Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review
Abstract
:1. Introduction
Motivation and Contribution
- Identification and Evaluation of AI Use CasesThis paper systematically identifies and evaluates use cases in which AI tools create economic value in the electricity sector, specifically regarding VRE integration. By analyzing these use cases, we aim to provide a comprehensive understanding of how AI can be exploited to enhance economic efficiency in the integration process.
- Economic Impact AnalysisThis review assesses the estimated economic impact of various AI applications in VRE integration. We explore the challenges of measuring AI’s value in reducing integration costs and provide a detailed analysis of the potential economic benefits and limitations.
- Emphasis on Economic Value CreationUnlike previous studies, which are primarily focused on performance metrics, this work emphasizes the importance of creating economic value through AI tools. We highlight how AI contributes to cost reduction, improved operational efficiency, and overall economic sustainability in the power sector.
2. Scope and Methodology
2.1. Scope of the Review
2.2. Methodology
2.2.1. Literature Search Strategy
2.2.2. Selection and Screening Process
2.2.3. Data Analysis and Synthesis
2.2.4. Limitations and Bias Considerations
3. AI in Renewable Energy System
3.1. AI in Wind Energy
3.2. AI in Solar Energy
3.3. AI in Geothermal Energy
3.4. AI in Hydro Energy
3.5. AI in Ocean Energy
3.6. AI in Bioenergy
3.7. AI in Hydrogen Energy
3.8. AI in Hybrid Renewable Energy
Category | Purpose | Method | Results | References |
---|---|---|---|---|
ANN techniques | Predicting generator state, power use, energy management | BPNN | High accuracy in predicting generator state (97%), effective power prediction for hybrid RE systems | [191,192] |
Fuzzy logic and EA techniques | Energy management, optimization, sizing | FLC, PSO, GA, CS, Bee algorithm | Improved energy management and optimization, e.g., PSO-FLC for energy control, GA for storage optimization | [193,194,195,196,197,198,199,200] |
ANFIS and hybrid AI approaches | Minimizing production costs, estimating power | ANFIS, ARIMA-SVR, Empirical Decomposition | Effective cost minimization, accurate power estimation, hybrid AI methods outperform traditional approaches | [201,202,203,204,205,206,207,208,209,216] |
Enhanced AI techniques | Specific applications in RE systems | Hybrid AI, (e.g., HO-GA, HOMER), Data mining | improved performance in solar PV system tracking, wind and solar energy estimation, decision systems, and energy management | [210,211,212,213,214,215] |
4. AI Fostering the Integration of VRE in Power Systems: Economic Aspect
4.1. Mitigating Balancing Costs
4.1.1. Generation Forecasting
4.1.2. Demand Forecasting
4.1.3. More Efficient Market Design
4.2. Mitigating Profile Cost
4.2.1. Demand Response
4.2.2. Storage Solutions
4.3. Mitigating Grid-Related Costs
4.3.1. Power Quality Disturbance
4.3.2. Predictive Maintenance
5. Discussion
5.1. Economic Value Creation of AI in VRE Integration
5.2. Enhancing Demand Response and Storage Solutions
5.3. Addressing Grid-Related Costs Through AI
5.4. Challenges and Limitations
5.5. Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABC | Artificial Bee Colony | MC | Markov Chain |
AGDHS | Afyonkarahisar Geothermal District Heating System | MFC | Microbial Fuel Cells |
AI | Artificial Intelligence | MLP | Multilayer Perceptron |
AMS | Advances Microgrid Solution | MM | Mesoscale Model |
ANN | Artificial Neural Network | MPD | Mean Percentage Deviation |
ANFIS | Adaptive Neuro Fuzzy Inference System | MPPT | Maximum-Power-Point-Tracking |
AP | Acoustic Prediction | MR | Multiple Regressions |
ĀR | Auto Regressive | MSE | Mean Square Error |
ARMA | Auto Regressive Moving Averages | NB | Naïve Bayes |
ARIMA | Auto Regressive Integrated Moving Average | NR | Near-Infrared |
BC | Bayesian Combination | NLN | Neural Logic Networks |
BDO | Biochemical Demand for Oxygen | NLP | Non-Linear Programming |
BHE | Borehole Heat Exchangers | NREL | National Renewable Energy Laboratory |
BMO | Bird Mating Optimization | NWM | Numerical Wave Model |
BPNN | Backpropagation Neural Network | PCR | Principal Component Regression |
CBR | Case Based Reasoning | PEMFC | Proton Exchange Membranes Fuel Cell |
CH | Chaotic Hybrid | PO | Perturb and Observe |
DE | Differential Evolution | PRCG | Pola-Ribiere Conjugate Gradient |
EMD | Empirical Mode Decomposition | PSO | Particle Swarm Optimisation |
EVs | Electric Vehicles | PUE | Power Usage Effectiveness |
FCHV | Fuel Cell Hybrid Vehicles | PVs | Photovoltaics |
FFA | Firefly Algorithm | RAS | Recirculation Aquaculture Systems |
FFT | Fourier Frequency Transform | RERs | Renewable Energy Resources |
GA | Genetic Algorithm | RMSE | Root Mean Square Error |
GD | Gradient Descent | RNN | Recurrent Neural Network |
GMDH | Group Method of Data Handling | SARIMA | Seasonal Autoregressive Integrated Moving Average |
GP | Genetic Programming | SA | Simulated Annealing |
GRNN | Generalized Regression Neural Network | SCG | Scaled Conjugate Gradient |
GSR | Global Solar Radiation | SES | Single Exponential Smoothing |
GD | Gradient Descent | SFT | Static Formation Temperature |
HCPV | High Concentration Photovoltaic | SOFC | Solid Oxide Fuel Cell |
HHV | Higher Heating Value | SPLSR | Spline Partial Least Squares Regression |
HC | Hierarchical Clustering | SSE | Sum of Squared Errors |
HSM | Historical Similar Mining | SVM | Support Vector Machines |
HS | Harmony Search | SVD | Singular Value Decomposition |
ICS | Integrated Collector Storage | TDNN | Time Delay Neural Network |
IEA | International Energy Agency | TE | Thermos Economic |
KNN | K-Nearest Neighbor | TS | Tabu Search |
LM | Levenberg-Marguardt | VRE | Variable Renewable Energy |
LVM | Learning Vector Quantization | VGCHP | Vertical Ground Coupled Heat Pump |
MAE | Mean Absolute Error | VP | Void Percent |
MAPE | Mean Absolute Percentage Error | WT | Wavelet Transform |
References
- Etukudoh, E.A.; Fabuyide, A.; Ibekwe, K.I.; Sonko, S.; Ilojianya, V.I. Electrical engineering in renewable energy systems: A review of design and integration challenges. Eng. Sci. Technol. J. 2024, 5, 231–244. [Google Scholar] [CrossRef]
- Lin, B.; Huang, C. Promoting variable renewable energy integration: The moderating effect of digitalization. Appl. Energy 2023, 337, 120891. [Google Scholar] [CrossRef]
- Bei, J.; Wang, C. Renewable energy resources and sustainable development goals: Evidence based on green finance, clean energy and environmentally friendly investment. Resour. Policy 2023, 80, 103194. [Google Scholar] [CrossRef]
- Ahmed, U.; Khan, A.R.; Mahmood, A.; Rafiq, I.; Ghannam, R.; Zoha, A. Short-term global horizontal irradiance forecasting using weather classified categorical boosting. Appl. Soft Comput. 2024, 155, 111441. [Google Scholar] [CrossRef]
- Ullah, S.; Luo, R.; Nadeem, M.; Cifuentes-Faura, J. Advancing sustainable growth and energy transition in the United States through the lens of green energy innovations, natural resources and environmental policy. Resour. Policy 2023, 85, 103848. [Google Scholar] [CrossRef]
- Alharbi, A.; Ahmed, U.; Alharbi, T.; Mahmood, A. Neuromorphic Computing-Based Model for Short-Term Forecasting of Global Horizontal Irradiance In Saudi Arabia. IEEE Access 2024, 12, 137642–137655. [Google Scholar] [CrossRef]
- Shoaei, M.; Noorollahi, Y.; Hajinezhad, A.; Moosavian, S.F. A review of the applications of artificial intelligence in renewable energy systems: An approach-based study. Energy Convers. Manag. 2024, 306, 118207. [Google Scholar] [CrossRef]
- Ukoba, K.; Olatunji, K.O.; Adeoye, E.; Jen, T.C.; Madyira, D.M. Optimizing renewable energy systems through artificial intelligence: Review and future prospects. Energy Environ. 2024, 35, 3833–3879. [Google Scholar] [CrossRef]
- Li, Y.; Ding, Y.; He, S.; Hu, F.; Duan, J.; Wen, G.; Geng, H.; Wu, Z.; Gooi, H.B.; Zhao, Y.; et al. Artificial intelligence-based methods for renewable power system operation. Nat. Rev. Electr. Eng. 2024, 1, 163–179. [Google Scholar] [CrossRef]
- Arumugham, V.; Ghanimi, H.M.; Pustokhin, D.A.; Pustokhina, I.V.; Ponnam, V.S.; Alharbi, M.; Krishnamoorthy, P.; Sengan, S. An artificial-intelligence-based renewable energy prediction program for demand-side management in smart grids. Sustainability 2023, 15, 5453. [Google Scholar] [CrossRef]
- Wen, X.; Shen, Q.; Zheng, W.; Zhang, H. AI-driven solar energy generation and smart grid integration a holistic approach to enhancing renewable energy efficiency. Int. J. Innov. Res. Eng. Manag. 2024, 11, 55–66. [Google Scholar] [CrossRef]
- Rusilowati, U.; Ngemba, H.R.; Anugrah, R.W.; Fitriani, A.; Astuti, E.D. Leveraging ai for superior efficiency in energy use and development of renewable resources such as solar energy, wind, and bioenergy. Int. Trans. Artif. Intell. 2024, 2, 114–120. [Google Scholar] [CrossRef]
- Ali, A.N.F.; Sulaima, M.F.; Razak, I.A.W.A.; Kadir, A.F.A.; Mokhlis, H. Artificial intelligence application in demand response: Advantages, issues, status, and challenges. IEEE Access 2023, 11, 16907–16922. [Google Scholar] [CrossRef]
- Rane, N. Contribution of ChatGPT and Other Generative Artificial Intelligence (AI) in Renewable and Sustainable Energy. 2023. Available online: https://ssrn.com/abstract=4597674 (accessed on 18 February 2025).
