The Dual Path of the Impact of Digital Technology Adoption on ESG Performance
Abstract
:1. Introduction
2. A Literature Review
2.1. Theoretical Foundation
2.2. The Practical Adoption of Digital Technology
2.3. The ESG Performance of Digital Technology
3. Digital Technology Adoption and ESG Performance: Hypothesis Construction
3.1. The Direct Effect of Digital Technology Adoption on ESG Performance
3.2. Influencing Mechanism of Digital Technology Adoption on ESG Performance
3.3. Heterogeneity Effect of Digital Technology Adoption on ESG Performance
4. Methodology and Data
4.1. Sample and Data
4.2. Definition of Variables
4.3. Model Setting
5. Results
5.1. Descriptive Statistics
5.2. Benchmark Regression
5.3. Robustness Test
5.4. Mechanism Analysis
5.4.1. Digital Technology Adoption, Information Transparency, and ESG Performance
5.4.2. Digital Technology Adoption, Operating Capacity and ESG Performance
5.5. Heterogeneity Analysis
5.6. Further Analysis
6. Conclusions and Policy Implications
6.1. Discussion
6.2. Conclusions
6.3. Policy Implications
6.4. Future Reaches
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Strategic Plan for the Development of New Generation Artificial Intelligence. Available online: https://www.ndrc.gov.cn/xwdt/ztzl/szjj/zcwj/202406/t20240607_1386724.html (accessed on 20 October 2024).
- National Development and Reform Commission, the National Data Administration. Highlights of the Digital Economy 2024. Available online: https://www.ndrc.gov.cn/xwdt/ztzl/szjj/zcjd/202406/t20240607_1386754.html (accessed on 20 October 2024).
- Du, X.; Jiang, K. Promoting enterprise productivity: The role of digital transformation. Borsa Istanb. Rev. 2022, 22, 1165–1181. [Google Scholar] [CrossRef]
- Hanelt, A.; Firk, S.; Hildebrandt, B.; Kolbe, L.M. Digital M&A, digital innovation, and firm performance: An empirical investigation. Eur. J. Inf. Syst. 2021, 30, 3–26. [Google Scholar] [CrossRef]
- Nylén, D.; Holmström, J. Digital innovation strategy: A framework for diagnosing and improving digital product and service innovation. Bus. Horiz. 2015, 58, 57–67. [Google Scholar] [CrossRef]
- Du, Q.; Sun, Z.; Chen, S. Digital technology and ESG performance in ecosystem-based business models: Perspective of environmental regulation and green innovation in China. Asia Pac. Bus. Rev. 2024, 1–24. [Google Scholar] [CrossRef]
- Wang, H.; Jiao, S.; Bu, K.; Wang, Y.; Wang, Y. Digital transformation and manufacturing companies’ ESG responsibility performance. Financ. Res. Lett. 2023, 58, 104370. [Google Scholar] [CrossRef]
- Wu, W.; Fu, Y.; Wang, Z.; Liu, X.; Niu, Y.; Li, B.; Huang, G.Q. Consortium blockchain-enabled smart ESG reporting platform with token-based incentives for corporate crowdsensing. Comput. Ind. Eng. 2022, 172, 108456. [Google Scholar] [CrossRef]
- Fang, Z.; Razzaq, A.; Mohsin, M.; Irfan, M. Spatial spillovers and threshold effects of internet development and entrepreneurship on green innovation efficiency in China. Technol. Soc. 2022, 68, 101844. [Google Scholar] [CrossRef]
- Liao, F.; Hu, Y.; Chen, M.; Xu, S. Digital transformation and corporate green supply chain efficiency: Evidence from China. Econ. Anal. Policy 2024, 81, 195–207. [Google Scholar] [CrossRef]
- Zhu, Y.; Jin, S. How Does the Digital Transformation of Banks Improve Efficiency and Environmental, Social, and Governance Performance? Systems 2023, 11, 328. [Google Scholar] [CrossRef]
- Cheng, R.; Ho, C.-Y.; Huang, S. Digitalization and firm performance: Channels and heterogeneities. Appl. Econ. Lett. 2023, 30, 2401–2406. [Google Scholar] [CrossRef]
