On the Use of a Bike-Sharing System in Extreme Weather Events: The Case of Porto Alegre, Rio Grande do Sul, Brazil
Abstract
:1. Introduction
- To identify and quantify daily bicycle trips during periods of flooding and heavy rainfall, as well as the demographic characteristics of the affected areas.
- To analyze the relationship between rainfall indices and flooding, using shared bicycles based on user profiles, during extreme events and their repercussions.
2. Related Works
- A lack of integrated studies on active mobility and extreme weather events: Most research examines urban flooding or smart mobility separately, without exploring how adverse weather conditions affect the choice and operation of active transport modes, such as bike-sharing systems.
- Scarcity of quantitative analyses on the impact of flooding on bike-sharing usage: Few studies correlate flood severity, user profiles, and variations in BSS usage patterns during extreme events.
- Limited use of high-frequency databases: Most studies rely on aggregated or long-term data, making it difficult to capture daily behavioral changes in urban mobility, especially during crises, when conventional public transportation becomes unavailable.
- Understanding the impacts of heavy rainfall and flooding on urban mobility: Investigating how extreme weather events affect bike-sharing users’ behavior can help inform public policies aimed at enhancing urban resilience.
- Providing evidence for the adaptation of urban infrastructure and transportation systems: Analyzing BSS usage patterns during extreme weather conditions can support the planning of cities better equipped to handle environmental challenges.
- Exploring the potential of non-traditional databases: The use of high-frequency data can offer a more detailed view of rapid changes in urban mobility, aiding in the development of effective disaster response strategies and promoting active transportation as a viable alternative in emergency situations.
3. Materials and Methods
3.1. Porto Alegre City
3.2. Meteorological Data
3.3. Demographic Data
3.4. Data Processing
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, H.; Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; et al. IPCC, 2023: Summary for Policymakers. In Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Lee, H., Romero, J., Eds.; IPCC: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf (accessed on 17 December 2024).
- Nelo, L.M.d.A.; Silva, L.F.d.; Ribeiro, A.P. Nature-Based Solutions to Mitigate Urban Heat: The Effectiveness of Green Corridors in Medellín, Colombia. Periódico Técnico Científico Cid. Verdes 2024, 12, 122–136. [Google Scholar] [CrossRef]
- Azevedo-Santos, V.M.; Daga, V.S.; Tonella, L.H.; Ruaro, R.; Arcifa, M.S.; Fearnside, P.M.; Giarrizzo, T. Brazil undermines flood resilience. Science 2023, 382, 383. [Google Scholar] [CrossRef]
- Gao, Y.; Xiao, Q.; Fang, Z. The Impact of Rainfall on Water, Energy, Industry and Economic Growth—Based on Empirical Data from 29 Provinces in China. Sustainability 2025, 17, 40. [Google Scholar] [CrossRef]
- Alves, R.A.; Rudke, A.P.; de Melo Souza, S.T.; dos Santos, M.M.; Martins, J.A. Flood vulnerability mapping in an urban area with high levels of impermeable coverage in southern Brazil. Reg. Environ. Change 2024, 24, 96. [Google Scholar] [CrossRef]
- Lopes, H.S.; Nascimento, D.T.F. The Vulnerability of Tourism to Climate Change in Portuguese and Brazilian Cities—A Review. Proceedings 2025, 113, 4. [Google Scholar] [CrossRef]
- dos Santos Alvalá, R.C.; Ribeiro, D.F.; Marengo, J.A.; Seluchi, M.E.; Gonçalves, D.A.; da Silva, L.A.; Pineda, L.A.C.; Saito, S.M. Analysis of the hydrological disaster occurred in the state of Rio Grande do Sul, Brazil in September 2023: Vulnerabilities and risk management capabilities. Int. J. Disaster Risk Reduct. 2024, 110, 104645. [Google Scholar] [CrossRef]
- Reboita, M.S.; Mattos, E.V.; Capucin, B.C.; de Souza, D.O.; de Souza Ferreira, G.W. A Multi-Scale Analysis of the Extreme Precipitation in Southern Brazil in April/May 2024. Atmosphere 2024, 15, 1123. [Google Scholar] [CrossRef]
- Pillar, V.D.; Overbeck, G.E. Learning from a climate disaster: The catastrophic floods in southern Brazil. Science 2024, 385, eadr8356. [Google Scholar] [CrossRef] [PubMed]
- CNN. Brazil’s Floods Smashed Through Barriers Designed to Keep Them Out, Trapping Water in for Weeks—And Exposing Social Woes. 2024. Available online: https://edition.cnn.com/2024/05/19/climate/brazil-floods-social-problems-intl/index.html (accessed on 7 January 2025).
