Beyond Sustainability: The Role of Regenerative Design in Optimizing Indoor Environmental Quality
Abstract
:1. Introduction
2. Research Methodology
3. Principal Elements of Regenerative Design
4. Indoor Environmental Quality (IEQ)
5. Integrating Regenerative Design with IEQ
5.1. Indoor Air Quality (IAQ)
5.2. Thermal Environment
5.3. Visual Environment
5.4. Acoustic Environment
6. Case Studies
7. Notable Buildings Projects Worldwide
8. Challenges
9. Future Research Directions
10. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mang, P.; Haggard, B.; Regenesis, G. Regenerative Development and Design: A Framework for Evolving Sustainability; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Reed, B. Shifting from ‘sustainability’ to regeneration. Build. Res. Inf. 2007, 35, 674–680. [Google Scholar] [CrossRef]
- Du Plessis, C. Towards a regenerative paradigm for the built environment. Build. Res. Inf. 2012, 40, 7–22. [Google Scholar] [CrossRef]
- Gibbons, L.V. Regenerative—The new sustainable? Sustainability 2020, 12, 5483. [Google Scholar] [CrossRef]
- Fischer, J.; Farny, S.; Abson, D.J.; Zuin Zeidler, V.; von Salisch, M.; Schaltegger, S.; Martín-López, B.; Temperton, V.M.; Kümmerer, K. Mainstreaming regenerative dynamics for sustainability. Nat. Sustain. 2024, 7, 964–972. [Google Scholar] [CrossRef]
- Morseletto, P. Restorative and regenerative: Exploring the concepts in the circular economy. J. Ind. Ecol. 2020, 24, 763–773. [Google Scholar] [CrossRef]
- Lyle, J.T. Regenerative Design for Sustainable Development; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Cole, R.J. Regenerative design and development: Current theory and practice. Build. Res. Inf. 2012, 40, 1–6. [Google Scholar] [CrossRef]
- Naboni, E.; Natanian, J.; Brizzi, G.; Florio, P.; Chokhachian, A.; Galanos, T.; Rastogi, P. A digital workflow to quantify regenerative urban design in the context of a changing climate. Renew. Sustain. Energ. Rev. 2019, 113, 109255. [Google Scholar] [CrossRef]
- Camrass, K. Urban regenerative thinking and practice: A systematic literature review. Build. Res. Inf. 2022, 50, 339–350. [Google Scholar] [CrossRef]
- Sala Benites, H.; Osmond, P.; Prasad, D. A neighbourhood-scale conceptual model towards regenerative circularity for the built environment. Sustain. Dev. 2023, 31, 1748–1767. [Google Scholar] [CrossRef]
- Reith, A.; Brajković, J. Scale Jumping: Regenerative Systems Thinking within the Built Environment. A Guidebook for Regenerative Implementation: Interactions, Tools, Platforms, Metrics, Practice; COST Action CA16114 RESTORE, Working Group Five: Scale Jumping; Eurac Research: Bolzano, Italy, 2021. [Google Scholar]
- Pistore, L.; Konstantinou, T.; Pasut, W.; Naboni, E. A framework to support the design of a regenerative indoor environment. Front. Built Environ. 2023, 9, 1225024. [Google Scholar] [CrossRef]
- Toner, J.; Desha, C.; Reis, K.; Hes, D.; Hayes, S. Integrating Ecological Knowledge into Regenerative Design: A Rapid Practice Review. Sustainability 2023, 15, 13271. [Google Scholar] [CrossRef]
- Kujundzic, K.; Stamatovic Vuckovic, S.; Radivojević, A. Toward Regenerative Sustainability: A Passive Design Comfort Assessment Method of Indoor Environment. Sustainability 2023, 15, 840. [Google Scholar] [CrossRef]
- Pavez, F.; Maxwell, D.; Bunster, V. Towards a Regenerative Design Project Delivery Workflow: A Critical Review. Sustainability 2024, 16, 5377. [Google Scholar] [CrossRef]
- Javanmard, Z.; Nava, C. Regenerative architecture in Practice: A multifaceted exploration of cladding systems to meet LEED standards. Energy Build. 2024, 323, 114810. [Google Scholar] [CrossRef]
- Craft, W.; Ding, L.; Prasad, D.; Partridge, L.; Else, D. Development of a regenerative design model for building retrofits. Procedia Eng. 2017, 180, 658–668. [Google Scholar] [CrossRef]
- Wei, W.; Wargocki, P.; Zirngibl, J.; Bendžalová, J.; Mandin, C. Review of parameters used to assess the quality of the indoor environment in Green Building certification schemes for offices and hotels. Energy Build. 2020, 209, 109683. [Google Scholar] [CrossRef]
- McDonough, W.; Braungart, M. Cradle to Cradle: Remaking the Way We Make Things; North Point Press: New York, NY, USA, 2002. [Google Scholar]
- McDonough, W.; Braungart, M. Towards a sustaining architecture for the 21st century: The promise of cradle-to-cradle design. Ind. Environ. 2003, 26, 13–16. [Google Scholar]
- Plaut, J.M.; Dunbar, B.; Wackerman, A.; Hodgin, S. Regenerative design: The LENSES Framework for buildings and communities. Build. Res. Inf. 2012, 40, 112–122. [Google Scholar] [CrossRef]
- Pawlyn, M. Biomimicry in Architecture; Routledge: Oxfordshire, UK, 2019. [Google Scholar]