- Talaat, M.; Elkholy, M.; Alblawi, A.; Said, T. Artificial intelligence applications for microgrids integration and management of hybrid renewable energy sources. Artif. Intell. Rev. 2023, 56, 10557–10611. [Google Scholar] [CrossRef]
- Manuel, H.N.N.; Kehinde, H.M.; Agupugo, C.P.; Manuel, A. The impact of AI on boosting renewable energy utilization and visual power plant efficiency in contemporary construction. World J. Adv. Res. Rev. 2024, 23, 1333–1348. [Google Scholar] [CrossRef]
- Ezeigweneme, C.A.; Nwasike, C.N.; Adefemi, A.; Adegbite, A.O.; Gidiagba, J.O. Smart grids in industrial paradigms: A review of progress, benefits, and maintenance implications: Analyzing the role of smart grids in predictive maintenance and the integration of renewable energy sources, along with their overall impact on the industri. Eng. Sci. Technol. J. 2024, 5, 1–20. [Google Scholar] [CrossRef]
- Bassey, K.E.; Juliet, A.R.; Stephen, A.O. AI-Enhanced lifecycle assessment of renewable energy systems. Eng. Sci. Technol. J. 2024, 5, 2082–2099. [Google Scholar] [CrossRef]
- Okeleke, P.A.; Ajiga, D.; Folorunsho, S.O.; Ezeigweneme, C. Predictive analytics for market trends using AI: A study in consumer behavior. Int. J. Eng. Res. Updates 2024, 7, 36–49. [Google Scholar] [CrossRef]
- Abidi, M.H.; Mohammed, M.K.; Alkhalefah, H. Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing. Sustainability 2022, 14, 3387. [Google Scholar] [CrossRef]
- Pinciroli, L.; Baraldi, P.; Ballabio, G.; Compare, M.; Zio, E. Optimization of the operation and maintenance of renewable energy systems by deep reinforcement learning. Renew. Energy 2022, 183, 752–763. [Google Scholar] [CrossRef]
- Wang, J.; Gao, R.X. Innovative smart scheduling and predictive maintenance techniques. In Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 181–207. [Google Scholar]
- Lei, M.; Shiyan, L.; Chuanwen, J.; Hongling, L.; Yan, Z. A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 2009, 13, 915–920. [Google Scholar] [CrossRef]
- Foley, A.M.; Leahy, P.G.; Marvuglia, A.; McKeogh, E.J. Current methods and advances in forecasting of wind power generation. Renew. Energy 2012, 37, 1–8. [Google Scholar] [CrossRef]
- Colak, I.; Sagiroglu, S.; Yesilbudak, M. Data mining and wind power prediction: A literature review. Renew. Energy 2012, 46, 241–247. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, X. Review on probabilistic forecasting of wind power generation. Renew. Sustain. Energy Rev. 2014, 32, 255–270. [Google Scholar] [CrossRef]
- Tascikaraoglu, A.; Uzunoglu, M. A review of combined approaches for prediction of short-term wind speed and power. Renew. Sustain. Energy Rev. 2014, 34, 243–254. [Google Scholar] [CrossRef]
- Mabel, M.C.; Fernandez, E. Analysis of wind power generation and prediction using ANN: A case study. Renew. Energy 2008, 33, 986–992. [Google Scholar] [CrossRef]
- Li, G.; Shi, J. On comparing three artificial neural networks for wind speed forecasting. Appl. Energy 2010, 87, 2313–2320. [Google Scholar] [CrossRef]
- Mabel, M.C.; Fernandez, E. Estimation of energy yield from wind farms using artificial neural networks. IEEE Trans. Energy Convers. 2009, 24, 459–464. [Google Scholar] [CrossRef]
- Kariniotakis, G.; Stavrakakis, G.; Nogaret, E. Wind power forecasting using advanced neural networks models. IEEE Trans. Energy Convers. 1996, 11, 762–767. [Google Scholar] [CrossRef]
- Öztopal, A. Artificial neural network approach to spatial estimation of wind velocity data. Energy Convers. Manag. 2006, 47, 395–406. [Google Scholar] [CrossRef]
- Alexiadis, M.; Dokopoulos, P.; Sahsamanoglou, H. Wind speed and power forecasting based on spatial correlation models. IEEE Trans. Energy Convers. 1999, 14, 836–842. [Google Scholar] [CrossRef]
- Li, G.; Shi, J.; Zhou, J. Bayesian adaptive combination of short-term wind speed forecasts from neural network models. Renew. Energy 2011, 36, 352–359. [Google Scholar] [CrossRef]
- Sfetsos, A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew. Energy 2000, 21, 23–35. [Google Scholar] [CrossRef]
- Cadenas, E.; Jaramillo, O.A.; Rivera, W. Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method. Renew. Energy 2010, 35, 925–930. [Google Scholar] [CrossRef]
- Simoes, M.; Bose, B.K.; Spiegel, R.J. Design and performance evaluation of a fuzzy-logic-based variable-speed wind generation system. IEEE Trans. Ind. Appl. 1997, 33, 956–965. [Google Scholar] [CrossRef]
- Sideratos, G.; Hatziargyriou, N.D. An advanced statistical method for wind power forecasting. IEEE Trans. Power Syst. 2007, 22, 258–265. [Google Scholar] [CrossRef]
- Monfared, M.; Rastegar, H.; Kojabadi, H.M. A new strategy for wind speed forecasting using artificial intelligent methods. Renew. Energy 2009, 34, 845–848. [Google Scholar] [CrossRef]
- Juban, J.; Siebert, N.; Kariniotakis, G.N. Probabilistic short-term wind power forecasting for the optimal management of wind generation. In Proceedings of the 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 1–5 July 2007; pp. 683–688. [Google Scholar]
- Mohandes, M.A.; Halawani, T.O.; Rehman, S.; Hussain, A.A. Support vector machines for wind speed prediction. Renew. Energy 2004, 29, 939–947. [Google Scholar] [CrossRef]
- Potter, C.W.; Negnevitsky, M. Very short-term wind forecasting for Tasmanian power generation. IEEE Trans. Power Syst. 2006, 21, 965–972. [Google Scholar] [CrossRef]
- Mohandes, M.; Rehman, S.; Rahman, S. Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl. Energy 2011, 88, 4024–4032. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Li, C. Interpolation of missing wind data based on ANFIS. Renew. Energy 2011, 36, 993–998. [Google Scholar] [CrossRef]
- Meharrar, A.; Tioursi, M.; Hatti, M.; Stambouli, A.B. A variable speed wind generator maximum power tracking based on adaptative neuro-fuzzy inference system. Expert Syst. Appl. 2011, 38, 7659–7664. [Google Scholar] [CrossRef]
- Yang, S.; Li, W.; Wang, C. The intelligent fault diagnosis of wind turbine gearbox based on artificial neural network. In Proceedings of the 2008 International Conference on Condition Monitoring and Diagnosis, Beijing, China, 21–24 April 2008; pp. 1327–1330. [Google Scholar]
- Jursa, R.; Rohrig, K. Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models. Int. J. Forecast. 2008, 24, 694–709. [Google Scholar] [CrossRef]
- Guo, Z.; Zhao, W.; Lu, H.; Wang, J. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 2012, 37, 241–249. [Google Scholar] [CrossRef]
- Kani, S.P.; Ardehali, M. Very short-term wind speed prediction: A new artificial neural network–Markov chain model. Energy Convers. Manag. 2011, 52, 738–745. [Google Scholar] [CrossRef]
- Damousis, I.G.; Dokopoulos, P. A fuzzy expert system for the forecasting of wind speed and power generation in wind farms. In Proceedings of the PICA 2001: Innovative Computing for Power-Electric Energy Meets the Market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications (Cat. No. 01CH37195), Sydney, Australia, 20–24 May 2001; pp. 63–69. [Google Scholar]
- Hu, J.; Wang, J.; Zeng, G. A hybrid forecasting approach applied to wind speed time series. Renew. Energy 2013, 60, 185–194. [Google Scholar] [CrossRef]
- Cadenas, E.; Rivera, W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model. Renew. Energy 2010, 35, 2732–2738. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Pérez-Bellido, Á.M.; Ortiz-García, E.G.; Portilla-Figueras, A.; Prieto, L.; Paredes, D. Hybridizing the fifth generation mesoscale model with artificial neural networks for short-term wind speed prediction. Renew. Energy 2009, 34, 1451–1457. [Google Scholar] [CrossRef]
- Liu, D.; Niu, D.; Wang, H.; Fan, L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renew. Energy 2014, 62, 592–597. [Google Scholar] [CrossRef]
- Kong, X.; Liu, X.; Shi, R.; Lee, K.Y. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 2015, 169, 449–456. [Google Scholar]
- Rahmani, R.; Yusof, R.; Seyedmahmoudian, M.; Mekhilef, S. Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J. Wind Eng. Ind. Aerodyn. 2013, 123, 163–170. [Google Scholar] [CrossRef]
- Pousinho, H.M.I.; Mendes, V.M.F.; Catal ao, J.P.d.S. A risk-averse optimization model for trading wind energy in a market environment under uncertainty. Energy 2011, 36, 4935–4942. [Google Scholar] [CrossRef]
- Dounis, A.I.; Caraiscos, C. Advanced control systems engineering for energy and comfort management in a building environment—A review. Renew. Sustain. Energy Rev. 2009, 13, 1246–1261. [Google Scholar] [CrossRef]