- Lenharo, M. How to heal after a climate disaster. Nature 2024, 634, 1032–1036. [Google Scholar] [CrossRef]
- Dagnachew, A.G.; Hof, A.; Soest, H.V.; Vuuren, D. Climate Change Measures and Sustainable Development Goals; PBL Netherlands Environmenta l Assessment Agency: The Hague, The Netherlands, 2021. [Google Scholar]
- Kauffman, N.; Hill, K. Climate change, adaptation planning and institutional integration: A literature review and framework. Sustainability 2021, 13, 10708. [Google Scholar] [CrossRef]
- Massimino, F.P.; Castanho, R.A.; Gómez, I.; Rincón, V.; Velázquez, J. Assessment of the Climate Environmental Vulnerability Index for Urban Settlements on the Mediterranean Coast: A Case Study in Sicily. Urban Sci. 2024, 8, 130. [Google Scholar] [CrossRef]
- Baltazar, J.; Bouillass, G.; Vallet, F.; Puchinger, J.; Perry, N. Integrating environmental issues into the design of mobility plans: Insights from French practices. Transp. Policy 2024, 155, 1–14. [Google Scholar] [CrossRef]
- Oliveira, F.; Costa, D.G.; Duran-Faundez, C.; Dias, A. BikeWay: A Multi-Sensory Fuzzy-Based Quality Metric for Bike Paths and Tracks in Urban Areas. IEEE Access 2020, 8, 227313–227326. [Google Scholar] [CrossRef]
- Ferreira, J.M.; Costa, D.G. Enhancing Cycling Safety in Smart Cities: A Data-Driven Embedded Risk Alert System. Smart Cities 2024, 7, 1992–2014. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle emissions and urban air quality: 60 years of progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Sasaki, Y.; Fujiwara, K.; Mitobe, K. Risks that induce bicycle accidents: Measurement and analysis of bicyclist behavior while going straight and turning right using a bicycle simulator. Accid. Anal. Prev. 2024, 194, 107338. [Google Scholar] [CrossRef]
- Wolnowska, A.E.; Kasyk, L. Study of the Demand for Ecological Means of Transport in Micromobility: A Case of Bikesharing in Szczecin, Poland. Sustainability 2024, 16, 3620. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Zhang, S.; Lv, Y.; Li, T. Bike sharing rebalancing problem with variable demand. Phys. A Stat. Mech. Its Appl. 2022, 591, 126766. [Google Scholar] [CrossRef]
- Araújo, K.D.B.D.; Lima, L.D. Mobilidade Urbana e Sustentabilidade: A Utilização de Bicicletas Compartilhadas Recreativas e por Cicloentregadores em Dois Centros Urbanos Brasileiros. In Proceedings of the XXII National Meeting of Population Studies, Brasília, Brazil, 1 November 2024. [Google Scholar]
- Carvalho, C.H.R.D. Mobilidade Urbana: Avanços, Desafios e Perspectivas; Instituto de Pesquisa Econômica Aplicada (IPEA): Brasília, Brazil, 2016.