- Loebbecke, C.; Picot, A. Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. J. Strateg. Inf. Syst. 2015, 24, 149–157. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Hitt, L.M. Computing Productivity: Firm-Level Evidence. Rev. Econ. Stat. 2003, 85, 793–808. [Google Scholar] [CrossRef]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. Climate Change 2023: AR6 Synthesis Report; IPCC: Geneva, Switzerland, 2023. [Google Scholar] [CrossRef]
- Lin, Z. Does ESG performance indicate corporate economic sustainability? Evidence based on the sustainable growth rate. Borsa Istanb. Rev. 2024, 24, 485–493. [Google Scholar] [CrossRef]
- Cai, C.; Tu, Y.; Li, Z. Enterprise digital transformation and ESG performance. Financ. Res. Lett. 2023, 58, 104692. [Google Scholar] [CrossRef]
- Ding, X.; Sheng, Z.; Appolloni, A.; Shahzad, M.; Han, S. Digital transformation, ESG practice, and total factor productivity. Bus. Strateg. Environ. 2024, 33, 4547–4561. [Google Scholar] [CrossRef]
- Barney, J.B. Firm Resources and Sustained Competitive Advantage. In Economics Meets Sociology in Strategic Management; Emerald Group Publishing Limited: Leeds, UK, 1991; pp. 203–227. [Google Scholar] [CrossRef]
- Akerlof, G.A. The Market for “Lemons”: Quality Uncertainty and the Market Mechanism. Q. J. Econ. 1970, 84, 488. [Google Scholar] [CrossRef]
- Mubarak, M.F.; Tiwari, S.; Petraite, M.; Mubarik, M.; Rasi, R.Z.R.M. How Industry 4.0 technologies and open innovation can improve green innovation performance? Manag. Environ. Qual. An. Int. J. 2021, 32, 1007–1022. [Google Scholar] [CrossRef]
- He, F.; Ding, C.; Yue, W.; Liu, G. ESG performance and corporate risk-taking: Evidence from China. Int. Rev. Financ. Anal. 2023, 87, 102550. [Google Scholar] [CrossRef]
- Rastogi, S.; Singh, K.; Kanoujiya, J. Firm’s value and ESG: The moderating role of ownership concentration and corporate disclosures. Asian Rev. Account. 2023, 32, 70–90. [Google Scholar] [CrossRef]
- Lou, Y.; Rahi, R. Information, market power and welfare. J. Econ. Theory 2023, 214, 105756. [Google Scholar] [CrossRef]
- Rau, P.R.; Yu, T. A survey on ESG: Investors, institutions and firms. China Financ. Rev. Int. 2023, 14, 3–33. [Google Scholar] [CrossRef]
- Clarkson, P.M.; Li, Y.; Richardson, G.D. The Market Valuation of Environmental Capital Expenditures by Pulp and Paper Companies. Account. Rev. 2004, 79, 329–353. [Google Scholar] [CrossRef]
- Zhang, L.; Li, D.; Cao, C.; Huang, S. The influence of greenwashing perception on green purchasing intentions: The mediating role of green word-of-mouth and moderating role of green concern. J. Clean. Prod. 2018, 187, 740–750. [Google Scholar] [CrossRef]
- Mu, W.; Liu, K.; Tao, Y.; Ye, Y. Digital finance and corporate ESG. Financ. Res. Lett. 2023, 51, 103426. [Google Scholar] [CrossRef]
- Heo, P.S.; Lee, D.H. Evolution of the linkage structure of ICT industry and its role in the economic system: The case of Korea. Inf. Technol. Dev. 2019, 25, 424–454. [Google Scholar] [CrossRef]
- Powers, J.B.; McDougall, P.P. University start-up formation and technology licensing with firms that go public: A resource-based view of academic entrepreneurship. J. Bus. Ventur. 2005, 20, 291–311. [Google Scholar] [CrossRef]
- Liu, X.; Chong, Y.; Di, D.; Li, G. Digital financial development, synergistic reduction of pollution, and carbon emissions: Evidence from biased technical change. Environ. Sci. Pollut. Res. 2023, 30, 109671–109690. [Google Scholar] [CrossRef]