- Zari, M.P.; Hecht, K. Biomimicry for regenerative built environments: Mapping design strategies for producing ecosystem services. Biomimetics 2020, 5, 18. [Google Scholar] [CrossRef]
- Zari, M.P. Ecosystem services analysis: Mimicking ecosystem services for regenerative urban design. Int. J. Sustain. Built Environ. 2015, 4, 145–157. [Google Scholar] [CrossRef]
- Benyus, J.; Dwyer, J.; El-Sayed, S.; Hayes, S.; Baumeister, D.; Penick, C.A. Ecological performance standards for regenerative urban design. Sustain. Sci. 2022, 17, 2631–2641. [Google Scholar] [CrossRef]
- Pearce, D.W.; Turner, R.K. Economics of Natural Resources and the Environment; Johns Hopkins University Press: Baltimore, MD, USA, 1989. [Google Scholar]
- Camilleri, M.A. The circular economy’s closed loop and product service systems for sustainable development: A review and appraisal. Sustain. Dev. 2019, 27, 530–536. [Google Scholar] [CrossRef]
- Kara, S.; Hauschild, M.; Sutherland, J.; McAloone, T. Closed-loop systems to circular economy: A pathway to environmental sustainability? CIRP Ann. 2022, 71, 505–528. [Google Scholar] [CrossRef]
- Velenturf, A.P.; Purnell, P. Principles for a sustainable circular economy. Sustain. Prod. Consum. 2021, 27, 1437–1457. [Google Scholar] [CrossRef]
- Prakash, A. Green marketing, public policy and managerial strategies. Bus. Strateg. Environ. 2002, 11, 285–297. [Google Scholar] [CrossRef]
- Buckton, S.J.; Fazey, I.; Sharpe, B.; Om, E.S.; Doherty, B.; Ball, P.; Denby, K.; Bryant, M.; Lait, R.; Bridle, S.; et al. The Regenerative Lens: A conceptual framework for regenerative social-ecological systems. ONE Earth 2023, 6, 824–842. [Google Scholar] [CrossRef]
- Giusti, M.; Samuelsson, K. The regenerative compatibility: A synergy between healthy ecosystems, environmental attitudes, and restorative experiences. PLoS ONE 2020, 15, e0227311. [Google Scholar] [CrossRef] [PubMed]
- Betley, E.C.; Sigouin, A.; Pascua, P.; Cheng, S.H.; MacDonald, K.I.; Arengo, F.; Aumeeruddy-Thomas, Y.; Caillon, S.; Isaac, M.E.; Jupiter, S.D.; et al. Assessing human well-being constructs with environmental and equity aspects: A review of the landscape. People Nat. 2023, 5, 1756–1773. [Google Scholar] [CrossRef]
- Svec, P.; Berkebile, R.; Todd, J.A. REGEN: Toward a tool for regenerative thinking. Build. Res. Inf. 2012, 40, 81–94. [Google Scholar] [CrossRef]
- Cianchi, B.; Everard, M.; Gething, B.; Cooke, R.; Ginepro, M. The efficacy of biodiversity and ecosystem assessment approaches for informing a regenerative approach to built development. Integr. Environ. Assess. Manag. 2024, 20, 248–262. [Google Scholar] [CrossRef]
- Whalen, B. Systems Thinking, Regenerative Design, and the Living Building Challenge in Post-Pandemic Workplace Interior Design; Arizona State University: Tempe, AZ, USA, 2024. [Google Scholar]
- Attia, S. Regenerative and Positive Impact Architecture: Learning from Case Studies; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Oyefusi, O.N.; Enegbuma, W.I.; Brown, A.; Olanrewaju, O.I. Development of a novel performance evaluation framework for implementing regenerative practices in construction. Environ. Impact Assess. Rev. 2024, 107, 107549. [Google Scholar] [CrossRef]
- Kumar, S.; Underwood, S.H.; Masters, J.L.; Manley, N.A.; Konstantzos, I.; Lau, J.; Haller, R.; Wang, L.M. Ten questions concerning smart and healthy built environments for older adults. Build. Environ. 2023, 244, 110720. [Google Scholar] [CrossRef]
- Astolfi, A.; Pellerey, F. Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. J. Acoust. Soc. Am. 2008, 123, 163–173. [Google Scholar] [CrossRef]
- Astolfi, A.; Puglisi, G.E.; Murgia, S.; Minelli, G.; Pellerey, F.; Prato, A.; Sacco, T. Influence of classroom acoustics on noise disturbance and well-being for first graders. Front. Psychol. 2019, 10, 2736. [Google Scholar] [CrossRef] [PubMed]
- Kubba, S. Indoor Environmental Quality. In Handbook of Green Building Design and Construction: LEED, BREEAM, and Green Globes; Butterworth-Heinemann: Oxford, UK, 2017; pp. 353–412. [Google Scholar] [CrossRef]
- Felgueiras, F.; Mourão, Z.; Moreira, A.; Gabriel, M.F. Indoor environmental quality in offices and risk of health and productivity complaints at work: A literature review. J. Hazard. Mater. 2023, 10, 100314. [Google Scholar] [CrossRef]
- Lollini, R.; Pasut, W. Regenerative Technologies for the Indoor Environment Inspirational Guidelines for Practitioners. COST Action CA16114 RESTORE, Working Group Four Report. 2020. Available online: https://www.eurestore.eu/wp-content/uploads/2020/06/WG4_Final-Book_Regenerative-technologies-for-the-indoor-environment.pdf (accessed on 26 December 2024).