- Abdullahi, S.; Pradhan, B. Sustainable Urban Development. In Spatial Modeling and Assessment of Urban Form: Analysis of Urban Growth: From Sprawl to Compact Using Geospatial Data; Springer: Cham, Switzerland, 2017; pp. 17–34. [Google Scholar] [CrossRef]
- Fioravanti, Lívia Maschio. Urban space and digital platforms: Commuting journeys and working conditions of bicycle delivery workers in the metropolis of São Paulo. Geousp 2023, 27, e-201427. [Google Scholar]
- Xin, R.; Yang, J.; Ai, B.; Ding, L.; Li, T.; Zhu, R. Spatiotemporal analysis of bike mobility chain: A new perspective on mobility pattern discovery in urban bike-sharing system. J. Transp. Geogr. 2023, 109, 103606. [Google Scholar] [CrossRef]
- Lima, L.C.D.; Araújo, K.D.B.D.; Costa, D.G.; Silva, I.M.D.D.; Oliveira, F.L.S.D. Active transport in urban contexts: Profile of the shared bicycle service in six Brazilian locations. In Proceedings of the XXII National Meeting of Population Studies, Rio de Janeiro, Brazil, 7–11 November 2022. [Google Scholar]
- Fishman, E. Bikeshare: A review of recent literature. Transp. Rev. 2016, 36, 92–113. [Google Scholar] [CrossRef]
- Bartling, H. Bike share and user motivation: Exploring trip substitution choices among bike share users in a North American city. Int. J. Sustain. Transp. 2023, 17, 845–854. [Google Scholar] [CrossRef]
- Shen, S.; Lv, C.X.; Zhu, H.; Sun, L.J.; Wang, R.C. Potentials and prospects of bicycle sharing system in smart cities: A review. IEEE Sensors J. 2022, 22, 7519–7533. [Google Scholar] [CrossRef]
- Pizzorni, M.; Innocenti, A.; Tollin, N. Droughts and floods in a changing climate and implications for multi-hazard urban planning: A review. City Environ. Interact. 2024, 24, 100169. [Google Scholar] [CrossRef]
- Chen, X.; Li, H.; Yu, H.; Hou, E.; Song, S.; Shi, H.; Chai, Y. Counterfactual analysis of extreme events in urban flooding scenarios. J. Hydrol. Reg. Stud. 2025, 57, 102166. [Google Scholar] [CrossRef]
- Liu, H.; Wang, J.; Liu, J.; Ge, Y.; Wang, X.; Zhang, C.; Cleary, E.; Ruktanonchai, N.W.; Ruktanonchai, C.W.; Yao, Y.; et al. Combined and delayed impacts of epidemics and extreme weather on urban mobility recovery. Sustain. Cities Soc. 2023, 99, 104872. [Google Scholar] [CrossRef]
- Patrascu, F.I.; Mostafavi, A. Population activity recovery: Milestones unfolding, temporal interdependencies, and relationship with physical and social vulnerability. Int. J. Disaster Risk Reduct. 2024, 114, 104931. [Google Scholar] [CrossRef]
- Tsumita, N.; Kikuchi, H.; Jaensirisak, S.; Emberger, G.; Fukuda, A. Adaptation measures to alleviate degradation of urban mobility by urban flooding in Ubon Ratchathani, Thailand. Asian Transp. Stud. 2024, 10, 100145. [Google Scholar] [CrossRef]
- He, Y.; Thies, S.; Avner, P.; Rentschler, J. Flood impacts on urban transit and accessibility—A case study of Kinshasa. Transp. Res. Part D Transp. Environ. 2021, 96, 102889. [Google Scholar] [CrossRef]
- Oliveira, F.; Nery, D.; Costa, D.G.; Silva, I.; Lima, L. A Survey of Technologies and Recent Developments for Sustainable Smart Cycling. Sustainability 2021, 13, 3422. [Google Scholar] [CrossRef]