- Mellit, A. Artificial Intelligence technique for modelling and forecasting of solar radiation data: A review. Int. J. Artif. Intell. Soft Comput. 2008, 1, 52–76. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Sol. Energy 2010, 84, 807–821. [Google Scholar] [CrossRef]
- Rehman, S.; Mohandes, M. Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 2008, 36, 571–576. [Google Scholar] [CrossRef]
- Alam, S.; Kaushik, S.; Garg, S. Computation of beam solar radiation at normal incidence using artificial neural network. Renew. Energy 2006, 31, 1483–1491. [Google Scholar] [CrossRef]
- Dombaycı, Ö.A.; Gölcü, M. Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey. Renew. Energy 2009, 34, 1158–1161. [Google Scholar] [CrossRef]
- Bosch, J.; Lopez, G.; Batlles, F. Daily solar irradiation estimation over a mountainous area using artificial neural networks. Renew. Energy 2008, 33, 1622–1628. [Google Scholar] [CrossRef]
- Almonacid, F.; Fernández, E.F.; Rodrigo, P.; Pérez-Higueras, P.; Rus-Casas, C. Estimating the maximum power of a high concentrator photovoltaic (HCPV) module using an artificial neural network. Energy 2013, 53, 165–172. [Google Scholar] [CrossRef]
- Mubiru, J.; Banda, E. Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol. Energy 2008, 82, 181–187. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Long-term performance prediction of forced circulation solar domestic water heating systems using artificial neural networks. Appl. Energy 2000, 66, 63–74. [Google Scholar] [CrossRef]
- Tasadduq, I.; Rehman, S.; Bubshait, K. Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renew. Energy 2002, 25, 545–554. [Google Scholar] [CrossRef]
- Alam, S.; Kaushik, S.; Garg, S. Assessment of diffuse solar energy under general sky condition using artificial neural network. Appl. Energy 2009, 86, 554–564. [Google Scholar] [CrossRef]
- Tymvios, F.; Jacovides, C.; Michaelides, S.; Scouteli, C. Comparative study of Ångström’s and artificial neural networks’ methodologies in estimating global solar radiation. Sol. Energy 2005, 78, 752–762. [Google Scholar] [CrossRef]
- Jiang, Y. Computation of monthly mean daily global solar radiation in China using artificial neural networks and comparison with other empirical models. Energy 2009, 34, 1276–1283. [Google Scholar] [CrossRef]
- Zeng, J.; Qiao, W. Short-term solar power prediction using a support vector machine. Renew. Energy 2013, 52, 118–127. [Google Scholar] [CrossRef]
- Li, Z.; Rahman, S.M.; Vega, R.; Dong, B. A hierarchical approach using machine learning methods in solar photovoltaic energy production forecasting. Energies 2016, 9, 55. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, P.; Irwin, D.; Shenoy, P. Predicting solar generation from weather forecasts using machine learning. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), Brussels, Belgium, 17–20 October 2011; pp. 528–533. [Google Scholar]
- Mashohor, S.; Samsudin, K.; Noor, A.M.; Rahman, A.R.A. Evaluation of genetic algorithm based solar tracking system for photovoltaic panels. In Proceedings of the 2008 IEEE International Conference on Sustainable Energy Technologies, Singapore, 24–27 November 2008; pp. 269–273. [Google Scholar]
- Atia, D.M.; Fahmy, F.H.; Ahmed, N.M.; Dorrah, H.T. Optimal sizing of a solar water heating system based on a genetic algorithm for an aquaculture system. Math. Comput. Model. 2012, 55, 1436–1449. [Google Scholar] [CrossRef]
- Kumar, P.; Jain, G.; Palwalia, D.K. Genetic algorithm based maximum power tracking in solar power generation. In Proceedings of the 2015 International Conference on Power and Advanced Control Engineering (ICPACE), Bengaluru, India, 12–14 August 2015; pp. 1–6. [Google Scholar]
- Souliotis, M.; Kalogirou, S.; Tripanagnostopoulos, Y. Modelling of an ICS solar water heater using artificial neural networks and TRNSYS. Renew. Energy 2009, 34, 1333–1339. [Google Scholar] [CrossRef]
- Monteiro, C.; Santos, T.; Fernandez-Jimenez, L.A.; Ramirez-Rosado, I.J.; Terreros-Olarte, M.S. Short-term power forecasting model for photovoltaic plants based on historical similarity. Energies 2013, 6, 2624–2643. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M.; Arab, A.H.; Guessoum, A. An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: Application for isolated sites in Algeria. Renew. Energy 2005, 30, 1501–1524. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M.; Kalogirou, S.A. An adaptive wavelet-network model for forecasting daily total solar-radiation. Appl. Energy 2006, 83, 705–722. [Google Scholar] [CrossRef]
- Pedro, H.T.; Coimbra, C.F. Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 2012, 86, 2017–2028. [Google Scholar] [CrossRef]
- Mandal, P.; Madhira, S.T.S.; Ul haque, A.; Meng, J.; Pineda, R.L. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Comput. Sci. 2012, 12, 332–337. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl. Energy 2004, 77, 383–405. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A. ANFIS-based modelling for photovoltaic power supply system: A case study. Renew. Energy 2011, 36, 250–258. [Google Scholar] [CrossRef]
- Mellit, A.; Kalogirou, S.A.; Shaari, S.; Salhi, H.; Arab, A.H. Methodology for predicting sequences of mean monthly clearness index and daily solar radiation data in remote areas: Application for sizing a stand-alone PV system. Renew. Energy 2008, 33, 1570–1590. [Google Scholar] [CrossRef]
- Mellit, A.; Arab, A.H.; Khorissi, N.; Salhi, H. An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–6. [Google Scholar]
- Amirkhani, S.; Nasirivatan, S.; Kasaeian, A.; Hajinezhad, A. ANN and ANFIS models to predict the performance of solar chimney power plants. Renew. Energy 2015, 83, 597–607. [Google Scholar] [CrossRef]
- Caputo, D.; Grimaccia, F.; Mussetta, M.; Zich, R.E. Photovoltaic plants predictive model by means of ANN trained by a hybrid evolutionary algorithm. In Proceedings of the The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010; pp. 1–6. [Google Scholar]
- Ji, W.; Chee, K.C. Prediction of hourly solar radiation using a novel hybrid model of ARMA and TDNN. Sol. Energy 2011, 85, 808–817. [Google Scholar] [CrossRef]
- Ogliari, E.; Grimaccia, F.; Leva, S.; Mussetta, M. Hybrid predictive models for accurate forecasting in PV systems. Energies 2013, 6, 1918–1929. [Google Scholar] [CrossRef]
- Bouzerdoum, M.; Mellit, A.; Pavan, A.M. A hybrid model (SARIMA–SVM) for short-term power forecasting of a small-scale grid-connected photovoltaic plant. Sol. Energy 2013, 98, 226–235. [Google Scholar] [CrossRef]
- Olatomiwa, L.; Mekhilef, S.; Shamshirband, S.; Mohammadi, K.; Petković, D.; Sudheer, C. A support vector machine–firefly algorithm-based model for global solar radiation prediction. Sol. Energy 2015, 115, 632–644. [Google Scholar] [CrossRef]
- Satrape, J.V. Potential Impacts of Artificial Intelligence Expert Systems on Geothermal Well Drilling Costs; Technical Report; Meridian Corp.: Alexandria, VA, USA, 1987. [Google Scholar]
- Pruess, K. Modeling of geothermal reservoirs: Fundamental processes, computer simulation and field applications. Geothermics 1990, 19, 3–15. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Butler, S.J.; Swenson, D.; Hardeman, B. Review of the state-of-the-art of numerical simulation of enhanced geothermal systems. Trans. Geotherm. Resour. Counc. 2000, 24, 181–186. [Google Scholar]
- O’Sullivan, M.J.; Pruess, K.; Lippmann, M.J. State of the art of geothermal reservoir simulation. Geothermics 2001, 30, 395–429. [Google Scholar] [CrossRef]
- O’Sullivan, M.J.; Yeh, A.; Mannington, W.I. A history of numerical modelling of the Wairakei geothermal field. Geothermics 2009, 38, 155–168. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M. Modelling of a vertical ground coupled heat pump system by using artificial neural networks. Expert Syst. Appl. 2009, 36, 10229–10238. [Google Scholar] [CrossRef]
- Bassam, A.; Santoyo, E.; Andaverde, J.; Hernández, J.; Espinoza-Ojeda, O.M. Estimation of static formation temperatures in geothermal wells by using an artificial neural network approach. Comput. Geosci. 2010, 36, 1191–1199. [Google Scholar] [CrossRef]
- Arslan, O. Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34. Energy 2011, 36, 2528–2534. [Google Scholar] [CrossRef]
- Arslan, O.; Yetik, O. ANN based optimization of supercritical ORC-Binary geothermal power plant: Simav case study. Appl. Therm. Eng. 2011, 31, 3922–3928. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Florides, G.A.; Pouloupatis, P.D.; Panayides, I.; Joseph-Stylianou, J.; Zomeni, Z. Artificial neural networks for the generation of geothermal maps of ground temperature at various depths by considering land configuration. Energy 2012, 48, 233–240. [Google Scholar] [CrossRef]