- Romano, R.; Konstantinou, T.; Fiorito, F. Beyond sustainability. Regenerative technologies for a restorative indoor environment. TECHNE-J. Technol. Archit. Environ. 2021, 21, 315–326. [Google Scholar] [CrossRef]
- Allen, J.G.; MacNaughton, P.; Satish, U.; Santanam, S.; Vallarino, J.; Spengler, J.D. Associations of cognitive function scores with carbon dioxide, ventilation, and volatile organic compound exposures in office workers: A controlled exposure study of green and conventional office environments. Environ. Health Perspect. 2016, 124, 805–812. [Google Scholar] [CrossRef]
- Brilli, F.; Fares, S.; Ghirardo, A.; de Visser, P.; Calatayud, V.; Muñoz, A.; Annesi-Maesano, I.; Sebastiani, F.; Alivernini, A.; Varriale, V.; et al. Plants for sustainable improvement of indoor air quality. Trends Plant Sci. 2018, 23, 507–512. [Google Scholar] [CrossRef]
- Chuang, K.J.; Lee, C.Y.; Wang, S.T.; Liu, I.J.; Chuang, H.C.; Ho, K.F. The Association between Indoor Carbon Dioxide Reduction by Plants and Health Effects. Indoor Air 2023, 2023, 1558047. [Google Scholar] [CrossRef]
- Weerasinghe, N.H.; Silva, P.K.; Jayasinghe, R.R.; Abeyrathna, W.P.; John, G.K.P.; Halwatura, R.U. Reducing CO2 level in the indoor urban built environment: Analysing indoor plants under different light levels. Clean. Eng. Technol. 2023, 14, 100645. [Google Scholar] [CrossRef]
- Shen, X.; Sun, Q.; Mosey, G.; Ma, J.; Wang, L.; Ge, M. Benchmark of plant-based VOCs control effect for indoor air quality: Green wall case in smith campus at Harvard University. Sci. Total Environ. 2024, 906, 166269. [Google Scholar] [CrossRef] [PubMed]
- Han, K.T. Effects of window status and indoor plants on air quality, air temperature, and relative humidity: A pilot study. J. Asian Archit. Build. Eng. 2024, 23, 313–324. [Google Scholar] [CrossRef]
- Alapieti, T.; Vornanen-Winqvist, C.; Mikkola, R.; Salonen, H. Measured and perceived indoor air quality in three low-energy wooden test buildings. Wood Mater. Sci. Eng. 2023, 18, 827–840. [Google Scholar] [CrossRef]
- Babich, F.; Demanega, I.; Avella, F.; Belleri, A. Low polluting building materials and ventilation for good air quality in residential buildings: A cost–benefit study. Atmosphere 2020, 11, 102. [Google Scholar] [CrossRef]
- Richter, M.; Horn, W.; Juritsch, E.; Klinge, A.; Radeljic, L.; Jann, O. Natural building materials for interior fitting and refurbishment—What about indoor emissions? Materials 2021, 14, 234. [Google Scholar] [CrossRef] [PubMed]
- Arar, M.; Jung, C.; Qassimi, N.A. Investigating the influence of the building material on the indoor air quality in apartment in Dubai. Front. Built Environ. 2022, 7, 804216. [Google Scholar] [CrossRef]
- Krings, S.; Chen, Y.; Keddie, J.L.; Hingley-Wilson, S. Oxygen evolution from extremophilic cyanobacteria confined in hard biocoatings. Microbiol. Spectr. 2023, 11, e01870-23. [Google Scholar] [CrossRef]
- Jet Propulsion Laboratory, NASA. NASA’s Oxygen-Generating Experiment MOXIE Completes Mars Mission. 2023. Available online: https://www.nasa.gov/missions/mars-2020-perseverance/perseverance-rover/nasas-oxygen-generating-experiment-moxie-completes-mars-mission/ (accessed on 26 September 2024).
- Xu, Y.; Raja, S.; Ferro, A.R.; Jaques, P.A.; Hopke, P.K.; Gressani, C.; Wetzel, L.E. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children’s health. Build. Environ. 2010, 45, 330–337. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, M.; Zhang, X.; Gal, C.; Chen, X.; Liu, L.; Pan, S.; Wu, J.; Tang, L.; Clements-Croome, D. A review of air filtration technologies for sustainable and healthy building ventilation. Sustain. Cities Soc. 2017, 32, 375–396. [Google Scholar] [CrossRef]
- Ji, W.; Chen, C.; Zhao, B. A comparative study of the effects of ventilation-purification strategies on air quality and energy consumption in Beijing, China. Build. Simul. 2021, 14, 813–825. [Google Scholar] [CrossRef]
- Swamy, G. Development of an indoor air purification system to improve ventilation and air quality. Heliyon 2021, 7, e08153. [Google Scholar] [CrossRef]
- Persily, A.; Hewett, M. Using ASHRAE’s new IAQ guide. ASHRAE J. 2010, 52, 75–82. [Google Scholar]
- Amaral, R.E.; Brito, J.; Buckman, M.; Drake, E.; Ilatova, E.; Rice, P.; Sabbagh, C.; Voronkin, S.; Abraham, Y.S. Waste management and operational energy for sustainable buildings: A review. Sustainability 2020, 12, 5337. [Google Scholar] [CrossRef]
- Zhang, J.; Chan, C.C.; Kwok, H.H.; Cheng, J.C. Multi-indicator adaptive HVAC control system for low-energy indoor air quality management of heritage building preservation. Build. Environ. 2023, 246, 110910. [Google Scholar] [CrossRef]
- Cui, C.; Liu, Y. A hierarchical HVAC optimal control method for reducing energy consumption and improving indoor air quality incorporating soft Actor-Critic and hybrid search optimization. Energy Conv. Manag. 2024, 302, 118118. [Google Scholar] [CrossRef]
