Resource Intensity in the Japanese Transportation System: Integration of Vehicle and Infrastructure
Abstract
:1. Introduction
2. Framework of Transport Infrastructure
2.1. System Boundaries of Transport Infrastructure
2.2. Categorization of the Primary Transport Infrastructure
3. Methodology
3.1. Total Material Requirement
3.2. Resource Intensity Evaluation
3.3. Data Collection
4. Results
4.1. Resource Use Under the Production of Primary Transport Infrastructure in Japan
4.2. Resource Efficiency
5. Discussion
5.1. Sensitivity Analysis
5.2. Implications and Future Work
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEV | Battery electric vehicle |
FCV | Fuel cell vehicle |
HEV | Hybrid electric vehicle |
ICEV | Internal combustion engine vehicle |
TMR | Total material requirement |
References
- International Energy Agency. World Energy Outlook 2023. 2023. Available online: https://www.iea.org/reports/world-energy-outlook-2023 (accessed on 4 March 2025).
- International Energy Agency. Tracking Transport 2021; IEA: Paris, France, 2021.
- Kosai, S.; Yuasa, M.; Yamasue, E. Chronological Transition of Relationship between Intracity Lifecycle Transport Energy Efficiency and Population Density. Energies 2020, 13, 2094. [Google Scholar] [CrossRef]
- Lipscy, P.Y.; Schipper, L. Energy efficiency in the Japanese transport sector. Energy Policy 2013, 56, 248–258. [Google Scholar] [CrossRef]
- Duan, H.; Hu, M.; Zhang, Y.; Wang, J.; Jiang, W.; Huang, Q.; Li, J. Quantification of carbon emissions of the transport service sector in China by using streamlined life cycle assessment. J. Clean. Prod. 2015, 95, 109–116. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Y.; Lian, Y.; Han, S. Factors and scenario analysis of transport carbon dioxide emissions in rapidly-developing cities. Transp. Res. Part D Transp. Environ. 2020, 80, 102252. [Google Scholar] [CrossRef]
- Merchan, L.A.; Belboom, S.; Leonard, A. Life cycle assessment of rail freight transport in Belgium. Clean Technol. Environ. Policy 2020, 22, 1109–1131. [Google Scholar] [CrossRef]
- Gabriel, R.N.; Martin, K.; Haslam, J.S.; Faile, C.J.; Kamens, M.R.; Gheewala, H.S. A comparative life cycle assessment of electric, compressed natural gas, and diesel buses in Thailand. J. Clean. Prod. 2021, 314, 128013. [Google Scholar] [CrossRef]
- Saade, M.; Erradhouani, B.; Pawlak, S.; Appendino, F.; Peuportier, B.; Roux, C. Combining circular and LCA indicators for the early design of urban projects. Int. J. Life Cycle Assess. 2022, 27, 1–19. [Google Scholar] [CrossRef]
- Elshkaki, A. Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications. Energy 2020, 202, 117697. [Google Scholar] [CrossRef]
- Pauliuk, S.; Heeren, N.; Berrill, P.; Fishman, T.; Nistad, A.; Tu, Q.S.; Wolfram, P.; Hertwich, E.G. Global scenarios of resource and emission savings from material efficiency in residential buildings and cars. Nat. Commun. 2021, 12, 5097. [Google Scholar] [CrossRef]
- Xu, C.; Dai, Q.; Gaines, L.; Hu, M.; Tukker, A.; Steubing, B. Future material demand for automotive lithium-based batteries. Commun. Mater. 2020, 1, 99. [Google Scholar] [CrossRef]
- Mudd, G.M. The environmental sustainability of mining in Australia: Key mega-trends and looming constraints. Resour. Policy 2010, 35, 98–115. [Google Scholar] [CrossRef]
- Pradhan, P. Investigating the causal relationship between transportation infrastructure, financial penetration and economic growth in G-20 countries. Res. Transp. Econ. 2019, 78, 100766. [Google Scholar] [CrossRef]
- Mohit, A.; Felix, R.; Lynette, C.; Arlindo, S. Buildings and the circular economy: Estimating urban mining, recovery and reuse potential of building components. Resour. Conserv. Recycl. 2020, 154, 104581. [Google Scholar]