- Keçebaş, A.; Yabanova, İ. Thermal monitoring and optimization of geothermal district heating systems using artificial neural network: A case study. Energy Build. 2012, 50, 339–346. [Google Scholar] [CrossRef]
- Del Castillo, A.A.; Santoyo, E.; García-Valladares, O. A new void fraction correlation inferred from artificial neural networks for modeling two-phase flows in geothermal wells. Comput. Geosci. 2012, 41, 25–39. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Scholz, M. Artificial neural network simulation of combined permeable pavement and earth energy systems treating storm water. J. Environ. Eng. 2012, 138, 499–509. [Google Scholar] [CrossRef]
- Yabanova, I.; Keçebaş, A. Development of ANN model for geothermal district heating system and a novel PID-based control strategy. Appl. Therm. Eng. 2013, 51, 908–916. [Google Scholar] [CrossRef]
- Arslan, O.; Yetik, O. ANN modeling of an ORC-binary geothermal power plant: Simav case study. Energy Sources Part A Recover. Util. Environ. Eff. 2014, 36, 418–428. [Google Scholar] [CrossRef]
- Yeo, I.A.; Yee, J.J. A proposal for a site location planning model of environmentally friendly urban energy supply plants using an environment and energy geographical information system (E-GIS) database (DB) and an artificial neural network (ANN). Appl. Energy 2014, 119, 99–117. [Google Scholar] [CrossRef]
- Kalogirou, S.A.; Florides, G.A.; Pouloupatis, P.D.; Christodoulides, P.; Joseph-Stylianou, J. Artificial neural networks for the generation of a conductivity map of the ground. Renew. Energy 2015, 77, 400–407. [Google Scholar] [CrossRef]
- Bassam, A.; del Castillo, A.Á.; García-Valladares, O.; Santoyo, E. Determination of pressure drops in flowing geothermal wells by using artificial neural networks and wellbore simulation tools. Appl. Therm. Eng. 2015, 75, 1217–1228. [Google Scholar] [CrossRef]
- Sayyaadi, H.; Amlashi, E.H.; Amidpour, M. Multi-objective optimization of a vertical ground source heat pump using evolutionary algorithm. Energy Convers. Manag. 2009, 50, 2035–2046. [Google Scholar] [CrossRef]
- Beck, M.; de Paly, M.; Hecht-Méndez, J.; Bayer, P.; Zell, A. Evaluation of the performance of evolutionary algorithms for optimization of low-enthalpy geothermal heating plants. In Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, Philadelphia, PA, USA, 7–11 July 2012; pp. 1047–1054. [Google Scholar]
- Farghally, H.M.; Atia, D.M.; El-Madany, H.T.; Fahmy, F.H. Control methodologies based on geothermal recirculating aquaculture system. Energy 2014, 78, 826–833. [Google Scholar] [CrossRef]
- Farghally, H.M.; Atia, D.M.; El-madany, H.T.; Fahmy, F.H. Fuzzy Logic Controller based on geothermal recirculating aquaculture system. Egypt. J. Aquat. Res. 2014, 40, 103–109. [Google Scholar] [CrossRef]
- Esen, H.; Inalli, M. ANN and ANFIS models for performance evaluation of a vertical ground source heat pump system. Expert Syst. Appl. 2010, 37, 8134–8147. [Google Scholar] [CrossRef]
- Şahin, A.Ş.; Yazıcı, H. Thermodynamic evaluation of the Afyon geothermal district heating system by using neural network and neuro-fuzzy. J. Volcanol. Geotherm. Res. 2012, 233, 65–71. [Google Scholar] [CrossRef]
- Porkhial, S.; Salehpour, M.; Ashraf, H.; Jamali, A. Modeling and prediction of geothermal reservoir temperature behavior using evolutionary design of neural networks. Geothermics 2015, 53, 320–327. [Google Scholar] [CrossRef]
- Kishor, N.; Saini, R.; Singh, S. A review on hydropower plant models and control. Renew. Sustain. Energy Rev. 2007, 11, 776–796. [Google Scholar] [CrossRef]
- Nourani, V.; Baghanam, A.H.; Adamowski, J.; Kisi, O. Applications of hybrid wavelet–artificial intelligence models in hydrology: A review. J. Hydrol. 2014, 514, 358–377. [Google Scholar] [CrossRef]
- Smith, J.; Eli, R.N. Neural-network models of rainfall-runoff process. J. Water Resour. Plan. Manag. 1995, 121, 499–508. [Google Scholar] [CrossRef]
- Dolling, O.R.; Varas, E.A. Artificial neural networks for streamflow prediction. J. Hydraul. Res. 2002, 40, 547–554. [Google Scholar] [CrossRef]
- Kişi, Ö. River flow modeling using artificial neural networks. J. Hydrol. Eng. 2004, 9, 60–63. [Google Scholar] [CrossRef]
- Estropez, N.; Nagasaka, K. A month ahead micro-hydro power generation scheduling using artificial neural network. In Proceedings of the IEEE Power Engineering Society General Meeting, 2005, San Francisco, CA, USA, 16 June 2005; pp. 28–34. [Google Scholar]
- Carneiro, A.A.F.M.; Leite, P.T.; Silva Filho, D.; Carvalho, A. Genetic algorithms applied to hydrothermal system scheduling. In Proceedings of the POWERCON’98. 1998 International Conference on Power System Technology. Proceedings (Cat. No. 98EX151), Beijing, China, 18–21 August 1998; Volume 1, pp. 547–551. [Google Scholar]
- Gil, E.; Bustos, J.; Rudnick, H. Short-term hydrothermal generation scheduling model using a genetic algorithm. IEEE Trans. Power Syst. 2003, 18, 1256–1264. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, Y.; Yuan, Y. Improved self-adaptive chaotic genetic algorithm for hydrogeneration scheduling. J. Water Resour. Plan. Manag. 2008, 134, 319–325. [Google Scholar] [CrossRef]
- Adhikary, P.; Roy, P.K.; Mazumdar, A. Selection of Penstock material for small hydropower project—A Fuzzy Logic Approach. Int. J. Adv. Sci. Tech. Res. 2012, 6, 521–528. [Google Scholar]
- Chang, L.C.; Chang, F.J. Intelligent control for modelling of real-time reservoir operation. Hydrol. Process. 2001, 15, 1621–1634. [Google Scholar] [CrossRef]
- Firat, M.; Güngör, M. River flow estimation using adaptive neuro fuzzy inference system. Math. Comput. Simul. 2007, 75, 87–96. [Google Scholar] [CrossRef]
- Molina, J.M.; Isasi, P.; Berlanga, A.; Sanchis, A. Hydroelectric power plant management relying on neural networks and expert system integration. Eng. Appl. Artif. Intell. 2000, 13, 357–369. [Google Scholar] [CrossRef]
- Sinha, S.; Patel, R.; Prasad, R. Application of GA and PSO tuned fuzzy controller for AGC of three area thermal-thermal-hydro power system. Int. J. Comput. Theory Eng. 2010, 2, 238–244. [Google Scholar] [CrossRef]
- Toro, C.H.F.; Meire, S.G.; Gálvez, J.F.; Fdez-Riverola, F. A hybrid artificial intelligence model for river flow forecasting. Appl. Soft Comput. 2013, 13, 3449–3458. [Google Scholar] [CrossRef]
- Uzlu, E.; Akpınar, A.; Özturk, H.T.; Nacar, S.; Kankal, M. Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey. Energy 2014, 69, 638–647. [Google Scholar] [CrossRef]
- Van Aartrijk, M.L.; Tagliola, C.P.; Adriaans, P.W. AI on the ocean: The robosail project. In Proceedings of the ECAI; Citeseer: Princeton, NJ, USA, 2002; pp. 653–657. [Google Scholar]
- Jain, P.; Deo, M. Neural networks in ocean engineering. Ships Offshore Struct. 2006, 1, 25–35. [Google Scholar] [CrossRef]
- Iglesias, G.; Carballo, R. Wave resource in El Hierro—An island towards energy self-sufficiency. Renew. Energy 2011, 36, 689–698. [Google Scholar] [CrossRef]
- Makarynskyy, O.; Makarynska, D.; Kuhn, M.; Featherstone, W. Predicting sea level variations with artificial neural networks at Hillarys Boat Harbour, Western Australia. Estuar. Coast. Shelf Sci. 2004, 61, 351–360. [Google Scholar] [CrossRef]
- Londhe, S.; Panchang, V. One-day wave forecasts based on artificial neural networks. J. Atmos. Ocean. Technol. 2006, 23, 1593–1603. [Google Scholar] [CrossRef]
- Makarynskyy, O.; Makarynska, D. Wave prediction and data supplementation with artificial neural networks. J. Coast. Res. 2007, 23, 951–960. [Google Scholar] [CrossRef]
- Toprak, Z.F.; Cigizoglu, H.K. Predicting longitudinal dispersion coefficient in natural streams by artificial intelligence methods. Hydrol. Process. Int. J. 2008, 22, 4106–4129. [Google Scholar] [CrossRef]
- Chen, C.Y.; Lin, J.W.; Lee, W.I.; Chen, C.W. Fuzzy control for an oceanic structure: A case study in time-delay TLP system. J. Vib. Control 2010, 16, 147–160. [Google Scholar] [CrossRef]
- Ghorbani, M.; Makarynskyy, O.; Shiri, J.; Makarynska, D. Genetic programming for sea level predictions in an island environment. Int. J. Ocean Clim. Syst. 2010, 1, 27–35. [Google Scholar] [CrossRef]
- Malekmohamadi, I.; Ghiassi, R.; Yazdanpanah, M. Wave hindcasting by coupling numerical model and artificial neural networks. Ocean Eng. 2008, 35, 417–425. [Google Scholar] [CrossRef]
- De Paz, J.F.; Bajo, J.; González, A.; Rodríguez, S.; Corchado, J.M. Combining case-based reasoning systems and support vector regression to evaluate the atmosphere–ocean interaction. Knowl. Inf. Syst. 2012, 30, 155–177. [Google Scholar] [CrossRef]