- Peng, Y.; Qiu, Y.; Li, Y.; Peng, X. Does digital inclusive finance promote carbon emission reduction of enterprises. PLoS ONE 2024, 19, e0302826. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, Z.; Zhang, X. Impact of digital technology on carbon emissions: Evidence from Chinese cities. Front. Ecol. Evol. 2023, 11, 1166376. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, X.; Chen, L. A Multi-Case Study of Business Innovation Models for Manufacturing Capacity Sharing Platforms, Based on a Resource Orchestration Perspective. Eng. Manag. J. 2024, 36, 92–102. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Z.; Su, Y. New media environment, environmental regulation and corporate green technology innovation:Evidence from China. Energy Econ. 2023, 119, 106545. [Google Scholar] [CrossRef]
- Li, S.; Gao, L.; Han, C.; Gupta, B.; Alhalabi, W.; Almakdi, S. Exploring the effect of digital transformation on Firms’ innovation performance. J. Innov. Knowl. 2023, 8, 100317. [Google Scholar] [CrossRef]
- Li, F.; Zhao, Y.; Ortiz, J.; Chen, Y. How Does Digital Technology Innovation Affect the Internationalization Performance of Chinese Enterprises? The Moderating Effect of Sustainability Readiness. Sustainability 2023, 15, 11126. [Google Scholar] [CrossRef]
- Liu, J.; Yu, Q.; Chen, Y.; Liu, J. The impact of digital technology development on carbon emissions: A spatial effect analysis for China. Resour. Conserv. Recycl. 2022, 185, 106445. [Google Scholar] [CrossRef]
- Lo, K.L.; Zhang, J.; Xia, F. Does digital technology innovation work better for industrial upgrading? An empirical analysis of listed Chinese manufacturing firms. Appl. Econ. Lett. 2023, 30, 2504–2509. [Google Scholar] [CrossRef]
- Bose, S.; Ali, M.J.; Hossain, S.; Shamsuddin, A. Does CEO–Audit Committee/Board Interlocking Matter for Corporate Social Responsibility? J. Bus. Ethics 2022, 179, 819–847. [Google Scholar] [CrossRef]
- Richardson, S. Over-investment of free cash flow. Rev. Account. Stud. 2006, 11, 159–189. [Google Scholar] [CrossRef]
- Usai, A.; Fiano, F.; Petruzzelli, A.M.; Paoloni, P.; Briamonte, M.F.; Orlando, B. Unveiling the impact of the adoption of digital technologies on firms’ innovation performance. J. Bus. Res. 2021, 133, 327–336. [Google Scholar] [CrossRef]
- Meng, X.; Zhu, P. Females’ social responsibility: The impact of female executives on ESG performance. Appl. Econ. Lett. 2023, 31, 1292–1297. [Google Scholar] [CrossRef]
- Fu, L.; Boehe, D.; Orlitzky, M. Are R&D-Intensive firms also corporate social responsibility specialists? A multicountry study. Res. Policy 2020, 49, 104082. [Google Scholar] [CrossRef]
- Feng, J.; Yuan, Y. Green investors and corporate ESG performance: Evidence from China. Financ. Res. Lett. 2024, 60, 104892. [Google Scholar] [CrossRef]
- Flammer, C. Corporate Social Responsibility and Shareholder Reaction: The Environmental Awareness of Investors. Acad. Manag. J. 2013, 56, 758–781. [Google Scholar] [CrossRef]
- Kumar, N.C.A.; Smith, C.; Badis, L.; Wang, N.; Ambrosy, P.; Tavares, R. ESG factors and risk-adjusted performance: A new quantitative model. J. Sustain. Financ. Investig. 2016, 6, 292–300. [Google Scholar] [CrossRef]
- Carney, R.W.; El Ghoul, S.; Guedhami, O.; Lu, J.W.; Wang, H. Political corporate social responsibility: The role of deliberative capacity. J. Int. Bus. Stud. 2022, 53, 1766–1784. [Google Scholar] [CrossRef]