- Mhatre, P.; Gedam, V.V.; Unnikrishnan, S. Material circularity potential for construction materials—The case of transportation infrastructure in India. Resour. Policy 2021, 74, 102446. [Google Scholar] [CrossRef]
- Kloostra, B.; Makarchuk, B.; Saxe, S. Bottom-up estimation of material stocks and flows in Toronto’s road network. J. Ind. Ecol. 2022, 26, 875–890. [Google Scholar] [CrossRef]
- Mao, R.; Bao, Y.; Duan, H.; Liu, G. Global urban subway development, construction material stocks, and embodied carbon emissions. Humanit. Soc. Sci. Commun. 2021, 8, 83. [Google Scholar] [CrossRef]
- Gassner, A.; Lederer, J.; Kovacic, G.; Mollay, U.; Schremmer, C.; Fellner, J. Projection of material flows and stocks in the urban transport sector until 2050—A scenario-based analysis for the city of Vienna. J. Clean. Prod. 2021, 311, 127591. [Google Scholar] [CrossRef]
- Liljenström, C.; Miliutenko, S.; O’Born, R.; Brattebø, H.; Birgisdóttir, H.; Toller, S.; Lundberg, K.; Potting, J. Life cycle assessment as decision-support in choice of road corridor: Case study and stakeholder perspectives. Int. J. Sustain. Transp. 2021, 15, 678–695. [Google Scholar] [CrossRef]
- Liu, M.; Jia, S.; Wang, X. Environmental impact analysis for the construction of subway stations: Comparison between open-excavation and underground-excavation scheme. Environ. Impact Assess. Rev. 2021, 91, 106644. [Google Scholar] [CrossRef]
- Alabi, B.N.T.; Saeed, T.U.; Amekudzi-Kennedy, A.; Keller, J.; Labi, S. Evaluation criteria to support cleaner construction and repair of airport runways: A review of the state of practice and recommendations for future practice. J. Clean. Prod. 2021, 312, 127776. [Google Scholar] [CrossRef]
- Mańkowska, M.; Kotowska, I.; Pluciński, M. Seaports as Nodal Points of Circular Supply Chains: Opportunities and Challenges for Secondary Ports. Sustainability 2020, 12, 3926. [Google Scholar] [CrossRef]
- Werner, T.T.; Mudd, G.M.; Schipper, A.M.; Huijbregts, M.A.J.; Taneja, L.; Northey, S.A. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Change 2020, 60, 102007. [Google Scholar] [CrossRef]
- Sonter, L.J.; Dade, M.C.; Watson, J.E.M.; Valenta, R.K. Renewable energy production will exacerbate mining threats to biodiversity. Nat. Commun. 2020, 11, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Watari, T.; Nansai, K.; Nakajima, K.; Giurco, D. Sustainable energy transitions require enhanced resource governance. J. Clean. Prod. 2021, 312, 127698. [Google Scholar] [CrossRef]
- Takimoto, H.; Kosai, S.; Watari, T.; Yamasue, E. Circular economy can mitigate rising mining demand from global vehicle electrification. Resour. Conserv. Recycl. 2024, 209, 107748. [Google Scholar] [CrossRef]
- Kosai, S.; Matsui, K.; Matsubae, K.; Yamasue, E.; Nagasaka, T. Natural resource use of gasoline, hybrid, electric and fuel cell vehicles considering land disturbances. Resour. Conserv. Recycl. 2021, 166, 105256. [Google Scholar] [CrossRef]
- Silva, J.; Wheeler, E. Ecosystems as infrastructure. Perspect. Ecol. Conserv. 2017, 15, 32–35. [Google Scholar] [CrossRef]
- Fulmer, J. What in the world is infrastructure? Infrastruct. Investig. 2009, 9, 30–32. [Google Scholar]
- Bringezu, S.; Schqtz, H.; Steger, S.; Baudisch, J. International comparison of resource use and its relation to economic growth The development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 2004, 51, 97–124. [Google Scholar] [CrossRef]
- Sonderegger, T.; Berger, M.; Alvarenga, R.; Bach, V.; Cimprich, A.; Dewulf, J.; Frischknecht, R.; Guinee, J.; Helbig, C.; Huppertz, T.; et al. Mineral resources in life cycle impact assessment-part I: A critical review of existing methods. Int. J. Life Cycle Assess. 2020, 25, 784–797. [Google Scholar] [CrossRef]
