Application of Catalytic H2O2-Mediated NOx Removal Process Leveraging Solid Waste Residues: Exemplified by Copper Slag
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Experimental Methods
2.3.1. Experimental System
2.3.2. Data Process
3. Results
3.1. Effect of Solid Waste Residues on NOx Removal
3.1.1. Effects of Different Types of Slag Slurry With and Without H2O2 on NOx Removal
3.1.2. Effects of Different Types of H2O2/Copper Slag Slurry on NOx Removal
3.2. Optimization of Denitrification Performance
3.3. Liquid Phase System Analysis of Slurry with H2O2/CS-S
3.3.1. Reactive Oxygen Species (ROS) in H2O2/CS-S
3.3.2. Analysis of Denitrification Products
3.3.3. Surface of CS-S Before and After Liquid-Phase Reaction
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Chemicals
Sample | Fe2O3 * | SiO2 * | SO3 * | CaO * | CuO * | Al2O3 * | ZnO * | MnO * |
---|---|---|---|---|---|---|---|---|
ZLS | 42.16 | 21.36 | - | 10.86 | - | - | 6.30 | 13.50 |
MS | - | 28.13 | 5.27 | 41.02 | - | 6.90 | - | 16.34 |
CS | 57.56 | 31.85 | 0.76 | 4.22 | 0.30 | - | 3.38 | 0.26 |
Sample | Fe2O3 * | SiO2 * | SO3 * | CaO * | CuO * | Al2O3 * | ZnO * | MnO * | P2O5 * |
---|---|---|---|---|---|---|---|---|---|
CS-T | 17.25 | 30.31 | 1.65 | 31.61 | 7.06 | 4.80 | 0.10 | 1.00 | 5.50 |
CS-S | 57.56 | 31.85 | 0.76 | 4.22 | 0.30 | - | 3.38 | 0.26 | - |
CS-B | 51.75 | 23.81 | 9.67 | 2.33 | 6.34 | - | 3.27 | 0.17 | - |
References
- Hong, J.G.S.; Abdullah, N.; Rajaratnam, R.K.; Shukri, S.A.; Tan, S.P.; Hamdan, M.; Lim, B.K. Combined perineal massage and warm compress compared to massage alone during active second stage of labour in nulliparas: A randomised trial. Eur. J. Obstet. Gynecol. Reprod. Biol. 2022, 270, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Ma, Q.; Chu, B.; He, H. Homogeneous and heterogeneous photolysis of nitrate in the atmosphere: State of the science, current research needs, and future prospects. Front. Environ. Sci. Eng. 2023, 17, 48. [Google Scholar] [CrossRef]
- Ding, X.H.; Luo, B.; Zhou, H.T.; Chen, Y.H. Generalized solutions for advection–dispersion transport equations subject to time- and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Elkaee, S.; Phule, A.D.; Yang, J.H. Advancements in (SCR) technologizes for NOx reduction: A comprehensive review of reducing agents. Process Saf. Environ. Prot. 2024, 184, 854–880. [Google Scholar] [CrossRef]
- Zhao, M.; Xue, P.; Liu, J.; Liao, J.; Guo, J. A review of removing SO2 and NOx by wet scrubbing. Sustain. Energy Technol. Assess. 2021, 47, 101451. [Google Scholar] [CrossRef]
- Yuan, B.; Mao, X.; Wang, Z.; Hao, R.; Zhao, Y. Radical-induced oxidation removal of multi-air-pollutant: A critical review. J. Hazard. Mater. 2020, 383, 121162.1–121162.13. [Google Scholar] [CrossRef]
- Wang, X.; Bao, J.; Zi, S.; Luo, Y.; Liu, C.; Zeng, Z.; Wang, F.; Yang, J.; Shi, L.; Li, K.; et al. Insight into NOx removal mechanism by H2O2 activation via MIL-100(Fe) in an alkaline environment. J. Environ. Chem. Eng. 2024, 12, 113456. [Google Scholar] [CrossRef]