- Shin, S.; Baek, K.; So, H. Rapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning model. Build. Environ. 2023, 234, 110191. [Google Scholar] [CrossRef]
- Qian, Y.; Leng, J.; Zhou, K.; Liu, Y. How to measure and control indoor air quality based on intelligent digital twin platforms: A case study in China. Build. Environ. 2024, 253, 111349. [Google Scholar] [CrossRef]
- Afroz, R.; Guo, X.; Cheng, C.W.; Omar, S.; Carney, V.; Zuidhof, M.J.; Zhao, R. Assessments and application of low-cost sensors to study indoor air quality in layer facilities. Environ. Technol. Innov. 2024, 36, 103773. [Google Scholar] [CrossRef]
- Korb, J.; Linsenmair, K.E. The architecture of termite mounds: A result of a trade-off between thermoregulation and gas exchange? Behav. Ecol. 1999, 10, 312–316. [Google Scholar] [CrossRef]
- Gómez, A.; Esenarro, D.; Martinez, P.; Vilchez, S.; Raymundo, V. Thermal Calculation for the Implementation of Green Walls as Thermal Insulators on the East and West Facades in the Adjacent Areas of the School of Biological Sciences, Ricardo Palma University (URP) at Lima, Peru 2023. Buildings 2023, 13, 2301. [Google Scholar] [CrossRef]
- Mohammed, A.B. Employing systems of green walls to improve performance and rationalize energy in buildings. J. Eng. Appl. Sci. 2022, 69, 99. [Google Scholar] [CrossRef]
- Oquendo-Di Cosola, V.; Olivieri, F.; Ruiz-García, L. A systematic review of the impact of green walls on urban comfort: Temperature reduction and noise attenuation. Renew. Sustain. Energy Rev. 2022, 162, 112463. [Google Scholar] [CrossRef]
- Ma, X.; Du, M.; Deng, P.; Zhou, T.; Hong, B. Effects of green walls on thermal perception and cognitive performance: An indoor study. Build. Environ. 2024, 250, 111180. [Google Scholar] [CrossRef]
- Yao, J. An investigation into the impact of movable solar shades on energy, indoor thermal and visual comfort improvements. Build. Environ. 2014, 71, 24–32. [Google Scholar] [CrossRef]
- Evola, G.; Gullo, F.; Marletta, L. The role of shading devices to improve thermal and visual comfort in existing glazed buildings. Energy Procedia 2017, 134, 346–355. [Google Scholar] [CrossRef]
- Dagher, S.; Akhozheya, B.; Slimani, H. Energy analysis studying the effect of solar shading on daylight factors and cooling hours in an extreme weather. Energy Rep. 2022, 8, 443–448. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; González-Avilés, Á.B.; Castilla, N.; Galiano-Garrigós, A. Influence of Sun Shading Devices on Energy Efficiency, Thermal Comfort and Lighting Comfort in a Warm Semi-Arid Dry Mediterranean Climate. Buildings 2024, 14, 556. [Google Scholar] [CrossRef]
- Yao, B.; Salehi, A.; Baghoolizadeh, M.; Khairy, Y.; Baghaei, S. Multi-objective optimization of office egg shadings using NSGA-II to save energy consumption and enhance thermal and visual comfort. Int. Commun. Heat Mass Transf. 2024, 157, 107697. [Google Scholar] [CrossRef]
- Sozer, H. Improving energy efficiency through the design of the building envelope. Build. Environ. 2010, 45, 2581–2593. [Google Scholar] [CrossRef]
- Al-Yasiri, Q.; Szabó, M. Incorporation of phase change materials into building envelope for thermal comfort and energy saving: A comprehensive analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Ji, R.; Li, X.; Lv, C. Synthesis and evaluation of phase change material suitable for energy-saving and carbon reduction of building envelopes. Energy Build. 2023, 278, 112603. [Google Scholar] [CrossRef]
- Taj, S.A.; Khalid, W.; Nazir, H.; Khan, A.; Sajid, M.; Waqas, A.; Hussain, A.; Ali, M.; Zaki, S.A. Experimental investigation of eutectic PCM incorporated clay brick for thermal management of building envelope. J. Energy Storage 2024, 84, 110838. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, H.; Shi, Y.; Zhang, M.; Yu, B.; Zhang, Y. Lauric acid/stearic acid/nano-particles composite phase change materials for energy storage in buildings. J. Energy Storage 2024, 76, 109664. [Google Scholar] [CrossRef]
- Mahmoud, M.; Yousef, B.A.; Radwan, A.; Alkhalidi, A.; Abdelkareem, M.A.; Olabi, A.G. Thermal assessment of lightweight building walls integrated with phase change material under various orientations. J. Build. Eng. 2024, 85, 108614. [Google Scholar] [CrossRef]
- Liu, X.; Fan, Z.; Cao, X.; Wang, Y.; Luo, K.; Wang, L. Comprehensive performance of a novel radiative cooling phase change roof: An experimental study. Appl. Therm. Eng. 2024, 243, 122568. [Google Scholar] [CrossRef]