- Dewulf, J.; Benini, L.; Mancini, L.; Sala, S.; Blengini, G.A.; Ardente, F.; Recchioni, M.; Maes, J.; Pant, R.; Pennington, D. Rethinking the area of protection “natural resources” in life cycle assessment. Environ. Sci. Technol. 2015, 49, 5310–5317. [Google Scholar] [CrossRef] [PubMed]
- Taelman, S.E.; Schaubroeck, T.; De Meester, S.; Boone, L.; Dewulf, J. Accounting for land use in life cycle assessment: The value of NPP as a proxy indicator to assess land use impacts on ecosystems. Sci. Total Environ. 2016, 550, 143–156. [Google Scholar] [CrossRef]
- Koellner, T.; de Baan, L.; Beck, T.; Brandao, M.; Civit, B.; Margni, M.; Canals, L.M.I.; Saad, R.; Souza, D.M.; Muller-Wenk, R. UNEP-SETAC guideline on global land use impact assessment on biodiversity and ecosystem services in LCA. Int. J. Life Cycle Assess. 2013, 18, 1185–1187. [Google Scholar] [CrossRef]
- Douglas, I.; Lawson, N. Material flows due to mining and urbanization. In A Handbook of Industrial Ecology; Ayers, U., Ayers, L.W., Eds.; Elgar: Cheltenham, UK; Northampton, MA, USA, 2000; pp. 351–364. [Google Scholar]
- Kosai, S.; Yamasue, E. Global warming potential and total material requirement in metal production: Identification of changes in environmental impact through metal substitution. Sci. Total Environ. 2019, 651, 1764–1775. [Google Scholar] [CrossRef] [PubMed]
- Fischer-Kowalski, M.; Krausmann, F.; Giljum, S.; Lutter, S.; Mayer, A.; Bringezu, S.; Moriguchi, Y.; Schütz, H.; Schandl, H.; Weisz, H. Methodology and Indicators of Economy-wide Material Flow Accounting: State of the Art and Reliability Across Sources. J. Ind. Ecol. 2011, 15, 855–876. [Google Scholar] [CrossRef]
- Kosai, S.; Yamasue, E. Economy-Wide Material Flow Analysis and Its Projection: DMI Versus TMR in Japan. In EcoDesign and Sustainability II; Sustainable Production, Life Cycle Engineering and Management; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport. Analysis of Current Transport Trend in Japan. 2019. Available online: http://www.mlit.go.jp/road/ir/kihon/26/1-1_s1.pdf (accessed on 20 January 2023). (In Japanese)
- Ribeiro, F.B.; Do Nascimento, F.A.C.; da Silva, M.A.V. Environmental performance analysis of railway infrastructure using life cycle assessment: Selecting pavement projects based on global warming potential impacts. J. Clean. Prod. 2022, 365, 132558. [Google Scholar] [CrossRef]
- Kaewunruen, S.; AbdelHadi, M.; Kongpuang, M.; Pansuk, W.; Remennikov, A.M. Digital Twins for Managing Railway Bridge Maintenance, Resilience, and Climate Change Adaptation. Sensors 2023, 23, 252. [Google Scholar] [CrossRef]
- Rungskunroch, P.; Shen, Z.; Kaewunruen, S. Getting It Right on the Policy Prioritization for Rail Decarbonization: Evidence From Whole-Life CO2e Emissions of Railway Systems. Front. Built Environ. 2021, 7, 638507. [Google Scholar] [CrossRef]
- Kosai, S.; Noguchi, H.; Fuse, M.; Yamasue, E. Transport Energy Efficiency in Domestic Long-Distance Travel in Japan. Transp. Res. Rec. 2022, 2676, 636–648. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, T.; Liang, S.; Yang, J.; Hou, P.; Qu, S.; Zhou, J.; Jia, X.; Wang, H.; Xu, M. Life cycle assessment of High Speed Rail in China. Transp. Res. Part D Transp. Environ. 2015, 41, 367–376. [Google Scholar] [CrossRef]
- Ikaros Publications, Ltd. Monthly Publiciation AIRLINE; Ikaros Publications, Ltd.: Tokyo, Japan, 2019. [Google Scholar]
- Japan Craft Inspection Organization. About the Kinds and Period for Inspection. Available online: https://jci.go.jp/inspection/shurui.html (accessed on 1 June 2021).