- Song, L.; Deng, S.; Bian, C.; Liu, C.; Zhan, Z.; Li, S.; Li, J.; Fan, X.; He, H. NiB2O4 (B = Mn or Co) catalysts for NH3-SCR of NOx at low-temperature in microwave field. Front. Environ. Sci. Eng. 2023, 17, 96. [Google Scholar] [CrossRef]
- Choi, S.W.; Choi, S.K.; Bae, H.K. Hybrid selective noncatalytic reduction (SNCR)/selective catalytic reduction (SCR) for NOx removal using low-temperature SCR with Mn-V2O5/TiO2 catalyst. J. Air Waste Manag. Assoc. 2015, 65, 485–491. [Google Scholar] [CrossRef]
- Zhou, X.; Chen, X.; Peng, Z.; Zhou, Y.; Li, Y.; Jian, W.; Fan, Z.; Chen, Y. Cleaner geopolymer prepared by co-activation of gasification coal fly ash and steel slag: Durability properties and economic assessment. Front. Environ. Sci. Eng. 2023, 17, 109–121. [Google Scholar] [CrossRef]
- Cheng, S.; Li, W.; Han, Y.X.; Sun, Y.S.; Gao, P.; Zhang, X. Recent process developments in beneficiation and metallurgy of rare earths: A review. J. Rare Earths 2023, 42, 629–642. [Google Scholar] [CrossRef]
- Deng, S.; An, Q.; Ran, B.; Yang, Z.; Xu, B.; Zhao, B.; Li, Z. Efficient remediation of Mn2+ and NH4+-N in co-contaminated water and soil by Acinetobacter sp. AL-6 synergized with grapefruit peel biochar: Performance and mechanism. Water Res. 2022, 223, 118962. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Wang, C.; Wang, X.; Chen, Y.; Wu, W.; Li, H. Simultaneous removal of SO2 and NOx from flue gas using (NH4)2S2O3/steel slag slurry combined with ozone oxidation. Fuel 2019, 255, 115760.1–115760.8. [Google Scholar] [CrossRef]
- Zhao, H.X.; Zhou, F.S.; LM, A.E.; Liu, J.L.; Zhou, Y. A review on the industrial solid waste application in pelletizing additives: Composition, mechanism and process characteristics. J. Hazard. Mater. 2021, 423, 127056. [Google Scholar] [CrossRef]
- Bao, J.; Ning, P.; Wang, F.; Sun, X.; Wang, C.; Song, X.; Luo, Y.; Li, K. Thermal modification of copper slag via phase transformation for simultaneous removal of SO2 and NOx from acid-making tail gas. Chem. Eng. J. 2021, 425, 131646. [Google Scholar] [CrossRef]
- Tang, Y.; Wei, Z.; Wang, C.; Ning, P.; He, M.; Bao, S.; Sun, X.; Li, K. One-step synthesis of magnetic catalysts containing Mn3O4-Fe3O4 from manganese slag for degradation of enrofloxacin by activation of peroxymonosulfate. Chem. Eng. J. 2024, 499, 156505. [Google Scholar] [CrossRef]
- OuYang, K.; Dou, Z.H.; Zhang, T.A.; Liu, Y.; Niu, L.P. Desulfurization kinetics of high lead and zinc sulfide containing slag with oxygen blowing. J. Min. Metall. Sect. B Metall. 2019, 55, 26. [Google Scholar] [CrossRef]
- Su, Y.; Luo, B.; Luo, Z.; Xu, F.; Huang, H.; Long, Z.; Shen, C. Mechanical characteristics and solidification mechanism of slag/fly ash-based geopolymer and cement solidified organic clay: A comparative study. J. Build. Eng. 2023, 71, 106459. [Google Scholar] [CrossRef]
- Radulović, D.; Terzić, A.; Stojanović, J.; Jovanović, V.; Todorović, D.; Ivošević, B. Reapplication Potential of Historic Pb–Zn Slag with Regard to Zero Waste Principles. Sustainability 2024, 16, 720. [Google Scholar] [CrossRef]