- Imran, F.; Shahzad, K.; Butt, A.; Kantola, J. Digital Transformation of Industrial Organizations: Toward an Integrated Framework. J. Change Manag. 2021, 21, 451–479. [Google Scholar] [CrossRef]
- Di Vaio, A.; Palladino, R.; Pezzi, A.; Kalisz, D.E. The role of digital innovation in knowledge management systems: A systematic literature review. J. Bus. Res. 2021, 123, 220–231. [Google Scholar] [CrossRef]
- Albort-Morant, G.; Leal-Millán, A.; Cepeda-Carrión, G. The antecedents of green innovation performance: A model of learning and capabilities. J. Bus. Res. 2016, 69, 4912–4917. [Google Scholar] [CrossRef]
- Leal-Rodríguez, A.L.; Ariza-Montes, A.J.; Morales-Fernández, E.; Albort-Morant, G. Green innovation, indeed a cornerstone in linking market requests and business performance. Evidence from the Spanish automotive components industry. Technol. Forecast. Soc. Change 2018, 129, 185–193. [Google Scholar] [CrossRef]
- Hou, J.; Bai, W.; Sha, D. Does the Digital Economy Successfully Facilitate Carbon Emission Reduction in China? Green Technology Innovation Perspective. Sci. Technol. Soc. 2023, 28, 535–560. [Google Scholar] [CrossRef]
- Qi, Y.; Xie, X.; Chen, X. Effects of environmental regulation and corporate environmental commitment: Complementary or alternative? Evidence from China. J. Clean. Prod. 2023, 423, 138641. [Google Scholar] [CrossRef]
- Li, G.; Zhang, R.; Feng, S.; Wang, Y. Digital finance and sustainable development: Evidence from environmental inequality in China. Bus. Strateg. Environ. 2022, 31, 3574–3594. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, Z. The effect of ESG rating events on corporate green innovation in China: The mediating role of financial constraints and managers’ environmental awareness. Technol. Soc. 2022, 68, 101906. [Google Scholar] [CrossRef]
- Zhai, Y.; Cai, Z.; Lin, H.; Yuan, M.; Mao, Y.; Yu, M. Does better environmental, social, and governance induce better corporate green innovation: The mediating role of financing constraints. Corp. Soc. Responsib. Environ. Manag. 2022, 29, 1513–1526. [Google Scholar] [CrossRef]
- Lokuge, S.; Sedera, D.; Grover, V.; Dongming, X. Organizational readiness for digital innovation: Development and empirical calibration of a construct. Inf. Manag. 2019, 56, 445–461. [Google Scholar] [CrossRef]
- Svahn, F.; Mathiassen, L.; Lindgren, R. Embracing Digital Innovation in Incumbent Firms: How Volvo Cars Managed Competing Concerns. MIS Q. 2017, 41, 239–253. [Google Scholar] [CrossRef]
- Liu, Y.; Dong, J.; Mei, L.; Shen, R. Digital innovation and performance of manufacturing firms: An affordance perspective. Technovation 2023, 119, 102458. [Google Scholar] [CrossRef]
- Babilla, T.U.K. Digital innovation and financial access for small and medium-sized enterprises in a currency union. Econ. Model. 2023, 120, 106182. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.; Wang, Z.; Luan, X. The impact of digital transformation on corporate total factor productivity. Front. Psychol. 2022, 13, 1071986. [Google Scholar] [CrossRef]
- Na, C.; Chen, X.; Li, X.; Li, Y.; Wang, X. Digital Transformation of Value Chains and CSR Performance. Sustainability 2022, 14, 10245. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, H.; Feng, G.; Chang, C. Impact of digital transformation on performance of environment, social, and governance: Empirical evidence from China. Bus. Ethics Environ. Responsib. 2023, 32, 1373–1388. [Google Scholar] [CrossRef]
- Wang, J.; Song, Z.; Xue, L. Digital Technology for Good: Path and Influence—Based on the Study of ESG Performance of Listed Companies in China. Appl. Sci. 2023, 13, 2862. [Google Scholar] [CrossRef]