- Ayadi, B.; Al-Ebrahim, M.A.; Rajhi, W.; Abu-Hamdeh, N.H.; Nusier, O.K.; Pham, V.; Karimipour, A. Simultaneous use of renewable energies and phase change materials to reduce energy consumption in Saudi buildings: Examine the photovoltaic cells. Case Stud. Therm. Eng. 2024, 55, 104143. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Elsharkawy, M.; Hamada, M.A.; Kandeal, A.; Elkadeem, M.R.; Thakur, A.K.; Ma, Y.; Moustapha, M.E.; Rashad, M.; et al. Thermal energy storage using phase change materials in building applications: A review of the recent development. Energy Build. 2023, 285, 112908. [Google Scholar] [CrossRef]
- Kalnæs, S.E.; Jelle, B.P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy Build. 2015, 94, 150–176. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, X. A comprehensive review of integrating phase change materials in building bricks: Methods, performance and applications. J. Energy Storage 2023, 62, 106913. [Google Scholar] [CrossRef]
- Elghamry, R.; Hassan, H. Impact a combination of geothermal and solar energy systems on building ventilation, heating and output power: Experimental study. Renew. Energy 2020, 152, 1403–1413. [Google Scholar] [CrossRef]
- Krishnan, H.H.; Ashin, K.; Muhammed, A.A.; Ayalur, B.K. Experimental and numerical study of wind tower integrated with solar heating unit to meet thermal comfort in buildings during cold and sunny climate conditions. J. Build. Eng. 2023, 68, 106048. [Google Scholar] [CrossRef]
- Krishnan, H.H.; Jadhav, N.; Ashin, K.; Ayalur, B.K. Experimental investigation of dynamic wind tower augmented with solar heating unit for improved thermal comfort in buildings during cold conditions. Build. Environ. 2023, 245, 110882. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Yue, T. A new approach for indoor environment design of passive solar buildings in plateau areas. Sustain. Energy Technol. Assess. 2024, 63, 103669. [Google Scholar] [CrossRef]
- Wu, W.; Skye, H.M.; Domanski, P.A. Selecting HVAC systems to achieve comfortable and cost-effective residential net-zero energy buildings. Appl. Energy 2018, 212, 577–591. [Google Scholar] [CrossRef]
- Hwang, Y.J.; Jeong, J.W. Energy saving potential of radiant floor heating assisted by an air source heat pump in residential buildings. Energies 2021, 14, 1321. [Google Scholar] [CrossRef]
- Kılkış, B. Exergy-Optimum coupling of radiant panels with heat pumps for minimum CO2 emission responsibility. Energy Convers. Manag. X 2023, 20, 100439. [Google Scholar] [CrossRef]
- Kim, E.J. Thermal Comfort and Energy Consumption: Evaluating Modern HVAC Solutions. J. Innov. Technol. 2024, 7. [Google Scholar]
- Wu, F.; Alkandari, S.; Ma, J.; Dhillon, P.; Liu, H.; Braun, J.E.; Karava, P.; Ziviani, D.; Horton, W.T. Wall-embedded micro heat pump for radiant heating in buildings: Evaluation of energy and thermal comfort performance. Energy Build. 2024, 310, 114075. [Google Scholar] [CrossRef]
- Liu, X.; Lee, S.; Bilionis, I.; Karava, P.; Joe, J.; Sadeghi, S.A. A user-interactive system for smart thermal environment control in office buildings. Appl. Energy 2021, 298, 117005. [Google Scholar] [CrossRef]
- Brainard, G.C.; Hanifin, J.P.; Greeson, J.M.; Byrne, B.; Glickman, G.; Gerner, E.; Rollag, M.D. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 2001, 21, 6405–6412. [Google Scholar] [CrossRef]
- Bianchi, E.; Bencharit, L.Z.; Murnane, E.L.; Altaf, B.; Douglas, I.P.; Landay, J.A.; Billington, S.L. Effects of architectural interventions on psychological, cognitive, social, and pro-environmental aspects of occupant well-being: Results from an immersive online study. Build. Environ. 2024, 253, 111293. [Google Scholar] [CrossRef]
- Dai, Q.; Cai, W.; Shi, W.; Hao, L.; Wei, M. A proposed lighting-design space: Circadian effect versus visual illuminance. Build. Environ. 2017, 122, 287–293. [Google Scholar] [CrossRef]
- Dai, Q.; Huang, Y.; Hao, L.; Lin, Y.; Chen, K. Spatial and spectral illumination design for energy-efficient circadian lighting. Build. Environ. 2018, 146, 216–225. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Mohammadi, M.; Schröder, T.; Guerra-Santin, O. Bio-inspired interactive kinetic façade: Using dynamic transitory-sensitive area to improve multiple occupants’ visual comfort. Front. Archit. Res. 2021, 10, 821–837. [Google Scholar] [CrossRef]
- Ahuja, A.; Mosalam, K.M. Evaluating energy consumption saving from translucent concrete building envelope. Energy Build. 2017, 153, 448–460. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Abdelaziz, N.; Samy, M.; Amin, M. Mechanical and light transmittance properties of high-performance translucent concrete. Case Stud. Constr. Mater. 2022, 17, e01260. [Google Scholar] [CrossRef]
- Lyu, Q.; Dai, P.; Chen, A. Mechanical strengths and optical properties of translucent concrete manufactured by mortar-extrusion 3D printing with polymethyl methacrylate (PMMA) fibers. Compos. B Eng. 2024, 268, 111079. [Google Scholar] [CrossRef]
- Losonczi, A. Building Block Comprising Light Transmitting Fibres and a Method for Producing the Same. U.S. Patent US8091315B2, 10 January 2012. [Google Scholar]