- Arredondo, P.W.C.; Silva, Y.F.; Araya-Letelier, G.; Hernández, H. Valorization of Recycled Aggregate and Copper Slag for Sustainable Concrete Mixtures: Mechanical, Physical, and Environmental Performance. Sustainability 2024, 16, 11239. [Google Scholar] [CrossRef]
- Li, J.; Eheliyagoda, D.; Geng, Y.; Yang, Z.; Zeng, X. Examining the influence of copper recycling on prospective resource supply and carbon emission reduction. Fundam. Res. 2022, 9, 022. [Google Scholar] [CrossRef]
- Bao, J.; Yang, J.; Song, X.; Han, R.; Ning, P.; Lu, X.; Fan, M.; Wang, C.; Sun, X.; Li, K. The mineral phase reconstruction of copper slag as Fenton-like catalysts for catalytic oxidation of NOx and SO2: Variation in active site and radical formation pathway. Chem. Eng. J. 2022, 450, 138101. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, B.; Hao, R.; Zhao, Y.; Wang, X. A critical review on the method of simultaneous removal of multi-air-pollutant in flue gas. Chem. Eng. J. 2019, 378, 122155. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Qi, X.; Shu, B.; Zhang, X.; Li, K.; Wei, Y.; Wang, H. Removal and immobilization of arsenic from copper smelting wastewater using copper slag by in situ encapsulation with silica gel. Chem. Eng. J. 2020, 394, 124833. [Google Scholar] [CrossRef]
- Liu, X.; Li, S.; Ren, Z.; Cao, H.; Yang, Q.; Luo, Z.; He, L.; Zhao, J.; Wang, Q.; Li, G. Hydrogen Peroxide Heterolytic Cleavage Induced Gas Phase Photo-Fenton Oxidation of Nitric Oxide. Environ. Sci. Technol. 2024, 58, 17797–17806. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, S.; Zhang, P.; Li, J.; Huang, X.; Jiao, B.; Li, D. Co-disposal of MSWI fly ash and lead–zinc smelting slag through alkali-activation technology. Constr. Build. Mater. 2022, 327, 127006. [Google Scholar] [CrossRef]
- Escobedo, E.; Oh, J.-A.; Cho, K.; Chang, Y.-S. Activation of hydrogen peroxide, persulfate, and free chlorine by steel anode for treatment of municipal and livestock wastewater: Unravelling the role of oxidants speciation. Water Res. 2022, 216, 118305. [Google Scholar] [CrossRef]
- Atran, A.A.; Ibrahim, F.A.; Awwad, N.S.; Hamdy, M.S. Iron incorporated porous cerium oxide nanoparticles as an efficient photocatalyst for different hazardous elimination. J. Rare Earths 2024, 02, 006. [Google Scholar] [CrossRef]
- Costa, R.C.C.; Moura, F.C.C.; Ardisson, J.D.; Fabris, J.D.; Lago, R.M. Highly active heterogeneous Fenton-like systems based on Fe0/Fe3O4 composites prepared by controlled reduction of iron oxides. Appl. Catal. B Environ. 2008, 83, 131–139. [Google Scholar] [CrossRef]
- Yang, B.; Ma, S.; Cui, R.; Sun, S.; Wang, J.; Li, S. Simultaneous removal of NOx and SO2 with H2O2 catalyzed by alkali/magnetism-modified fly ash: High efficiency, Low cost and Catalytic mechanism. Chem. Eng. J. 2019, 359, 233–243. [Google Scholar] [CrossRef]
- Yang, S.; Xu, D.; Yan, W.; Xiong, Y. Effective NO and SO2 removal from fuel gas with H2O2 catalyzed by Fe3O4/Fe0/Fe3C encapsulated in multi-walled carbon nanotubes. J. Environ. Chem. Eng. 2021, 9, 105413. [Google Scholar] [CrossRef]