- Kunytska, O.; Persia, L.; Gruenwald, N.; Datsenko, D.; Zakrzewska, M. The sustainable and smart mobility strategy: Country comparative overview. In International Conference on Smart Technologies in Urban Engineering; Springer: Cham, Switzerland, 2022; pp. 656–668. [Google Scholar] [CrossRef]
- Kiviluoto, K.; Tapio, P.; Tuominen, A.; Lyytimäki, J.; Ahokas, I.; Silonsaari, J.; Schwanen, T. Towards sustainable mobility—Transformative scenarios for 2034. Transp. Res. Interdiscip. Perspect. 2022, 16, 100690. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Zhang, X.; Jia, Q.; Tian, Y. Understanding intra-urban human mobility through an exploratory spatiotemporal analysis of bike-sharing trajectories. Int. J. Geogr. Inf. Sci. 2020, 34, 2451–2474. [Google Scholar] [CrossRef]
- Chan, T.H. How does bike-sharing enable (or not) resilient cities, communities, and individuals? Conceptualising transport resilience from the socio-ecological and multi-level perspective. Transp. Policy 2025, 163, 247–261. [Google Scholar] [CrossRef]
- Guzel, D.; Altintasi, O.; Korkut, S.O. Assessment of weather-driven travel behavior on a small-scale docked bike-sharing system usage. Travel Behav. Soc. 2025, 38, 100927. [Google Scholar] [CrossRef]
- Zhao, R.; Tian, Z.; Tian, L.; Liu, W.; Wang, D.Z. Research on rebalancing of large-scale bike-sharing system driven by zonal heterogeneity and demand uncertainty. Transp. Res. Part C Emerg. Technol. 2025, 170, 104933. [Google Scholar] [CrossRef]
- Liu, W.; Tian, Z.; Zhao, R.; Liu, Y.; Tian, L.; Wang, D.Z. Service area design and allocation problem for electric bike sharing system under demand uncertainty. Transp. Lett. 2025, 2025, 1–24. [Google Scholar] [CrossRef]
- Rong, C.; Ding, J.; Li, Y. An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques. ACM Comput. Surv. 2025, 57, 4. [Google Scholar] [CrossRef]
- Ospina-Zapata, J.P.; López-Ríos, V.I.; Botero-Fernández, V.; Duque, J.C. A database to analyze cycling routes in Medellin, Colombia. Data Brief 2020, 32, 106162. [Google Scholar] [CrossRef]
- Wen, Z.; Tian, D.; Wu, N. Modeling and Analyzing the Spatiotemporal Travel Patterns of Bike Sharing: A Case Study of Citi Bike in New York. Sustainability 2024, 17, 14. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, L.; Lei, D.; Bi, H. How Bike-Sharing Affects the Accessibility Equity of Public Transit Systems—Evidence from Nanjing. Land 2024, 13, 2200. [Google Scholar] [CrossRef]
- Tembici. Reinvented Mobility, Designed for Everyone. 2024. Available online: https://www.tembici.com.br/en/ (accessed on 7 December 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2025. [Google Scholar]
- IBGE. Update of the Data in the Publication “Population and Households: First Results”, 2nd ed.; IBGE: Rio de Janeiro, Brazil, 2023.
- de Bem, J.; Waismann, M. Porto Alegre: A Century-Old Capital with Current Employment Problems. 2022. Available online: https://www.observatoriodasmetropoles.net.br/porto-alegre-uma-capital-centenaria-com-problemas-de-emprego-atuais (accessed on 7 December 2024).