- Kuzovkova, T.A.; Saliutina, T.Y.; Sharavova, O.I. The Impact of Digital Platforms on the Business Management Information System. In Proceedings of the 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO), Kaliningrad, Russia, 30 June–2 July 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Wang, L.; Qi, J.; Zhuang, H. Monitoring or Collusion? Multiple Large Shareholders and Corporate ESG Performance: Evidence from China. Financ. Res. Lett. 2023, 53, 103673. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhao, H.; Yin, T. Resource Bundling: How Does Enterprise Digital Transformation Affect Enterprise ESG Development? Sustainability 2023, 15, 1319. [Google Scholar] [CrossRef]
- Ha, L.T.; Huong, T.T.L.; Thanh, T.T. Is digitalization a driver to enhance environmental performance? An empirical investigation of European countries. Sustain. Prod. Consum. 2022, 32, 230–247. [Google Scholar] [CrossRef]
- Zhang, D. Can digital finance empowerment reduce extreme ESG hypocrisy resistance to improve green innovation? Energy Econ. 2023, 125, 106756. [Google Scholar] [CrossRef]
- Baker, E.D.; Boulton, T.J.; Braga-Alves, M.V.; Morey, M.R. ESG government risk and international IPO underpricing. J. Corp. Financ. 2021, 67, 101913. [Google Scholar] [CrossRef]
- Belousova, V.; Bondarenko, O.; Chichkanov, N.; Lebedev, D.; Miles, I. Coping with Greenhouse Gas Emissions: Insights from Digital Business Services. Energies 2022, 15, 2745. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Fathi, M. Corporate survival in Industry 4.0 era: The enabling role of lean-digitized manufacturing. J. Manuf. Technol. Manag. 2019, 31, 1–30. [Google Scholar] [CrossRef]
- Tian, G.; Li, B.; Cheng, Y. Does digital transformation matter for corporate risk-taking? Financ. Res. Lett. 2022, 49, 103107. [Google Scholar] [CrossRef]
- Yang, P.; Yin, Z.; Zhang, Z. Enterprise digital technology application and patent quality improvement-theoretical mechanism and empirical facts. Stat. Res. 2024, 41, 98–110. [Google Scholar] [CrossRef]
- Dechow, P.M.; Dichev, I.D. The Quality of Accruals and Earnings: The Role of Accrual Estimation Errors. Account. Rev. 2002, 77, 35–59. [Google Scholar] [CrossRef]
- Kim, O.; Verrecchia, R.E. The Relation among Disclosure, Returns, and Trading Volume Information. Account. Rev. 2001, 76, 633–654. [Google Scholar] [CrossRef]
- Dhaliwal, D.S.; Li, O.Z.; Tsang, A.; Yang, Y.G. Voluntary Nonfinancial Disclosure and the Cost of Equity Capital: The Initiation of Corporate Social Responsibility Reporting. Account. Rev. 2011, 86, 59–100. [Google Scholar] [CrossRef]
- Huang, Q.; Fang, J.; Xue, X.; Gao, H. Does Digital Innovation Cause Better ESG Performance? An Empirical Test of a-Listed Firms in China. Res. Int. Bus. Financ. 2023, 66, 102049. [Google Scholar] [CrossRef]
- Amihud, Y.; Mendelson, H. Asset Pricing and the Bid-Ask Spread. J. Financ. Econ. 1986, 17, 223–249. [Google Scholar] [CrossRef]
- Avramov, D.; Cheng, S.; Lioui, A.; Tarelli, A. Sustainable investing with ESG rating uncertainty. J. Financ. Econ. 2022, 145, 642–664. [Google Scholar] [CrossRef]
- Yu, D.; Meng, T.; Zheng, M.; Ma, R. ESG uncertainty, investor attention and stock price crash risk in China: Evidence from PVAR model analysis. Humanit. Soc. Sci. Commun. 2024, 11, 1152. [Google Scholar] [CrossRef]
- Billio, M.; Costola, M.; Hristova, I.; Latino, C.; Pelizzon, L. Inside the ESG ratings: (Dis)agreement and performance. Corp. Soc. Responsib. Environ. Manag. 2021, 28, 1426–1445. [Google Scholar] [CrossRef]