- Su, X.; Zhang, L.; Liu, Z. Daylighting and energy performance of the combination of optical fiber based translucent concrete walls and windows. J. Build. Eng. 2023, 67, 105959. [Google Scholar] [CrossRef]
- Zhong, W.; Schröder, T.; Bekkering, J. Biophilic design in architecture and its contributions to health, well-being, and sustainability: A critical review. Front. Archit. Res. 2022, 11, 114–141. [Google Scholar] [CrossRef]
- D’Alessandro, F.; Asdrubali, F.; Mencarelli, N. Experimental evaluation and modelling of the sound absorption properties of plants for indoor acoustic applications. Build. Environ. 2015, 94, 913–923. [Google Scholar] [CrossRef]
- Latini, A.; Torresin, S.; Oberman, T.; Di Giuseppe, E.; Aletta, F.; Kang, J.; D’Orazio, M. Virtual reality application to explore indoor soundscape and physiological responses to audio-visual biophilic design interventions: An experimental study in an office environment. J. Build. Eng. 2024, 87, 108947. [Google Scholar] [CrossRef]
- Eşmebaşı, M.; Lau, S.K. Traffic Sounds in Office Spaces: PLS-SEM Study on Audio-Visual Perception with Open or Closed Windows and Biophilic Design. Build. Environ. 2024, 264, 111915. [Google Scholar] [CrossRef]
- Fang, C.F.; Ling, D.L. Guidance for noise reduction provided by tree belts. Landsc. Urban Plan. 2005, 71, 29–34. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Forssén, J.; Attenborough, K.; Jean, P.; Defrance, J.; Hornikx, M.; Kang, J. Using natural means to reduce surface transport noise during propagation outdoors. Appl. Acoust. 2015, 92, 86–101. [Google Scholar] [CrossRef]
- Lacasta, A.; Penaranda, A.; Cantalapiedra, I.; Auguet, C.; Bures, S.; Urrestarazu, M. Acoustic evaluation of modular greenery noise barriers. Urban For. Urban Green. 2016, 20, 172–179. [Google Scholar] [CrossRef]
- Gush, M.B.; Blanuša, T.; Chalmin-Pui, L.S.; Griffiths, A.; Larsen, E.K.; Prasad, R.; Redmile-Gordon, M.; Sutcliffe, C. Environmental horticulture for domestic and community gardens—An integrated and applied research approach. Plants People Planet 2024, 6, 254–270. [Google Scholar] [CrossRef]
- Nardini, A.; Cochard, H.; Mayr, S. Talk is cheap: Rediscovering sounds made by plants. Trends Plant Sci. 2024, 29, 662–667. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. The present and future role of acoustic metamaterials for architectural and urban noise mitigations. Acoustics 2019, 1, 590–607. [Google Scholar] [CrossRef]
- Kumar, S.; Aow, J.W.; Lee, H.P. Acoustical performance of ventilated aluminum T-slot columns-based sonic cage. Appl. Acoust. 2022, 193, 108779. [Google Scholar] [CrossRef]
- Martínez-Sala, R.; Rubio, C.; García-Raffi, L.M.; Sánchez-Pérez, J.V.; Sánchez-Pérez, E.A.; Llinares, J. Control of noise by trees arranged like sonic crystals. J. Sound Vib. 2006, 291, 100–106. [Google Scholar] [CrossRef]
- Van Renterghem, T.; Botteldooren, D.; Verheyen, K. Road traffic noise shielding by vegetation belts of limited depth. J. Sound Vib. 2012, 331, 2404–2425. [Google Scholar] [CrossRef]
- Liu, Y.F.; Huang, J.K.; Li, Y.G.; Shi, Z.F. Trees as large-scale natural metamaterials for low-frequency vibration reduction. Constr. Build. Mater. 2019, 199, 737–745. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H.J. Effects of recorded water sounds on intrusive traffic noise perception under three indoor temperatures. Appl. Acoust. 2019, 145, 234–244. [Google Scholar] [CrossRef]
- Abdalrahman, Z.; Galbrun, L. Audio-visual preferences, perception, and use of water features in open-plan offices. J. Acoust. Soc. Am. 2020, 147, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Tan, J.K.A.; Hasegawa, Y.; Lau, S.K. The interactive effects of traffic sound and window views on indoor soundscape perceptions in the residential area. J. Acoust. Soc. Am. 2023, 153, 972–989. [Google Scholar] [CrossRef]
- Calarco, F.M.; Galbrun, L. Sound mapping design of water features used over road traffic noise for improving the soundscape. Appl. Acoust. 2024, 219, 109947. [Google Scholar] [CrossRef]
- Yang, W.; Moon, H.J.; Kim, M.J. Perceptual assessment of indoor water sounds over environmental noise through windows. Appl. Acoust. 2018, 135, 60–69. [Google Scholar] [CrossRef]
- Arenas, J.P.; Sakagami, K. Sustainable acoustic materials. Sustainability 2020, 12, 6540. [Google Scholar] [CrossRef]
- Fridrichová, L.; Němeček, P.; Knížek, R.; Buczkowska, K.E. Opportunities to use textile waste for the production of acoustic panels. Text. Res. J. 2024, 94, 2667–2681. [Google Scholar] [CrossRef]
- Segura, J.; Montava, I.; Juliá, E.; Gadea, J. Acoustic and thermal properties of panels made of fruit stones waste with coconut fibre. Constr. Build. Mater. 2024, 426, 136054. [Google Scholar] [CrossRef]