- Karimi, S.; Kisi, O.; Shiri, J.; Makarynskyy, O. Neuro-fuzzy and neural network techniques for forecasting sea level in Darwin Harbor, Australia. Comput. Geosci. 2013, 52, 50–59. [Google Scholar] [CrossRef]
- Shabani, N.; Akhtari, S.; Sowlati, T. Value chain optimization of forest biomass for bioenergy production: A review. Renew. Sustain. Energy Rev. 2013, 23, 299–311. [Google Scholar] [CrossRef]
- Yang, H.; Ring, Z.; Briker, Y.; McLean, N.; Friesen, W.; Fairbridge, C. Neural network prediction of cetane number and density of diesel fuel from its chemical composition determined by LC and GC–MS. Fuel 2002, 81, 65–74. [Google Scholar] [CrossRef]
- Strik, D.P.; Domnanovich, A.M.; Zani, L.; Braun, R.; Holubar, P. Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox. Environ. Model. Softw. 2005, 20, 803–810. [Google Scholar] [CrossRef]
- Ramadhas, A.; Jayaraj, S.; Muraleedharan, C.; Padmakumari, K. Artificial neural networks used for the prediction of the cetane number of biodiesel. Renew. Energy 2006, 31, 2524–2533. [Google Scholar] [CrossRef]
- Ozkaya, B.; Demir, A.; Bilgili, M.S. Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ. Model. Softw. 2007, 22, 815–822. [Google Scholar] [CrossRef]
- Balabin, R.M.; Lomakina, E.I.; Safieva, R.Z. Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel 2011, 90, 2007–2015. [Google Scholar] [CrossRef]
- Kumar, S.; Srinivasa Pai, P.; Shrinivasa Rao, B. Radial-Basis-Function-Network-Based Prediction of Performance and Emission Characteristics in a Bio Diesel Engine Run on WCO Ester. Adv. Artif. Intell. 2012, 2012, 610487. [Google Scholar] [CrossRef]
- Balabin, R.M.; Safieva, R.Z. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data. Anal. Chim. Acta 2011, 689, 190–197. [Google Scholar] [CrossRef]
- Izquierdo, J.; Minciardi, R.; Montalvo, I.; Robba, M.; Tavera, M. Particle Swarm Optimization for the biomass supply chain strategic planning. In Proceedings of the 4th International Congress on Environmental Modelling and Software (iEMSs 2008), Barcelona, Catalonia, 24–28 June 2018. [Google Scholar]
- Ghugare, S.; Tiwary, S.; Elangovan, V.; Tambe, S. Prediction of higher heating value of solid biomass fuels using artificial intelligence formalisms. Bioenergy Res. 2014, 7, 681–692. [Google Scholar] [CrossRef]
- Koutroumanidis, T.; Ioannou, K.; Arabatzis, G. Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA–ANN model. Energy Policy 2009, 37, 3627–3634. [Google Scholar] [CrossRef]
- Romeo, L.M.; Gareta, R. Fouling control in biomass boilers. Biomass Bioenergy 2009, 33, 854–861. [Google Scholar] [CrossRef]
- Qdais, H.A.; Hani, K.B.; Shatnawi, N. Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 2010, 54, 359–363. [Google Scholar] [CrossRef]
- Kana, E.G.; Oloke, J.; Lateef, A.; Adesiyan, M. Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energy 2012, 46, 276–281. [Google Scholar] [CrossRef]
- Petrone, R.; Zheng, Z.; Hissel, D.; Péra, M.C.; Pianese, C.; Sorrentino, M.; Becherif, M.; Yousfi-Steiner, N. A review on model-based diagnosis methodologies for PEMFCs. Int. J. Hydrogen Energy 2013, 38, 7077–7091. [Google Scholar] [CrossRef]
- Zheng, Z.; Petrone, R.; Péra, M.C.; Hissel, D.; Becherif, M.; Pianese, C.; Steiner, N.Y.; Sorrentino, M. A review on non-model based diagnosis methodologies for PEM fuel cell stacks and systems. Int. J. Hydrogen Energy 2013, 38, 8914–8926. [Google Scholar] [CrossRef]
- Garg, A.; Vijayaraghavan, V.; Mahapatra, S.; Tai, K.; Wong, C. Performance evaluation of microbial fuel cell by artificial intelligence methods. Expert Syst. Appl. 2014, 41, 1389–1399. [Google Scholar] [CrossRef]
- Ho, T.; Karri, V.; Lim, D.; Barret, D. An investigation of engine performance parameters and artificial intelligent emission prediction of hydrogen powered car. Int. J. Hydrogen Energy 2008, 33, 3837–3846. [Google Scholar] [CrossRef]
- Hatti, M.; Tioursi, M. Dynamic neural network controller model of PEM fuel cell system. Int. J. Hydrogen Energy 2009, 34, 5015–5021. [Google Scholar] [CrossRef]
- Chávez-Ramírez, A.U.; Mu noz-Guerrero, R.; Durón-Torres, S.; Ferraro, M.; Brunaccini, G.; Sergi, F.; Antonucci, V.; Arriaga, L. High power fuel cell simulator based on artificial neural network. Int. J. Hydrogen Energy 2010, 35, 12125–12133. [Google Scholar] [CrossRef]
- Yap, W.K.; Ho, T.; Karri, V. Exhaust emissions control and engine parameters optimization using artificial neural network virtual sensors for a hydrogen-powered vehicle. Int. J. Hydrogen Energy 2012, 37, 8704–8715. [Google Scholar] [CrossRef]
- Vijayaraghavan, V.; Garg, A.; Wong, C.H.; Tai, K.; Bhalerao, Y. Predicting the mechanical characteristics of hydrogen functionalized graphene sheets using artificial neural network approach. J. Nanostruct. Chem. 2013, 3, 83. [Google Scholar] [CrossRef]
- Marra, D.; Sorrentino, M.; Pianese, C.; Iwanschitz, B. A neural network estimator of Solid Oxide Fuel Cell performance for on-field diagnostics and prognostics applications. J. Power Sources 2013, 241, 320–329. [Google Scholar] [CrossRef]
- Tardast, A.; Rahimnejad, M.; Najafpour, G.; Ghoreyshi, A.; Premier, G.C.; Bakeri, G.; Oh, S.E. Use of artificial neural network for the prediction of bioelectricity production in a membrane less microbial fuel cell. Fuel 2014, 117, 697–703. [Google Scholar] [CrossRef]
- Ho, T.; Karri, V. Fuzzy expert system to estimate ignition timing for hydrogen car. In Advances in Neural Networks-ISNN 2008, Proceedings of the 5th International Symposium on Neural Networks, ISNN 2008, Beijing, China, 24–28 September 2008; Proceedings, Part II 5; Springer: Berlin/Heidelberg, Germany, 2008; pp. 570–579. [Google Scholar]
- Flemming, A.; Adamy, J. Modeling solid oxide fuel cells using continuous-time recurrent fuzzy systems. Eng. Appl. Artif. Intell. 2008, 21, 1289–1300. [Google Scholar] [CrossRef]
- Caux, S.; Hankache, W.; Fadel, M.; Hissel, D. On-line fuzzy energy management for hybrid fuel cell systems. Int. J. Hydrogen Energy 2010, 35, 2134–2143. [Google Scholar] [CrossRef]
- Caux, S.; Wanderley-Honda, D.; Hissel, D.; Fadel, M. On-line energy management for HEV based on particle swarm optimization. Eur. Phys. J. Appl. Phys. 2011, 54, 23403. [Google Scholar] [CrossRef]
- Nath, K.; Das, D. Modeling and optimization of fermentative hydrogen production. Bioresour. Technol. 2011, 102, 8569–8581. [Google Scholar] [CrossRef]
- Askarzadeh, A.; Rezazadeh, A. A new heuristic optimization algorithm for modeling of proton exchange membrane fuel cell: Bird mating optimizer. Int. J. Energy Res. 2013, 37, 1196–1204. [Google Scholar] [CrossRef]
- Entchev, E.; Yang, L. Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation. J. Power Sources 2007, 170, 122–129. [Google Scholar] [CrossRef]
- Karri, V.; Ho, T.; Madsen, O. Artificial neural networks and neuro-fuzzy inference systems as virtual sensors for hydrogen safety prediction. Int. J. Hydrogen Energy 2008, 33, 2857–2867. [Google Scholar] [CrossRef]
- Karri, V.; Ho, T.N. Predictive models for emission of hydrogen powered car using various artificial intelligent tools. Neural Comput. Appl. 2009, 18, 469–476. [Google Scholar] [CrossRef]
- Becker, S.; Karri, V. Predictive models for PEM-electrolyzer performance using adaptive neuro-fuzzy inference systems. Int. J. Hydrogen Energy 2010, 35, 9963–9972. [Google Scholar] [CrossRef]
- Amirinejad, M.; Tavajohi-Hasankiadeh, N.; Madaeni, S.S.; Navarra, M.A.; Rafiee, E.; Scrosati, B. Adaptive neuro-fuzzy inference system and artificial neural network modeling of proton exchange membrane fuel cells based on nanocomposite and recast Nafion membranes. Int. J. Energy Res. 2013, 37, 347–357. [Google Scholar] [CrossRef]
- Zhu, L.; Han, J.; Peng, D.; Wang, T.; Tang, T.; Charpentier, J.F. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship. In Proceedings of the 2014 first international conference on green energy ICGE 2014, Sfax, Tunisia, 25–27 March 2014; pp. 107–112. [Google Scholar]
- Minqiang, P.; Dehuai, Z.; Gang, X. Temperature prediction of hydrogen producing reactor using SVM regression with PSO. J. Comput. 2010, 5, 388–393. [Google Scholar]
- Prakasham, R.; Sathish, T.; Brahmaiah, P. Imperative role of neural networks coupled genetic algorithm on optimization of biohydrogen yield. Int. J. Hydrogen Energy 2011, 36, 4332–4339. [Google Scholar] [CrossRef]
- Bozorgmehri, S.; Hamedi, M. Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm. Fuel Cells 2012, 12, 11–23. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, N.; Yang, S. Hybrid artificial bee colony algorithm for parameter estimation of proton exchange membrane fuel cell. Int. J. Hydrogen Energy 2013, 38, 5796–5806. [Google Scholar] [CrossRef]