- Rizzotto, M.L.F.; Costa, A.M.; Lobato, L.d.V.d.C. Climate crisis and new challenges for health systems: The case of floods in Rio Grande do Sul/Brazil. Saúde Debate 2024, 48, e141ED. [Google Scholar] [CrossRef]
- Andrade, L.C.D.; Rodrigues, L.R.; Andreazza, R.; Camargo, F.A.d.O. Lake Guaíba: A historical-cultural analysis of water pollution in Porto Alegre, RS, Brazil. Eng. Sanit. Ambient. 2019, 24, 229–237. [Google Scholar] [CrossRef]
- Google, I. Google Maps. 2024. Available online: https://www.google.com.br/maps/place/Porto+Alegre,+RS/@-30.1084701,-51.3419567,39564m/data=!3m2!1e3!4b1!4m6!3m5!1s0x95199cd2566acb1d:0x603111a89f87e91f!8m2!3d-30.0368176!4d-51.2089887!16zL20vMDE3NTc1?entry=ttu&g_ep=EgoyMDI1MDEwNi4xIKXMDSoASAFQAw%3D%3D (accessed on 7 January 2025).
- Parenza, L.N.; Câmara, S.G. Person-City Relations: Urban Mobility and Quality of Life in Porto Alegre (RS). Psicol. Ciência Profissão 2022, 42, e238317. [Google Scholar] [CrossRef]
- de Porto Alegre, P. Public Transport Resumes Operations in New Areas After Sections Are Released. 2024. Available online: https://prefeitura.poa.br/smmu/noticias/transporte-publico-retoma-operacao-em-novas-areas-apos-liberacao-de-trechos (accessed on 7 January 2025).
- Metroplan. Metroplan Provides an Update on Mobility Following the May 2024 Floods. Available online: http://www.metroplan.rs.gov.br/conteudo/3632/?METROPLAN__INFORMA_SOBRE_MOBILIDADE_-__ENCHENTES_MAIO_2024 (accessed on 9 January 2025).
- Misiou, O.; Koutsoumanis, K. Climate change and its implications for food safety and spoilage. Trends Food Sci. Technol. 2022, 126, 142–152. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia (INMET). Dados Pluviométricos Porto Alegre, Série Histórica 1993–2024. 2024. Available online: https://bdmep.inmet.gov.br/ (accessed on 20 December 2024).
- Possantti, I.; Aguirre, A.; Alberti, C.; Azeredo, L.; Barcelos, M.; Becker, F.; Camana, M.; Cantor, G.; Cardozo, T.; Carrard, G.; et al. Banco de Dados das Cheias na Região Hidrográfica do Lago Guaíba em Maio de 2024. 2024. Available online: https://zenodo.org/records/13227745 (accessed on 12 December 2024).
- Marcuzzo, F.F.N.; Kenup, R.E.; Zanetti, H.P.; Benvenutti, L.; de Oliveira, M.P.; Wilson, E.d.S.; Acosta, C.C.; Bao, R. Technical Note: Direct Measurement and Indirect Assessment of the Maximum Level of Rivers at Vertical-Staff Gage (Stage) of Gauges and Flood Marks in Rio Grande do Sul State (South of Brasil) During the Great Flood of May 2024; Serviço Geológico do Brasil: Brasília, Brazil, 2024. Available online: https://rigeo.sgb.gov.br/handle/doc/24939.11 (accessed on 17 December 2024).
- de Oliveira, G.L.; Silva, I.; Lima, L.; Costa, D.G. A composite indicator of liveability based on sociodemographic and Uber quality service dimensions: A data-driven approach. Transp. Policy 2023, 141, 97–115. [Google Scholar] [CrossRef]
- Oliveira, G.L.A.d. A Data-Driven Approach for Creating a Habitability Indicator Based on the Uber API. Master’s Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2020. [Google Scholar]
- Ji, T.; Yao, Y.; Dou, Y.; Deng, S.; Yu, S.; Zhu, Y.; Liao, H. The Impact of Climate Change on Urban Transportation Resilience to Compound Extreme Events. Sustainability 2022, 14, 3880. [Google Scholar] [CrossRef]
- de Porto Alegre, P. Porto Alegre Registers 12.7 Thousand People Served in 124 Shelters. 2024. Available online: https://prefeitura.poa.br/defesa-civil/noticias/porto-alegre-registra-127-mil-pessoas-atendidas-em-124-abrigos (accessed on 17 December 2024).