- SheikhMozafari, M.J.; Taban, E.; Soltani, P.; Faridan, M.; Khavanin, A. Sound absorption and thermal insulation performance of sustainable fruit stone panels. Appl. Acoust. 2024, 217, 109836. [Google Scholar] [CrossRef]
- Kobiela Mendrek, K.; Baczek, M.; Broda, J.; Rom, M.; Espelien, I.; Klepp, I. Acoustic performance of sound absorbing materials produced from wool of local mountain sheep. Materials 2022, 15, 3139. [Google Scholar] [CrossRef]
- Beheshti, M.H.; Firoozi, A.; Jafarizaveh, M.; Tabrizi, A. Acoustical and Thermal Characterization of Insulating Materials Made from Wool and Sugarcane Bagasse. J. Nat. Fibers 2023, 20, 2237675. [Google Scholar] [CrossRef]
- Hetimy, S.; Megahed, N.; Eleinen, O.A.; Elgheznawy, D. Exploring the potential of sheep wool as an eco-friendly insulation material: A comprehensive review and analytical ranking. Sustain. Mater. Technol. 2024, 39, e00812. [Google Scholar] [CrossRef]
- Oliveira, M.A.; António, J. Animal-based waste for building acoustic applications: A review. J. Build. Eng. 2024, 84, 108430. [Google Scholar] [CrossRef]
- Halashi, K.; Taban, E.; Soltani, P.; Amininasab, S.; Samaei, E.; Moghadam, D.N.; Khavanin, A. Acoustic and thermal performance of luffa fiber panels for sustainable building applications. Build. Environ. 2024, 247, 111051. [Google Scholar] [CrossRef]
- Rezaieyan, E.; Taban, E.; Berardi, U.; Mortazavi, S.B.; Faridan, M.; Mahmoudi, E. Acoustic properties of natural fiber reinforced composite micro-perforated panel (NFRC-MPP) made from cork fiber and polylactic acid (PLA) using 3D printing. J. Build. Eng. 2024, 84, 108491. [Google Scholar] [CrossRef]
- Salino, R.E.; Catai, R.E. A study of polyurethane waste composite (PUR) and recycled plasterboard sheet cores with polyurethane foam for acoustic absorption. Constr. Build. Mater. 2023, 387, 131201. [Google Scholar] [CrossRef]
- Buratti, C.; Belloni, E.; Lascaro, E.; Lopez, G.A.; Ricciardi, P. Sustainable panels with recycled materials for building applications: Environmental and acoustic characterization. Energy Procedia 2016, 101, 972–979. [Google Scholar] [CrossRef]
- Neri, M.; Levi, E.; Cuerva, E.; Pardo-Bosch, F.; Zabaleta, A.G.; Pujadas, P. Sound absorbing and insulating low-cost panels from end-of-life household materials for the development of vulnerable contexts in circular economy perspective. Appl. Sci. 2021, 11, 5372. [Google Scholar] [CrossRef]
- Rendy Abdillah, M.; Mavrogianni, A. The impact of regenerative design solutions on indoor temperature and daylight access in a medium-rise residential building in a tropical city-A case study in Jakarta, Indonesia. In Proceedings of the 13th Masters Conference: People and Buildings, London, UK, 16 September 2024. [Google Scholar] [CrossRef]
- ANSI/ASHRAE Standard 55-2023; Thermal Environmental Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2023.
- Petrovski, A.A.; Pauwels, E.; González, A.G. Implementing regenerative design principles: A refurbishment case study of the first regenerative building in spain. Sustainability 2021, 13, 2411. [Google Scholar] [CrossRef]
- Mouton, L.; Allacker, K.; Röck, M. Bio-based building material solutions for environmental benefits over conventional construction products–Life cycle assessment of regenerative design strategies (1/2). Energy Build. 2023, 282, 112767. [Google Scholar] [CrossRef]
- Mouton, L.; Trigaux, D.; Allacker, K.; Röck, M. Low-tech passive solar design concepts and bio-based material solutions for reducing life cycle GHG emissions of buildings–Life cycle assessment of regenerative design strategies (2/2). Energy Build. 2023, 282, 112678. [Google Scholar] [CrossRef]
- Sah, A.K.; Hong, Y.M. Circular Economy Implementation in an Organization: A Case Study of the Taiwan Sugar Corporation. Sustainability 2024, 16, 7865. [Google Scholar] [CrossRef]
- BS 8001:2017; Framework for Implementing the Principles of the Circular Economy in Organizations. British Standards Institution: London, UK, 2017.
- Gardner, G.T.; Prugh, T.; Renner, M. Can a City be Sustainable? Island Press: Washington, DC, USA, 2016. [CrossRef]
- FasterCapital. The Role of Green Building Practices in Modern Architecture. 2024. Available online: https://www.fastercapital.com/content/Integrating-Green-Building-Standards-in-Construction.html (accessed on 26 December 2024).
- Hammond, V. Utilizing Biomimicry to Design Sustainable Architecture. Undergraduate Honors Theses. 2024. Available online: https://scholarworks.uark.edu/archuht/71 (accessed on 26 December 2024).
- WOHA Architects. 50/50 City. 2020. Available online: https://woha.net/project/50-50-city/ (accessed on 26 December 2024).
- State of Green. Denmark’s First Circular Social Housing Project. 2021. Available online: https://stateofgreen.com/en/solutions/denmarks-first-circular-social-housing-project/ (accessed on 26 December 2024).