- Ho, T.; Karri, V. Basic tuning of hydrogen powered car and artificial intelligent prediction of hydrogen engine characteristics. Int. J. Hydrogen Energy 2010, 35, 10004–10012. [Google Scholar] [CrossRef]
- Luna-Rubio, R.; Trejo-Perea, M.; Vargas-Vázquez, D.; Ríos-Moreno, G. Optimal sizing of renewable hybrids energy systems: A review of methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Zhou, W.; Lou, C.; Li, Z.; Lu, L.; Yang, H. Current status of research on optimum sizing of stand-alone hybrid solar–wind power generation systems. Appl. Energy 2010, 87, 380–389. [Google Scholar] [CrossRef]
- Fadaee, M.; Radzi, M.A.M. Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review. Renew. Sustain. Energy Rev. 2012, 16, 3364–3369. [Google Scholar] [CrossRef]
- Al-Alawi, A.; Al-Alawi, S.M.; Islam, S.M. Predictive control of an integrated PV-diesel water and power supply system using an artificial neural network. Renew. Energy 2007, 32, 1426–1439. [Google Scholar] [CrossRef]
- Chávez-Ramírez, A.; Vallejo-Becerra, V.; Cruz, J.; Ornelas, R.; Orozco, G.; Munoz-Guerrero, R.; Arriaga, L. A hybrid power plant (Solar–Wind–Hydrogen) model based in artificial intelligence for a remote-housing application in Mexico. Int. J. Hydrogen Energy 2013, 38, 2641–2655. [Google Scholar] [CrossRef]
- Berrazouane, S.; Mohammedi, K. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system. Energy Convers. Manag. 2014, 78, 652–660. [Google Scholar] [CrossRef]
- Hakimi, S.; Moghaddas-Tafreshi, S. Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran. Renew. Energy 2009, 34, 1855–1862. [Google Scholar] [CrossRef]
- Zeng, J.; Li, M.; Liu, J.; Wu, J.; Ngan, H. Operational optimization of a stand-alone hybrid renewable energy generation system based on an improved genetic algorithm. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–6. [Google Scholar]
- Tudu, B.; Majumder, S.; Mandal, K.; Chakraborty, N. Optimal unit sizing of stand-alone renewable hybrid energy system using bees algorithm. In Proceedings of the 2011 International Conference on Energy, Automation and Signal, Bhubaneswar, India, 28–30 December 2011; pp. 1–6. [Google Scholar]
- Khatib, T.; Mohamed, A.; Sopian, K. Optimization of a PV/wind micro-grid for rural housing electrification using a hybrid iterative/genetic algorithm: Case study of Kuala Terengganu, Malaysia. Energy Build. 2012, 47, 321–331. [Google Scholar] [CrossRef]
- Nasiraghdam, H.; Jadid, S. Optimal hybrid PV/WT/FC sizing and distribution system reconfiguration using multi-objective artificial bee colony (MOABC) algorithm. Sol. Energy 2012, 86, 3057–3071. [Google Scholar] [CrossRef]
- Hong, Y.Y.; Lian, R.C. Optimal sizing of hybrid wind/PV/diesel generation in a stand-alone power system using Markov-based genetic algorithm. IEEE Trans. Power Deliv. 2012, 27, 640–647. [Google Scholar] [CrossRef]
- Maleki, A.; Askarzadeh, A. Comparative study of artificial intelligence techniques for sizing of a hydrogen-based stand-alone photovoltaic/wind hybrid system. Int. J. Hydrogen Energy 2014, 39, 9973–9984. [Google Scholar] [CrossRef]
- Rajkumar, R.; Ramachandaramurthy, V.K.; Yong, B.; Chia, D. Techno-economical optimization of hybrid pv/wind/battery system using Neuro-Fuzzy. Energy 2011, 36, 5148–5153. [Google Scholar] [CrossRef]
- Natsheh, E.M.; Albarbar, A. Hybrid power systems energy controller based on neural network and fuzzy logic. Smart Grid Renew. Energy 2013, 4, 187–197. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Lu, Y. A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system. Renew. Energy 2017, 103, 620–629. [Google Scholar] [CrossRef]
- Naderloo, L.; Javadikia, H.; Mostafaei, M. Modeling the energy ratio and productivity of biodiesel with different reactor dimensions and ultrasonic power using ANFIS. Renew. Sustain. Energy Rev. 2017, 70, 56–64. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Xia, L.; Lin, A.; Hu, B.; Zhu, H. Prediction and comparison of solar radiation using improved empirical models and Adaptive Neuro-Fuzzy Inference Systems. Renew. Energy 2017, 106, 343–353. [Google Scholar] [CrossRef]
- Kavousi-Fard, A. A hybrid accurate model for tidal current prediction. IEEE Trans. Geosci. Remote Sens. 2016, 55, 112–118. [Google Scholar] [CrossRef]
- Monjoly, S.; André, M.; Calif, R.; Soubdhan, T. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach. Energy 2017, 119, 288–298. [Google Scholar] [CrossRef]
- Sepasi, S.; Reihani, E.; Howlader, A.M.; Roose, L.R.; Matsuura, M.M. Very short term load forecasting of a distribution system with high PV penetration. Renew. Energy 2017, 106, 142–148. [Google Scholar] [CrossRef]
- Parvizimosaed, M.; Farmani, F.; Monsef, H.; Rahimi-Kian, A. A multi-stage Smart Energy Management System under multiple uncertainties: A data mining approach. Renew. Energy 2017, 102, 178–189. [Google Scholar] [CrossRef]
- Kermadi, M.; Berkouk, E.M. Artificial intelligence-based maximum power point tracking controllers for Photovoltaic systems: Comparative study. Renew. Sustain. Energy Rev. 2017, 69, 369–386. [Google Scholar] [CrossRef]
- Voyant, C.; Notton, G.; Kalogirou, S.; Nivet, M.L.; Paoli, C.; Motte, F.; Fouilloy, A. Machine learning methods for solar radiation forecasting: A review. Renew. Energy 2017, 105, 569–582. [Google Scholar] [CrossRef]
- Wasilewski, J.; Baczynski, D. Short-term electric energy production forecasting at wind power plants in pareto-optimality context. Renew. Sustain. Energy Rev. 2017, 69, 177–187. [Google Scholar] [CrossRef]
- Kumar, A.; Sah, B.; Singh, A.R.; Deng, Y.; He, X.; Kumar, P.; Bansal, R.C. A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renew. Sustain. Energy Rev. 2017, 69, 596–609. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Deng, S.; Xu, W.; Zhang, Y. A critical review of the models used to estimate solar radiation. Renew. Sustain. Energy Rev. 2017, 70, 314–329. [Google Scholar] [CrossRef]
- Messalti, S.; Harrag, A.; Loukriz, A. A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renew. Sustain. Energy Rev. 2017, 68, 221–233. [Google Scholar] [CrossRef]
- Chang, G.; Lu, H.; Chang, Y.; Lee, Y. An improved neural network-based approach for short-term wind speed and power forecast. Renew. Energy 2017, 105, 301–311. [Google Scholar] [CrossRef]
- Ueckerdt, F.; Hirth, L.; Luderer, G.; Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 2013, 63, 61–75. [Google Scholar] [CrossRef]
- Hirth, L.; Ueckerdt, F.; Edenhofer, O. Integration costs revisited–An economic framework for wind and solar variability. Renew. Energy 2015, 74, 925–939. [Google Scholar] [CrossRef]
- Martinez-Anido, C.B.; Botor, B.; Florita, A.R.; Draxl, C.; Lu, S.; Hamann, H.F.; Hodge, B.M. The value of day-ahead solar power forecasting improvement. Sol. Energy 2016, 129, 192–203. [Google Scholar] [CrossRef]
- Lu, S.; Hwang, Y.; Khabibrakhmanov, I.; Marianno, F.J.; Shao, X.; Zhang, J.; Hodge, B.M.; Hamann, H.F. Machine learning based multi-physical-model blending for enhancing renewable energy forecast—Improvement via situation dependent error correction. In Proceedings of the 2015 European control conference (ECC), Linz, Austria, 15–17 July 2015; pp. 283–290. [Google Scholar]
- National Grid turns to AI for improved solar power forecasts. Energy News Live, 26 July 2019. Available online: https://www.utilitycentre.co.uk/national-grid-turns-to-ai-for-improved-solar-power-forecasts/ (accessed on 18 February 2025).
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Santos, G.; Pinto, T.; Morais, H.; Sousa, T.M.; Pereira, I.F.; Fernandes, R.; Praça, I.; Vale, Z. Multi-agent simulation of competitive electricity markets: Autonomous systems cooperation for European market modeling. Energy Convers. Manag. 2015, 99, 387–399. [Google Scholar] [CrossRef]
- EUPHEMIA Public Description: Single Price Coupling Algorithm. Nemo Committee. 2019. Available online: https://www.nordpoolgroup.com/globalassets/download-center/single-day-ahead-coupling/euphemia-public-description.pdf (accessed on 15 February 2025).
- Hernandez, L.; Baladron, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J.; Massana, J. A survey on electric power demand forecasting: Future trends in smart grids, microgrids and smart buildings. IEEE Commun. Surv. Tutor. 2014, 16, 1460–1495. [Google Scholar] [CrossRef]
- Elkin C, W.S. Machine learning can boost the value of wind energy. Deepmind Blog, 26 February 2019. Available online: https://deepmind.google/discover/blog/machine-learning-can-boost-the-value-of-wind-energy/ (accessed on 5 January 2025).