- Wu, L.; Hitt, L.; Lou, B. Data Analytics, Innovation, and Firm Productivity. Manag. Sci. 2020, 66, 2017–2039. [Google Scholar] [CrossRef]
Variables | Explanation of Variables | N | Mean | Std. D. | Min | Max |
---|---|---|---|---|---|---|
DigiAdop | The utilization of digital technology adoption | 35,475 | 14.003 | 28.657 | 0 | 206 |
Breadth | The extensive scope of digital technology coverage | 35,475 | 8.342 | 19.844 | 0 | 126 |
Depth | The degree to which digital technologies are integrated into business operations. | 35,475 | 5.661 | 12.606 | 0 | 80 |
ESG | Huazheng ESG ratings | 35,475 | 4.093 | 1.118 | 1 | 6 |
E | Environmental performance | 35,475 | 1.889 | 1.137 | 1 | 6 |
S | Social performance | 35,475 | 4.067 | 1.157 | 1 | 6 |
G | Corporate governance performance | 35,475 | 5.373 | 1.462 | 1 | 8 |
SIZE | Natural logarithm of total assets | 35,475 | 22.21 | 1.437 | 19.634 | 27.269 |
LEV | It stands for the balance sheet ratio of liabilities divided by assets | 35,475 | 0.438 | 0.219 | 0.051 | 0.95 |
ROA | It is a measure of how much net profit is generated per unit of asset | 35,475 | 0.041 | 0.067 | −0.26 | 0.226 |
BOARD | Number of board members | 35,475 | 2.135 | 0.206 | 1.609 | 2.708 |
INDEP | Number of independent directors | 35,475 | 0.375 | 0.053 | 0.333 | 0.571 |
DUAL | The variable represents whether the Chairman and CEO of a company are the same person. It is a binary variable with a value of 1 if they are the same individual, and a value of 0 if they are different individuals. | 35,475 | 0.274 | 0.446 | 0 | 1 |
TOBIN Q | As an important indicator to measure the company’s performance or the company’s growth. | 35,475 | 2.088 | 1.422 | 0.862 | 9.451 |
HHI | HHI is a comprehensive index that measures industrial concentration, and the higher the value, the higher the industrial concentration. | 35,475 | 0.08 | 0.091 | 0.011 | 0.583 |
LIQUIDITY | Following the method proposed by Amihud and Mendelson (1986) [80], liquidity is measured by taking the reciprocal of the illiquidity indicator. | 35,475 | 0.122 | 0.494 | 0.002 | 4.339 |
LITG | Litigation risk is a binary indicator, 1 if litigation occurs, and 0 otherwise. | 35,475 | 0.16 | 0.367 | 0 | 1 |
GLOBAL | The level of internationalization is a binary indicator with a value of 1 if the company reports foreign revenue, and 0 otherwise. | 35,475 | 0.05 | 0.142 | 0 | 0.772 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
DigiAdop | 0.0527 *** | 0.0376 *** | 0.0568 *** | 0.0353 *** | 0.0618 *** | 0.0365 *** |
(7.2782) | (5.6466) | (7.6094) | (5.0109) | (8.1836) | (5.0426) | |
Constant | −0.0005 | −5.2605 *** | 0.0037 | −4.7087 *** | −0.0005 | −4.4616 *** |
(−0.0899) | (−42.1653) | (0.6829) | (−34.7292) | (−0.0802) | (−30.9933) | |
Control | NO | YES | NO | YES | NO | YES |
Year | YES | YES | YES | YES | YES | YES |
Industry | YES | YES | YES | YES | YES | YES |
N | 35,475 | 35,475 | 30,724 | 30,724 | 26,891 | 26,891 |
R2-adj. | 0.0456 | 0.2046 | 0.0492 | 0.1775 | 0.0560 | 0.1634 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
Breadth | 0.0317 *** | 0.0291 *** | 0.0298 *** | |||
(5.1423) | (4.5327) | (4.5090) | ||||
Depth | 0.0253 *** | 0.0246 *** | 0.0251 *** | |||
(4.5411) | (4.1050) | (4.0891) | ||||
Constant | −5.2602 *** | −5.2951 *** | −4.7090 *** | −4.7389 *** | −4.4631 *** | −4.4920 *** |
(−42.1365) | (−42.4857) | (−34.7065) | (−34.9630) | (−30.9903) | (−31.2199) | |