- Haselsteiner, E.; Rizvanolli, B.V.; Villoria Sáez, P.; Kontovourkis, O. Drivers and barriers leading to a successful paradigm shift toward regenerative neighborhoods. Sustainability 2021, 13, 5179. [Google Scholar] [CrossRef]
- Falanga, R.; Nunes, M.C. Tackling urban disparities through participatory culture-led urban regeneration. Insights from Lisbon. Land Use Policy 2021, 108, 105478. [Google Scholar] [CrossRef]
IEQ Components | Interventions | Standards/Frameworks 1 |
---|---|---|
Indoor air quality environment | Indoor plants, green roofs/walls, vegetation, dynamic ceilings, smart low-emission materials, natural recyclable materials, adaptive building envelope, building management systems (BMS), etc. | EPA, WHO, NIOSH, OSHA, ANSI/ASHRAE 62.1, CEN (UNI EN 16798-1), LEED V4, BREEAM, CASBEE, LBC V4, WELL-BUILDING (IWBI), ILFI |
Thermal environment | Green roofs/walls, passive heating and cooling systems, dynamic ceilings, nature-based solar shading (e.g., tree plantations, green facades), wind barriers, building design and orientation, BMS, smart materials, adaptive building envelope, energy-efficient HVAC systems, etc. | ANSI/ASHRAE 55, CEN (UNI EN 16798-1), CEN (EN ISO 7730), LEED V4, BREEAM, CASBEE, LBC V4, WELL-BUILDING |
Visual environment | Dynamic ceilings, switchable glazing systems, adaptive building envelope, automated shading technologies, solar tubes and sheds, window solar shelves, automated artificial lighting, BMS, etc. | CEN (UNI EN 16798-1), CEN (EN 12464-1), CIBSE, USGBC, DGNB, IES, LEED V4, BREEAM, CASBEE (Q1), LBC V4 (I09), WELL-BUILDING (L01 to L09), ILFI |
Acoustic environment | Natural noise barriers (e.g., green roofs/walls, water features), sound-absorbing panels, noise barriers, natural and recycled materials, advanced acoustic materials (e.g., metamaterials), adaptive building envelope, etc. | CEN (UNI EN 16798-1), LEED V4, BREEAM, CASBEE (Q1), LBC V4, WELL-BUILDING (S01 to S07) |
Criteria | Regenerative Design | Restorative Design | Sustainable Design | Green Design | Conventional Design |
---|---|---|---|---|---|
Ecosystem Impact | Net-positive impact, regenerates ecosystems | Focuses on repairing ecosystems | Reduces negative impact, no active regeneration | Minimizes harm, lacks regeneration | Neutral or negative impact on ecosystems |
Resource Management | Uses closed-loop systems, regenerates resources | Repairs, does not regenerate | Efficient use of resources, but not regenerative | Focus on eco-friendly materials, not full circularity | Resource-intensive, little focus on regeneration |
Human Well-being and Equity | Promotes social equity and community well-being | Some focus on well-being, but not equity | Focuses on healthier spaces, but less equity | Prioritizes health, lacks equity focus | Neglects social equity and well-being |
Long-term Resilience | Adaptive and resilient systems | Restores but lacks adaptability | Focuses on resilience, less on long-term adaptability | Short-term environmental benefits | Limited resilience, short-term focus |
Energy and Carbon Footprint | Net-positive energy, reduces carbon footprint | Repairs energy use, but not net-positive | Energy efficiency, still relies on external sources | Energy-efficient, lacks renewable energy focus | High energy consumption, carbon footprint |
Material Use and Waste | Promotes zero waste and material regeneration | Reduces waste, but focus is on repair | Reduces waste and material efficiency, not full circularity | Focus on waste reduction, lacks full material regeneration | Wasteful, conventional materials |
Biodiversity | Actively restores and enhances biodiversity | Restores ecosystems, indirect biodiversity benefits | Protects, but does not enhance biodiversity | Minimal impact on biodiversity | No focus on biodiversity, harms ecosystems |
Innovation and Systems Thinking | Highly innovative, integrates systems thinking | Focuses on repair, not innovation | Efficient, lacks comprehensive system design | Relies on standard practices, limited innovation | Traditional methods, no systemic innovation |
Economic Value | Long-term cost savings and positive returns | Economic benefits through restoration | Savings from efficiency, limited regeneration | Short-term savings, lacks long-term impact | Lower upfront costs, higher long-term costs |
Community Engagement | Actively engages communities in regeneration | Limited focus on engagement | Focuses on health, not community involvement | Some focus on well-being, lacks strong community focus | No focus on community involvement |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, S.; Sakagami, K.; Lee, H.P. Beyond Sustainability: The Role of Regenerative Design in Optimizing Indoor Environmental Quality. Sustainability 2025, 17, 2342. https://doi.org/10.3390/su17062342
Kumar S, Sakagami K, Lee HP. Beyond Sustainability: The Role of Regenerative Design in Optimizing Indoor Environmental Quality. Sustainability. 2025; 17(6):2342. https://doi.org/10.3390/su17062342
Chicago/Turabian StyleKumar, Sanjay, Kimihiro Sakagami, and Heow Pueh Lee. 2025. "Beyond Sustainability: The Role of Regenerative Design in Optimizing Indoor Environmental Quality" Sustainability 17, no. 6: 2342. https://doi.org/10.3390/su17062342
APA StyleKumar, S., Sakagami, K., & Lee, H. P. (2025). Beyond Sustainability: The Role of Regenerative Design in Optimizing Indoor Environmental Quality. Sustainability, 17(6), 2342. https://doi.org/10.3390/su17062342