- Inazu, R.; Naito, M.; Tanigawa, H.; Hashimoto, S. A study on estimation of material input intensity of urban structures over the time. Proc. Annu. Conf. Jpn. Soc. Waste Manag. Experts 2008, 19, 45. (In Japanese) [Google Scholar]
- Ministry of Land, Infrastructure, Transport and Tourism. Wite Paper 2019; Ministry of Land, Infrastructure, Transport and Tourism: Tokyo, Japan, 2021.
- Saito, R.; Moriguchi, Y.; Nakatani, J.; Kurisu, K. Time-series material flow and stock analysis for TOKAIDO-SHINKANSEN. J. Jpn. Soc. Civ. Eng. Ser. G Environ. Res. 2018, 74, II_255–II_265. [Google Scholar]
- Kosai, S.; Badin, A.B.; Qiu, Y.; Matsubae, K.; Suh, S.; Yamasue, E. Evaluation of resource use in the household lighting sector in Malaysia considering land disturbances through mining activities. Resour. Conserv. Recycl. 2021, 166, 105343. [Google Scholar] [CrossRef]
- Japan Traffic Lights Construction Association. Handbooks of Traffic Lights Construction; Japan Traffic Lights Construction Association: Tokyo, Japan, 2019.
- National Police Agency. The Number of Traffic Light by Prefecture. 2022. Available online: https://www.npa.go.jp/bureau/traffic/seibi2/annzen-shisetu/hyoushiki-shingouki/hyousikisinngouki.html (accessed on 5 September 2022). (In Japanese)
- Agency for Natural Resources and Energy. About a Policy for Rasources and Energy. 2022. Available online: https://www.enecho.meti.go.jp/category/resources_and_fuel/distribution/hinnkakuhou/210730a.html (accessed on 10 September 2022). (In Japanese)
- Toyota Industries Corporation. Chargin Stand. 2022. Available online: https://electronics.toyota-shokki.co.jp/evc1-ic.php (accessed on 10 May 2022). (In Japanese).
- Next Generation Vehicle Promotion Center. Spot of Charging and Hydrogen Station. 2022. Available online: http://www.cev-pc.or.jp/lp_clean/spot/ (accessed on 10 May 2022).
- Ministry of Economy, Trade and Industry. A State of FCV and Hydrogen Station in Japan. 2021. Available online: https://www.meti.go.jp/shingikai/energy_environment/suiso_nenryo/pdf/024_01_00.pdf (accessed on 10 December 2021). (In Japanese)
- Alazemi, J.; Andrews, J. Automotive hydrogen fuelling stations: An international review. Renew. Sustain. Energy Rev. 2015, 48, 483–499. [Google Scholar] [CrossRef]
- NEXCO CENTRAL Group. Annual Report 2019; NEXCO CENTRAL Group: Nagoya, Japan, 2020. [Google Scholar]
- Ministry of Finance. The Ministerial Ordinance Concerning the Useful Life, etc. of Depreciable Assets; Ministry of Finance: Tokyo, Japan, 1965.