Control | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
Industry | YES | YES | YES | YES | YES | YES |
N | 35,475 | 35,475 | 30,724 | 30,724 | 26,891 | 26,891 |
R2-adj. | 0.2044 | 0.2043 | 0.1773 | 0.1772 | 0.1632 | 0.1631 |
Variables | (1) | (2) | (3) | (4) |
---|---|---|---|---|
DigiAdop | 0.0508 *** | 0.0351 *** | 0.0303 *** | 0.0345 *** |
(6.0933) | (4.6097) | (3.9941) | (4.4304) | |
Constant | −0.3771 *** | −5.5172 *** | −4.7120 *** | −4.4432 *** |
(−6.2097) | (−37.4386) | (−32.6994) | (−28.8990) | |
Kleibergen–Paap rk Wald F statistic | √ | √ | √ | √ |
Cragg–Donald Wald F statistic | √ | √ | √ | √ |
Stock–Yogo weak ID test critical values: 10% maximal IV size | 16.38 | 16.38 | 16.38 | 16.38 |
Control | NO | YES | YES | YES |
Year | YES | YES | YES | YES |
Industry | YES | YES | YES | YES |
N | 30,623 | 30,623 | 30,623 | 26,300 |
R2-adj. | 0.0487 | 0.2054 | 0.1777 | 0.1606 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
0.0802 *** | 0.0672 *** | 0.1132 *** | 0.1031 *** | 0.0963 ** | 0.0920 ** | |
(3.8568) | (3.3532) | (4.6273) | (4.3125) | (3.2310) | (3.1322) | |
Constant | −0.0312 *** | −5.9315 *** | −0.0417 *** | −5.7748 *** | −0.0380 ** | −4.6987 *** |
(−3.6721) | (−21.7117) | (−4.0208) | (−18.9229) | (−2.9133) | (−13.9571) | |
Control | NO | YES | NO | YES | NO | YES |
Year | YES | YES | YES | YES | YES | YES |
Industry | YES | YES | YES | YES | YES | YES |
Firm | YES | YES | YES | YES | YES | YES |
N | 33060 | 33,060 | 28,681 | 28,681 | 25,228 | 25,228 |
R2-adj. | 0.4822 | 0.5104 | 0.4790 | 0.4966 | 0.4806 | 0.4906 |
Panel A: Use the ESG-Bloomberg Data Instead of the ESG-Huazheng Data | |||||||||
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
DigiAdop | 0.0184 * | 0.0205 * | 0.0179 * | ||||||
(2.2159) | (2.3404) | (2.0587) | |||||||
Breath | 0.0214 * | 0.0211 * | 0.0151 | ||||||
(2.1475) | (2.0043) | (1.4474) | |||||||
Depth | 0.0212 | 0.0290 * | 0.0314 * | ||||||
(1.6468) | (2.1245) | (2.2781) | |||||||
Constant | −7.4475 *** | −7.4487 *** | −7.4597 *** | −7.4934 *** | −7.4979 *** | −7.5025 *** | −7.2987 *** | −7.3071 *** | −7.3020 *** |
(−44.9149) | (−44.9720) | (−45.0006) | (−39.4700) | (−39.5071) | (−39.5550) | (−37.1567) | (−37.2171) | (−37.1905) | |
Control | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Industry | YES | YES | YES | YES | YES | YES | YES | YES | YES |
N | 11899 | 11899 | 11899 | 10447 | 10447 | 10447 | 9124 | 9124 | 9124 |
R2-adj. | 0.5711 | 0.5711 | 0.5710 | 0.5330 | 0.5329 | 0.5329 | 0.5218 | 0.5217 | 0.5219 |
Panel B: Use the OLS model instead of double-fixed model | |||||||||
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
DigiAdop | 0.0363 *** | 0.0340 *** | 0.0348 *** | ||||||
(5.7882) | (5.1707) | (5.1624) | |||||||
Breath | 0.0407 *** | 0.0373 *** | 0.0382 *** | ||||||
(5.1447) | (4.5317) | (4.5070) | |||||||
Depth | 0.0403 *** | 0.0393 *** | 0.0401 *** | ||||||
(4.5427) | (4.1046) | (4.0880) | |||||||
Constant | −5.1436 *** | −5.1477 *** | −5.1830 *** | −4.6850 *** | −4.6899 *** | −4.7194 *** | −4.5104 *** | −4.5164 *** | −4.5443 *** |
(−38.9089) | (−38.9228) | (−39.2665) | (−32.5528) | (−32.5647) | (−32.8281) | (−29.6160) | (−29.6458) | (−29.8723) | |
Control | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Industry | YES | YES | YES | YES | YES | YES | YES | YES | YES |
N | 35,475 | 35,475 | 35,475 | 30,724 | 30,724 | 30,724 | 26,891 | 26,891 | 26,891 |
R2-adj. | 0.2046 | 0.2045 | 0.2043 | 0.1775 | 0.1773 | 0.1772 | 0.1634 | 0.1632 | 0.1631 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Breadth | 0.0407 *** | 0.0278 *** | 0.0409 *** |
