bodies | Built-Up Land | Unused Land |
---|---|---|---|---|---|---|---|---|
Area (km2) | 2020 | 20,061.46 | 20,340.56 | 30,418.34 | 159.35 | 3117.11 | 5.42 | |
2035 | ND | 18,254.71 | 22,333.39 | 29,323.83 | 166.79 | 4017.95 | 5.56 | |
CP | 20,597.36 | 20,863.34 | 29,350.85 | 141.79 | 3144.53 | 4.36 | ||
EP | 17,040.70 | 22,483.53 | 30,362.85 | 184.90 | 4024.55 | 5.71 | ||
Rate of Change (%) | 2035 | ND | −9.01 | 9.80 | −3.60 | 4.67 | 28.90 | 2.54 |
CP | 2.67 | 2.57 | −3.51 | −11.02 | 0.88 | −19.61 | ||
EP | −15.06 | 10.54 | −0.18 | 16.04 | 29.12 | 5.30 |
Scenario | Cropland | Forest Land | Grassland | Water Bodies | Built-Up Land | Unused Land | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | Carbon Storage (105 t) | Area (km2) | Carbon Storage (105 t) | Area (km2) | Carbon Storage (105 t) | Area (km2) | Carbon Storage (105 t) | Area (km2) | Carbon Storage (105 t) | Area (km2) | Carbon Storage (105 t) | |
2000 | 23,200.86 | 3338.37 | 18,049.62 | 2882.52 | 30,890.75 | 4786.21 | 119.27 | 0.19 | 1839.07 | 132.28 | 2.67 | 0.10 |
2020 | 20,061.46 | 2886.64 | 20,340.56 | 3248.39 | 30,418.34 | 4713.02 | 159.35 | 0.25 | 3117.11 | 224.21 | 5.42 | 0.21 |
ND | 18,254.71 | 2626.67 | 22,333.39 | 3566.64 | 29,323.83 | 4543.43 | 166.79 | 0.27 | 4017.95 | 289.01 | 5.56 | 0.21 |
CP | 20,597.36 | 2963.75 | 20,863.34 | 3331.88 | 29,350.85 | 4547.62 | 141.79 | 0.23 | 3144.53 | 226.19 | 4.36 | 0.17 |
EP | 17,040.70 | 2451.99 | 22,483.53 | 3590.62 | 30,362.85 | 4704.42 | 184.90 | 0.29 | 4024.55 | 289.49 | 5.71 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Quan, B. A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration. Sustainability 2025, 17, 1532. https://doi.org/10.3390/su17041532
Zhu Y, Quan B. A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration. Sustainability. 2025; 17(4):1532. https://doi.org/10.3390/su17041532
Chicago/Turabian StyleZhu, Yasi, and Bin Quan. 2025. "A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration" Sustainability 17, no. 4: 1532. https://doi.org/10.3390/su17041532
APA StyleZhu, Y., & Quan, B. (2025). A Muti-Scenario Prediction and Spatiotemporal Analysis of the LUCC and Carbon Storage Response: A Case Study of the Central Shanxi Urban Agglomeration. Sustainability, 17(4), 1532. https://doi.org/10.3390/su17041532