- Japan Railway Construction, Transport and Technology Agency. Enviromental Report; Japan Railway Construction, Transport and Technology Agency: Yokohama, Japan, 2021.
- KINTETSU Railway Co., Ltd. Enviromental Initiatives. 2022. Available online: https://www.kintetsu.jp/kouhou/kankyou/en_energysaving.html (accessed on 1 June 2022).
- Kansai Airports. Kansai International Airports Profile. 2021. Available online: http://www.kansai-airports.co.jp/en/company-profile/about-airports/kix.html (accessed on 1 June 2022).
- Kagawa Prefecture. Introduction to Takamatsu Port. 2021. Available online: https://www.pref.kagawa.lg.jp/takamatsukokanri/port_takamatsu/kfvn.html (accessed on 1 October 2021).
- Kagawa Prefecture. Natural Disaster Measures in Takamatsu Port. 2020. Available online: https://www.pref.kagawa.lg.jp/documents/3893/5.pdf (accessed on 1 October 2020).
- Ministry of Land, Infrastructure, Transport and Tourism, Port and Airport Department. Study for CNP Formation at Takamatsu Port; Ministry of Land, Infrastructure, Transport and Tourism, Port and Airport Department: Tokyo, Japan, 2022. (In Japanese)
- The Kansai Electric Power Co., Inc. The Effort to an Enviromental Problems. 2022. Available online: https://www.kepco.co.jp/corporate/notice/notice_pdf/20220208_1.pdf (accessed on 1 August 2022).
Transportation Mode | Transportation Means | Link | Support for Link | Node | Tank | Fuel Supply |
---|---|---|---|---|---|---|
Roadways | Internal combustion engine vehicle (ICEV) | Road | Bridge, tunnel, traffic light | Parking lot | Underground tank | Hose |
Hybrid electric vehicle (HEV) | Road | Bridge, tunnel, traffic light | Parking lot | Underground tank | Hose | |
Battery electric vehicle (BEV) | Road | Bridge, tunnel, traffic light | Parking lot | Charging station | Hose | |
Fuel cell vehicle (FCV) | Road | Bridge, tunnel, traffic light | Parking lot | Hydrogen producer Compressor | Dispenser | |
Internal combustion engine bus (ICE bus) | Road | Bridge, tunnel, traffic light | Parking lot | Underground tank | Hose | |
Railways | Conventional railways (CRs) | Rail truck | Bridge, tunnel, traffic light | Station | N/A | Overhead wire |
High-speed railways (HSRs) | Rail truck | Bridge, tunnel, traffic light | Station | N/A | Overhead wire | |
Aviation | Aircraft | N/A | N/A | Airport | Tank | Pipeline |
Waterways | Ferry | N/A | N/A | Port | Tank | Pipeline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haraguchi, N.; Kosai, S.; Kashiwakura, S.; Yamasue, E.; Tanikawa, H. Resource Intensity in the Japanese Transportation System: Integration of Vehicle and Infrastructure. Sustainability 2025, 17, 2437. https://doi.org/10.3390/su17062437
Haraguchi N, Kosai S, Kashiwakura S, Yamasue E, Tanikawa H. Resource Intensity in the Japanese Transportation System: Integration of Vehicle and Infrastructure. Sustainability. 2025; 17(6):2437. https://doi.org/10.3390/su17062437
Chicago/Turabian StyleHaraguchi, Naotaka, Shoki Kosai, Shunsuke Kashiwakura, Eiji Yamasue, and Hiroki Tanikawa. 2025. "Resource Intensity in the Japanese Transportation System: Integration of Vehicle and Infrastructure" Sustainability 17, no. 6: 2437. https://doi.org/10.3390/su17062437
APA StyleHaraguchi, N., Kosai, S., Kashiwakura, S., Yamasue, E., & Tanikawa, H. (2025). Resource Intensity in the Japanese Transportation System: Integration of Vehicle and Infrastructure. Sustainability, 17(6), 2437. https://doi.org/10.3390/su17062437