- Wang, Y.; Chen, Q.; Hong, T.; Kang, C. Review of smart meter data analytics: Applications, methodologies, and challenges. IEEE Trans. Smart Grid 2018, 10, 3125–3148. [Google Scholar] [CrossRef]
- Saxena, H.; Aponte, O.; McConky, K.T. A hybrid machine learning model for forecasting a billing period’s peak electric load days. Int. J. Forecast. 2019, 35, 1288–1303. [Google Scholar] [CrossRef]
- Hirth, L.; Ziegenhagen, I. Balancing power and variable renewables: Three links. Renew. Sustain. Energy Rev. 2015, 50, 1035–1051. [Google Scholar] [CrossRef]
- Van der Veen, R.A.; Hakvoort, R.A. The electricity balancing market: Exploring the design challenge. Util. Policy 2016, 43, 186–194. [Google Scholar] [CrossRef]
- Obersteiner, C.; Siewierski, T.; Andersen, A. Drivers of imbalance cost of wind power: A comparative analysis. In Proceedings of the 2010 7th International Conference on the European Energy Market, Madrid, Spain, 23–25 June 2010; pp. 1–9. [Google Scholar]
- Bertsimas, D.; Gupta, V.; Kallus, N. Data-driven robust optimization. Math. Program. 2018, 167, 235–292. [Google Scholar] [CrossRef]
- Kiran, P.; Chandrakala, K.V. New interactive agent based reinforcement learning approach towards smart generator bidding in electricity market with micro grid integration. Appl. Soft Comput. 2020, 97, 106762. [Google Scholar]
- Mohagheghi, S.; Stoupis, J.; Wang, Z.; Li, Z.; Kazemzadeh, H. Demand response architecture: Integration into the distribution management system. In Proceedings of the 2010 First IEEE International Conference on Smart Grid Communications, Gaithersburg, MD, USA, 4–6 October 2010; pp. 501–506. [Google Scholar]
- Digitalization, I. Digitalization & Energy; IEA: Paris, France, 2017. [Google Scholar]
- Antonopoulos, I.; Robu, V.; Couraud, B.; Kirli, D.; Norbu, S.; Kiprakis, A.; Flynn, D.; Elizondo-Gonzalez, S.; Wattam, S. Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review. Renew. Sustain. Energy Rev. 2020, 130, 109899. [Google Scholar] [CrossRef]
- Ramchurn, S.; Vytelingum, P.; Rogers, A.; Jennings, N. Agent-based control for decentralised demand side management in the smart grid. In Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS ’11), Taipei, Taiwan, 2–6 May 2011. [Google Scholar]
- Rocha, H.R.; Honorato, I.H.; Fiorotti, R.; Celeste, W.C.; Silvestre, L.J.; Silva, J.A. An Artificial Intelligence based scheduling algorithm for demand-side energy management in Smart Homes. Appl. Energy 2021, 282, 116145. [Google Scholar] [CrossRef]
- Pallonetto, F.; De Rosa, M.; Milano, F.; Finn, D.P. Demand response algorithms for smart-grid ready residential buildings using machine learning models. Appl. Energy 2019, 239, 1265–1282. [Google Scholar] [CrossRef]
- Liu, Z.; Wierman, A.; Chen, Y.; Razon, B.; Chen, N. Data center demand response: Avoiding the coincident peak via workload shifting and local generation. ACM SIGMETRICS Perform. Eval. Rev. 2013, 41, 341–342. [Google Scholar] [CrossRef]
- Chen, M.; Gao, C.; Song, M.; Chen, S.; Li, D.; Liu, Q. Internet data centers participating in demand response: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 117, 109466. [Google Scholar] [CrossRef]
- Elkin C, W.S. Data Centres and Data Transmission Networks; IEA: Paris, France, 2020. [Google Scholar]
- Qureshi, A.; Weber, R.; Balakrishnan, H.; Guttag, J.; Maggs, B. Cutting the electric bill for internet-scale systems. ACM SIGCOMM Comput. Commun. Rev. 2009, 39, 123–134. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Lin, X.; Mohsenian-Rad, H. Proactive demand response for data centers: A win-win solution. IEEE Trans. Smart Grid 2015, 7, 1584–1596. [Google Scholar] [CrossRef]
- Kang, D.K.; Yang, E.J.; Youn, C.H. Deep learning-based sustainable data center energy cost minimization with temporal MACRO/MICRO scale management. IEEE Access 2018, 7, 5477–5491. [Google Scholar] [CrossRef]
- Ni, J.; Bai, X. A review of air conditioning energy performance in data centers. Renew. Sustain. Energy Rev. 2017, 67, 625–640. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Y.; Tao, D.; Guan, K. Transforming cooling optimization for green data center via deep reinforcement learning. IEEE Trans. Cybern. 2019, 50, 2002–2013. [Google Scholar] [CrossRef]
- Richard Evans, J.G. DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. Deepmind, 20 July 2016. Available online: https://deepmind.google/discover/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-by-40/ (accessed on 5 January 2025).
- Gao, J.; Jamidar, R. Machine Learning Applications for Data Center Optimization. Google White Pap. Available online: https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/42542.pdf (accessed on 5 January 2025).
- Energy Storage Investments Boom as Battery Costs Halve in the Next Decade. BloombergNEF, 31 July 2019. Available online: https://about.bnef.com/blog/energy-storage-investments-boom-battery-costs-halve-next-decade/ (accessed on 5 January 2025).
- Schmidt, O.; Hawkes, A.; Gambhir, A.; Staffell, I. The future cost of electrical energy storage based on experience rates. Nat. Energy 2017, 2, 17110. [Google Scholar] [CrossRef]
- Rigas, E.S.; Ramchurn, S.D.; Bassiliades, N. Managing electric vehicles in the smart grid using artificial intelligence: A survey. IEEE Trans. Intell. Transp. Syst. 2014, 16, 1619–1635. [Google Scholar] [CrossRef]
- López, K.L.; Gagné, C.; Gardner, M.A. Demand-side management using deep learning for smart charging of electric vehicles. IEEE Trans. Smart Grid 2018, 10, 2683–2691. [Google Scholar] [CrossRef]
- OECD. Global EV Outlook 2019; IEA: Paris, France, 2019. [Google Scholar]
- Coignard, J.; Saxena, S.; Greenblatt, J.; Wang, D. Clean vehicles as an enabler for a clean electricity grid. Environ. Res. Lett. 2018, 13, 054031. [Google Scholar] [CrossRef]
- Severson, K.A.; Attia, P.M.; Jin, N.; Perkins, N.; Jiang, B.; Yang, Z.; Chen, M.H.; Aykol, M.; Herring, P.K.; Fraggedakis, D.; et al. Data-driven prediction of battery cycle life before capacity degradation. Nat. Energy 2019, 4, 383–391. [Google Scholar] [CrossRef]
- Li, Y.; Liu, K.; Foley, A.M.; Zülke, A.; Berecibar, M.; Nanini-Maury, E.; Van Mierlo, J.; Hoster, H.E. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renew. Sustain. Energy Rev. 2019, 113, 109254. [Google Scholar] [CrossRef]
- Finegan, D.P.; Cooper, S.J. Battery safety: Data-driven prediction of failure. Joule 2019, 3, 2599–2601. [Google Scholar] [CrossRef]
- Ng, M.F.; Zhao, J.; Yan, Q.; Conduit, G.J.; Seh, Z.W. Predicting the state of charge and health of batteries using data-driven machine learning. Nat. Mach. Intell. 2020, 2, 161–170. [Google Scholar] [CrossRef]
- Mahmoud, T.S.; Ahmed, B.S.; Hassan, M.Y. The role of intelligent generation control algorithms in optimizing battery energy storage systems size in microgrids: A case study from Western Australia. Energy Convers. Manag. 2019, 196, 1335–1352. [Google Scholar] [CrossRef]
- Weitzel, T.; Glock, C.H. Energy management for stationary electric energy storage systems: A systematic literature review. Eur. J. Oper. Res. 2018, 264, 582–606. [Google Scholar] [CrossRef]
- Samuel, O.; Javaid, N.; Khalid, A.; Khan, W.Z.; Aalsalem, M.Y.; Afzal, M.K.; Kim, B.S. Towards real-time energy management of multi-microgrid using a deep convolution neural network and cooperative game approach. IEEE Access 2020, 8, 161377–161395. [Google Scholar] [CrossRef]
- Henri, G.; Lu, N. A supervised machine learning approach to control energy storage devices. IEEE Trans. Smart Grid 2019, 10, 5910–5919. [Google Scholar] [CrossRef]
- Faunce, T.A.; Prest, J.; Su, D.; Hearne, S.J.; Iacopi, F. On-grid batteries for large-scale energy storage: Challenges and opportunities for policy and technology. MRS Energy Sustain. 2018, 5, E11. [Google Scholar] [CrossRef]
- Energy Storage Investments Boom as Battery Costs Halve in the Next Decade. Renew Economy, 17 June 2019. Available online: https://reneweconomy.com.au/tesla-big-battery-paves-way-for-artificial-intelligence-to-dominate-energy-trades-31949/ (accessed on 5 January 2025).
- Khokhar, S.; Zin, A.A.B.M.; Mokhtar, A.S.B.; Pesaran, M. A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renew. Sustain. Energy Rev. 2015, 51, 1650–1663. [Google Scholar] [CrossRef]
- Singh, U.; Singh, S.N. A new optimal feature selection scheme for classification of power quality disturbances based on ant colony framework. Appl. Soft Comput. 2019, 74, 216–225. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, T.; Zhao, K.; Wiliem, A.; Astin-Walmsley, K.; Lovell, B. Deep inspection: An electrical distribution pole parts study via deep neural networks. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 4170–4174. [Google Scholar]
- Rudin, C.; Waltz, D.; Anderson, R.N.; Boulanger, A.; Salleb-Aouissi, A.; Chow, M.; Dutta, H.; Gross, P.N.; Huang, B.; Ierome, S.; et al. Machine learning for the New York City power grid. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 34, 328–345. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.N.; Jenssen, R.; Roverso, D. Automatic autonomous vision-based power line inspection: A review of current status and the potential role of deep learning. Int. J. Electr. Power Energy Syst. 2018, 99, 107–120. [Google Scholar] [CrossRef]
- Canizo, M.; Onieva, E.; Conde, A.; Charramendieta, S.; Trujillo, S. Real-time predictive maintenance for wind turbines using Big Data frameworks. In Proceedings of the 2017 IEEE International Conference on Prognostics and Health Management (ICPHM), Dallas, TX, USA, 19–21 June 2017; pp. 70–77. [Google Scholar]
- Beyond Minority Report: How AI’s Predictive Power is Revolutionising Maintenance. E.ON, 12 September 2023. Available online: https://www.eon.com/en/innovation/future-of-energy/intelligent-networks/beyond-minority-report-how-ais-predictive-power-is-revolutionising-maintenance.html (accessed on 5 January 2025).