(5.1447) | (3.5185) | (4.3519) | |
Trans | 0.9535 *** | ||
(28.6676) | |||
KV | 0.2244 *** | ||
(7.0468) | |||
Constant | −5.2612 *** | −3.6090 *** | −5.0595 *** |
(−42.1309) | (−26.5854) | (−35.8081) | |
Control | YES | YES | YES |
Year | YES | YES | YES |
Industry | YES | YES | YES |
Sobel test | √ | √ | √ |
N | 35,475 | 34,656 | 28,849 |
R2-adj. | 0.2045 | 0.2152 | 0.1936 |
Variables | (1) | (2) | (3) |
---|---|---|---|
Depth | 0.0403 *** | 0.0412 *** | 0.0408 *** |
(4.5427) | (4.6358) | (4.5948) | |
ATR_1 | 0.0226 *** | ||
(4.1254) | |||
ATR_2 | 0.0145 ** | ||
(2.6309) | |||
Constant | −5.2959 *** | −5.2932 *** | −5.3001 *** |
(−42.4800) | (−42.4680) | (−42.5345) | |
Control | YES | YES | YES |
Year | YES | YES | YES |
Industry | YES | YES | YES |
Sobel test | √ | √ | √ |
N | 35,475 | 35,475 | 35,472 |
R2-adj. | 0.2043 | 0.2046 | 0.2045 |
Panel A: Manufacturing Industry or Not | ||||
Variables | (1) | (2) | (3) | (4) |
DigiAdop | 0.0247 * | −0.0067 | 0.0600 *** | −0.0070 |
(2.2033) | (−0.5855) | (3.8981) | (−0.6898) | |
Constant | −5.7555 *** | −5.9260 *** | −3.9652 *** | −1.9365 *** |
(−15.5176) | (−13.1240) | (−9.0290) | (−3.5365) | |
Manufacturing industry | YES | NO | YES | NO |
Control | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Industry | YES | YES | YES | YES |
Firm | YES | YES | YES | YES |
N | 22,214 | 12,820 | 6551 | 5267 |
R2-adj. | 0.4994 | 0.5516 | 0.8172 | 0.8473 |
Panel B: Heavily polluting industry or not | ||||
Variables | (1) | (2) | (3) | (4) |
DigiAdop | 0.1135 ** | 0.0159 | 0.1697 ** | 0.0301 ** |
(2.9235) | (1.9521) | (3.2688) | (3.2309) | |
Constant | −5.2198 *** | −6.0742 *** | −3.9412 *** | −3.4974 *** |
(−8.1908) | (−19.6844) | (−5.1065) | (−9.1058) | |
Heavy polluting industry | YES | NO | YES | NO |
Control | YES | YES | YES | YES |
Year | YES | YES | YES | YES |
Industry | YES | YES | YES | YES |
Firm | YES | YES | YES | YES |
N | 7954 | 27,110 | 2904 | 8938 |
R2-adj. | 0.4933 | 0.5249 | 0.8270 | 0.8298 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
DigiAdop | −0.0447 *** | −0.0615 | ||||
(−3.3607) | (−1.6600) | |||||
Breadth | −0.0737 *** | −0.0760 | ||||
(−3.6356) | (−1.4903) | |||||
Depth | −0.0095 | −0.0526 | ||||
(−0.7452) | (−1.2961) | |||||
Constant | 1.6607 *** | 0.7317 | 1.6354 *** | 0.7360 | 1.7194 *** | 0.8836 |
(4.2472) | (1.2857) | (4.2272) | (1.2804) | (4.3043) | (1.6782) | |
Control | YES | YES | YES | YES | YES | YES |
Year | YES | YES | YES | YES | YES | YES |
Industry | YES | YES | YES | YES | YES | YES |
Firm | NO | YES | NO | YES | NO | YES |
N | 22651 | 22112 | 22651 | 22112 | 22651 | 22112 |
R2-adj. | 0.0100 | 0.2589 | 0.0112 | 0.2590 | 0.0085 | 0.2583 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, D.D. The Dual Path of the Impact of Digital Technology Adoption on ESG Performance. Sustainability 2025, 17, 2341. https://doi.org/10.3390/su17062341
Wang Y, Wang DD. The Dual Path of the Impact of Digital Technology Adoption on ESG Performance. Sustainability. 2025; 17(6):2341. https://doi.org/10.3390/su17062341
Chicago/Turabian StyleWang, Yiying, and Derek D. Wang. 2025. "The Dual Path of the Impact of Digital Technology Adoption on ESG Performance" Sustainability 17, no. 6: 2341. https://doi.org/10.3390/su17062341
APA StyleWang, Y., & Wang, D. D. (2025). The Dual Path of the Impact of Digital Technology Adoption on ESG Performance. Sustainability, 17(6), 2341. https://doi.org/10.3390/su17062341