- Huang, T.; Zhang, G.; Zhang, N.; Ye, J.; Lu, P. Fe0-H2O2 for advanced treatment of citric acid wastewater: Detailed study of catalyst after several times use. Chem. Eng. J. 2018, 336, 233–240. [Google Scholar] [CrossRef]
- Wan, Z.; Wang, J. Degradation of sulfamethazine using Fe3O4-Mn3O4/reduced graphene oxide hybrid as Fenton-like catalyst. J. Hazard. Mater. 2017, 324, 653–664. [Google Scholar] [CrossRef]
- Sun, B.; He, M.; Chi, H.; Wang, Z.; Zhang, W.; Ma, J. Highly efficient simultaneous catalytic degradation and defluorination of perfluorooctanoic acid by the H2O2-carbon/MnO2 system generating ·O2⁻ and ·OH synchronously. Appl. Catal. B Environ. 2020, 277, 119219. [Google Scholar]
- Sarkar, D.; Kang, P.; Nielsen, S.O.; Qin, Z. Non-Arrhenius Reaction-Diffusion Kinetics for Protein Inactivation over a Large Temperature Range. ACS Nano 2019, 13, 8669–8679. [Google Scholar] [CrossRef]
- Wang, L.; Lan, X.; Peng, W.; Wang, Z. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: A review. J. Hazard. Mater. 2021, 408, 124436. [Google Scholar] [CrossRef]
- Watts, R.J.; Teel, A.L. Hydroxyl radical and non-hydroxyl radical pathways for trichloroethylene and perchloroethylene degradation in catalyzed H2O2 propagation systems. Water Res. 2019, 159, 46–54. [Google Scholar] [CrossRef]
- Pham, L.T.; Lee, C.; Doyle, F.M.; Sedlak, D.L. A Silica-Supported Iron Oxide Catalyst Capable of Activating Hydrogen Peroxide at Neutral pH Values. Environ. Sci. Technol. 2009, 43, 8930–8935. [Google Scholar] [CrossRef]
- Yang, W.; Chen, L.; Zhou, B.; Jia, Z.; Liu, X.; Liu, Y.; Li, H.; Gao, Z. NO Oxidation Using H2O2 at a Single-Atom Iron Catalyst. J. Phys. Chem. C 2023, 127, 13011–13020. [Google Scholar] [CrossRef]
- Hu, K.; Zhou, P.; Yang, Y.; Zhong, S.; Duan, X.; Wang, S. The Nature of Molecular Hybridizations in Nanodiamonds for Boosted Fe(III)/Fe(II) Circulation. Environ. Sci. Technol. 2024, 58, 20665–20675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Bao, J.; Liu, C.; Deng, Y.; Ma, Y.; Shi, L.; Bao, S.; Li, K.; Ning, P.; Sun, X. Application of Catalytic H2O2-Mediated NOx Removal Process Leveraging Solid Waste Residues: Exemplified by Copper Slag. Sustainability 2025, 17, 2469. https://doi.org/10.3390/su17062469
Tang H, Bao J, Liu C, Deng Y, Ma Y, Shi L, Bao S, Li K, Ning P, Sun X. Application of Catalytic H2O2-Mediated NOx Removal Process Leveraging Solid Waste Residues: Exemplified by Copper Slag. Sustainability. 2025; 17(6):2469. https://doi.org/10.3390/su17062469
Chicago/Turabian StyleTang, Huidong, Jiacheng Bao, Chen Liu, Yuwen Deng, Yixing Ma, Lei Shi, Shuangyou Bao, Kai Li, Ping Ning, and Xin Sun. 2025. "Application of Catalytic H2O2-Mediated NOx Removal Process Leveraging Solid Waste Residues: Exemplified by Copper Slag" Sustainability 17, no. 6: 2469. https://doi.org/10.3390/su17062469
APA StyleTang, H., Bao, J., Liu, C., Deng, Y., Ma, Y., Shi, L., Bao, S., Li, K., Ning, P., & Sun, X. (2025). Application of Catalytic H2O2-Mediated NOx Removal Process Leveraging Solid Waste Residues: Exemplified by Copper Slag. Sustainability, 17(6), 2469. https://doi.org/10.3390/su17062469