- Magalhães Filho, F.J.C.; Mendes, A.T.; Santos, G.R.D.; Benetti, A.D.; Dornelles, F. Floods and floods in Rio Grande do Sul in 2024: Impacts and challenges for the integrated management of public policies in basic sanitation. Bol. Reg. Urbano Ambient. 2025, 33, 23–32. [Google Scholar] [CrossRef]
- Zheng, F.; Gu, F.; Zhang, W.; Guo, J. Is Bicycle Sharing an Environmental Practice? Evidence from a Life Cycle Assessment Based on Behavioral Surveys. Sustainability 2019, 11, 1550. [Google Scholar] [CrossRef]
- Markolf, S.A.; Hoehne, C.; Fraser, A.; Chester, M.V.; Underwood, B.S. Transportation resilience to climate change and extreme weather events – Beyond risk and robustness. Transp. Policy 2019, 74, 174–186. [Google Scholar] [CrossRef]
Variable | Description |
---|---|
Trip Duration | Total trip duration in minutes |
Trip Date | Date when the trip occurred |
Start Time | Time the trip started |
End Time | Time the trip ended |
Origin Station | Name of the station where the trip began |
Destination Station | Name of the station where the trip ended |
User Profile | Classification of the trip: recreational, utilitarian, or service |
Type of Bike | Classification of type: mechanical or electric |
Variable | Description |
---|---|
CDMUN | Municipality Code |
NMMUN | Municipality Name |
CDBAIRRO | Neighborhood Code |
NMBAIRRO | Neighborhood Name |
V0001 | Total Residents |
AREA km2 | Area of the neighborhood in km2 |
Geometry | Geospatial information |
Variable | Description |
---|---|
CEP | Postal address code |
TOTDP | Total households |
TOTEENSINO | Total educational establishments |
TOTESAUDE | Total health establishments |
TOTEOF | Total establishments for other purposes |
Information | May 2023 | May 2024 |
---|---|---|
Average trip duration in minutes | 34 min | 33 min |
Day of the week with the highest number of trips | Monday | Saturday |
Station with the most trips started | Skate Park | Rótula Gasômetro |
Station with the most trips completed | Skate Park | Rótula Gasômetro |
Most frequent travel profile | Utility (40%) Service (7%) Recreational (53%) | Utility (22%) Service (5%) Recreational (73%) |
Most frequent type of bicycle | Electrical (3%) Mechanical (97%) | Electrical (3%) Mechanical (97%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Araújo, K.; Lima, L.; Dias, M.A.; Costa, D.G.; Silva, I. On the Use of a Bike-Sharing System in Extreme Weather Events: The Case of Porto Alegre, Rio Grande do Sul, Brazil. Sustainability 2025, 17, 2291. https://doi.org/10.3390/su17052291
de Araújo K, Lima L, Dias MA, Costa DG, Silva I. On the Use of a Bike-Sharing System in Extreme Weather Events: The Case of Porto Alegre, Rio Grande do Sul, Brazil. Sustainability. 2025; 17(5):2291. https://doi.org/10.3390/su17052291
Chicago/Turabian Stylede Araújo, Kayck, Luciana Lima, Mariana Andreotti Dias, Daniel G. Costa, and Ivanovitch Silva. 2025. "On the Use of a Bike-Sharing System in Extreme Weather Events: The Case of Porto Alegre, Rio Grande do Sul, Brazil" Sustainability 17, no. 5: 2291. https://doi.org/10.3390/su17052291
APA Stylede Araújo, K., Lima, L., Dias, M. A., Costa, D. G., & Silva, I. (2025). On the Use of a Bike-Sharing System in Extreme Weather Events: The Case of Porto Alegre, Rio Grande do Sul, Brazil. Sustainability, 17(5), 2291. https://doi.org/10.3390/su17052291