- Huuhtanen, T.; Jung, A. Predictive maintenance of photovoltaic panels via deep learning. In Proceedings of the 2018 IEEE Data Science Workshop (DSW), Lausanne, Switzerland, 4–6 June 2018; pp. 66–70. [Google Scholar]
- Fast, M.; Palme, T. Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant. Energy 2010, 35, 1114–1120. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, W.; Shi, J.; Yu, N. Batch-constrained reinforcement learning for dynamic distribution network reconfiguration. IEEE Trans. Smart Grid 2020, 11, 5357–5369. [Google Scholar] [CrossRef]
- Reza, M.; Hannan, M.; Ker, P.J.; Mansor, M.; Lipu, M.H.; Hossain, M.; Mahlia, T.I. Uncertainty parameters of battery energy storage integrated grid and their modeling approaches: A review and future research directions. J. Energy Storage 2023, 68, 107698. [Google Scholar] [CrossRef]
- Selçuklu, S.B.; Coit, D.; Felder, F. Electricity generation portfolio planning and policy implications of Turkish power system considering cost, emission, and uncertainty. Energy Policy 2023, 173, 113393. [Google Scholar] [CrossRef]
- Joos, M.; Staffell, I. Short-term integration costs of variable renewable energy: Wind curtailment and balancing in Britain and Germany. Renew. Sustain. Energy Rev. 2018, 86, 45–65. [Google Scholar] [CrossRef]
- Javanmard, M.E.; Ghaderi, S. Energy demand forecasting in seven sectors by an optimization model based on machine learning algorithms. Sustain. Cities Soc. 2023, 95, 104623. [Google Scholar] [CrossRef]
- Aguiar-Pérez, J.M.; Pérez-Juárez, M.Á. An insight of deep learning based demand forecasting in smart grids. Sensors 2023, 23, 1467. [Google Scholar] [CrossRef]
- Jin, H.; Guo, J.; Tang, L.; Du, P. Long-term electricity demand forecasting under low-carbon energy transition: Based on the bidirectional feedback between power demand and generation mix. Energy 2024, 286, 129435. [Google Scholar] [CrossRef]
- Ahmed, U.; Mahmood, A.; Tunio, M.A.; Hafeez, G.; Khan, A.R.; Razzaq, S. Investigating boosting techniques’ efficacy in feature selection: A comparative analysis. Energy Rep. 2024, 11, 3521–3532. [Google Scholar] [CrossRef]
- Shadmani, A.; Nikoo, M.R.; Gandomi, A.H.; Wang, R.Q.; Golparvar, B. A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization. Energy Strategy Rev. 2023, 49, 101180. [Google Scholar] [CrossRef]
- Sareen, K.; Panigrahi, B.K.; Shikhola, T.; Nagdeve, R. An integrated decomposition algorithm based bidirectional lstm neural network approach for predicting ocean wave height and ocean wave energy. Ocean Eng. 2023, 281, 114852. [Google Scholar] [CrossRef]
- Gazi, M.S.; Hasan, M.R.; Gurung, N.; Mitra, A. Ethical Considerations in AI-driven Dynamic Pricing in the USA: Balancing Profit Maximization with Consumer Fairness and Transparency. J. Econ. Financ. Account. Stud. 2024, 6, 100–111. [Google Scholar] [CrossRef]
- Amariles, D.R.; Baquero, P.M. Promises and limits of law for a human-centric artificial intelligence. Comput. Law Secur. Rev. 2023, 48, 105795. [Google Scholar] [CrossRef]
- Gilbert, S.; Anderson, S.; Daumer, M.; Li, P.; Melvin, T.; Williams, R. Learning from experience and finding the right balance in the governance of artificial intelligence and digital health technologies. J. Med. Internet Res. 2023, 25, e43682. [Google Scholar] [CrossRef]
- Antonanzas, J.; Osorio, N.; Escobar, R.; Urraca, R.; Martinez-de Pison, F.J.; Antonanzas-Torres, F. Review of photovoltaic power forecasting. Sol. Energy 2016, 136, 78–111. [Google Scholar] [CrossRef]
- OECD. A Chain Reaction: Disruptive Innovation in the Electricity Sector; European Union OECD: Paris, France, 2018. [Google Scholar]
- De Sisternes, F.J.; Jenkins, J.D.; Botterud, A. The value of energy storage in decarbonizing the electricity sector. Appl. Energy 2016, 175, 368–379. [Google Scholar] [CrossRef]
- Eyer, J.; Corey, G. Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide. Available online: https://www.sandia.gov/ess-ssl/publications/SAND2010-0815.pdf (accessed on 5 January 2025).
- Siano, P. Demand response and smart grids—A survey. Renew. Sustain. Energy Rev. 2014, 30, 461–478. [Google Scholar] [CrossRef]
- Strbac, G. Demand side management: Benefits and challenges. Energy Policy 2008, 36, 4419–4426. [Google Scholar] [CrossRef]
- Chang, S.E.; Yu, C. Exploring gamification for live-streaming shopping—Influence of reward, competition, presence and immersion on purchase intention. IEEE Access 2023, 11, 57503–57513. [Google Scholar] [CrossRef]
- Mistrean, L. Factors influencing customer loyalty in the retail banking sector: A study of financial-banking services in the Republic of Moldova. Oppor. Chall. Sustain. 2023, 2, 81–92. [Google Scholar] [CrossRef]
- Elbanna, M.; Muthoifin; Nirwana, A.; Mahmudulhassan. Analysing the Role of Conti Entertain as a Gateway to Digital Gambling Among Teenagers Sharia Perspective: Challenges and Solutions. Demak Univers. J. Islam Sharia 2025, 3, 1–12. [Google Scholar] [CrossRef]
- Roma, P.; Natalicchio, A.; Panniello, U.; Vasi, M.; Messeni Petruzzelli, A. Crowdfunding performance, market performance, and the moderating roles of product innovativeness and experts’ judgment: Evidence from the movie industry. J. Prod. Innov. Manag. 2023, 40, 297–339. [Google Scholar] [CrossRef]
- Golbabaei, F.; Yigitcanlar, T.; Paz, A.; Bunker, J. Perceived Opportunities and Challenges of Autonomous Demand-Responsive Transit Use: What Are the Socio-Demographic Predictors? Sustainability 2023, 15, 11839. [Google Scholar] [CrossRef]
- Pothireddy, K.M.R.; Battula, A.R.; Vuddanti, S. Demand response: What is the optimal curtailment for economical benefit? In Proceedings of the 2023 9th International Conference on Electrical Energy Systems (ICEES), Chennai, India, 23–25 March 2023; pp. 235–239. [Google Scholar]
- Bakare, M.S.; Abdulkarim, A.; Zeeshan, M.; Shuaibu, A.N. A comprehensive overview on demand side energy management towards smart grids: Challenges, solutions, and future direction. Energy Inform. 2023, 6, 4. [Google Scholar] [CrossRef]
- McPherson, M.; Johnson, N.; Strubegger, M. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions. Appl. Energy 2018, 216, 649–661. [Google Scholar] [CrossRef]
- Darby, S.J. Smart electric storage heating and potential for residential demand response. Energy Effic. 2018, 11, 67–77. [Google Scholar] [CrossRef]
- Wu, Y.K.; Lee, C.Y.; Chen, C.R.; Hsu, K.W.; Tseng, H.T. Optimization of the wind turbine layout and transmission system planning for a large-scale offshore windfarm by AI technology. IEEE Trans. Ind. Appl. 2013, 50, 2071–2080. [Google Scholar] [CrossRef]
Category | Purpose | Method | Results | References |
---|---|---|---|---|
Neural learning techniques | Wind power and speed prediction | BPNN, RBFNN, ADALINE | BPNN: RMSE (Training: 0.0070, Testing: 0.0065), RBFNN: Best for a single site (RMSE of 1.444) | [23,24,25,26,27,28,29,30,31,32,33,34,35,36] |
ANN performance improvement | Increasing ANN efficiency | Recurrent High Order NN, Naïve Bayes | RMSE of 4.2 for ANN compared to Naïve Bayes | [31,32] |
Comparative studies | Comparing ANN with other methods | TPCSV, Bayesian Combination (BC), ARIMA, SES | Increased accuracy: e.g., BPNN vs. TPCSV (0.95 vs. 0.88 correlation coefficient), BC: RMSE of 1.5 | [32,33,34,35,36] |
Fuzzy logic | Enhancing wind power estimation | Fuzzy Logic, ANN, RBFNN | Enhanced operational planning for wind farms (RMSE of 3.27 and 3.30) | [37,38,39] |
Statisticaltechniques | Short-termwind outputestimation | Probabilistic Approach, Kernel DensityEstimation | Reliability within 2–4% SVM (MSE 0.009) vs. MLP (MSE of 0.0078) | [40,41] |
ANFIS | Enhancing ANN performance | ANFIS, ANN SES | Better short-term estimation, wind speed computation, e.g., ANFIS: MAE < 8, MAPE 3%, RMSE of 0.22 | [42,43,44,45] |
ANN combined with techniques | Improving prediction performance | Wavelet Analysis (WT), DE, PSO, EMD, MC | Higher prediction accuracy, fault diagnosis: e.g., PSO-optimized ANN 2.8% better, EMD&FNN (MSE of 0.1647) | [46,47,48,49] |
Hybrid AI techniques | Enhancing wind estimation accuracy | GA, SVM, EEMD, ARIMA, MM5, PCA, RSVM, PSO, ACO | Improved accuracy: e.g., EEMD-SVM (MAE 0.12), Hybrid ANN-MM5 (MAE of 1.45–2.2), RSVM high accuracy, Hybrid ANN-MC lower error | [50,51,52,53,54,55,56,57] |
Category | Purpose | Method | Results | References |
---|---|---|---|---|
ANN techniques | Solar irradiance prediction and heating load calculation | BPNN, RBFNN SVR | High correlation with actual solar radiation, RMSE of for GSR, of 0.9808 for heating system performance | [58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74] |
Comparative studies | Comparing ANN with other methods | Ångström, ARIMA, EKD, SVM, GP | SVM outperforms AR and RBF BPNN shows better performance in multiple studies | [61,62,63,64,65,66,67,68,69,70,71] |
Evolutionary AI techniques | Enhancing PV system performance and optimization | GA, PO | GA-Solar system optimization improved system efficiency optimal design for solar water heating | [75,76,77] |
Combining AI techniques | Improving prediction efficiency | GA-HISIMI, WT- BPNN, GA-BPNN WT-RBFNN, GMDH | Higher accuracy and better performance, minimal RMSE for combined techniques | [78,79,80,81,82,83,84] |
ANFIS method | Modelling, prediction, and simulation | ANFIS, satellite data, sunshine length | High accuracy in PV power supply modeling, hourly radiation prediction, simulating PS supply, SCPP performance forecasting | [85,86,87,88] |
Hybrid AI techniques | Solar radiation and power prediction | ARMA-TDNN, SVM-FFA SVM-SARIMA | Effective estimation and prediction, RMSE of 1.8661 for SVM-FFA, high accuracy in GSR and PV power prediction | [89,90,91,92,93] |
Category | Purpose | Method | Results | References |
---|---|---|---|---|
ANN techniques | Performance forecasting, temperature prediction | BPNN, LM, CGP, SCG | High prediction accuracy, e.g., RMSE of 0.0432, prediction error less than ±5% RMSE of 1.5289 for pump power prediction | [99,100,101,102,103,104,105,106,107,108,109,110,111] |
Fuzzy Logic and EA techniques | Optimization and control | EA, FLC, DE, GA, Monte-Carlo search | Improved system performance and efficiency, e.g., multi-objective optimizations, optimal BHE location | [112,113,114,115] |
ANFIS and hybrid AI approaches | Performance assessment, energy rate forecasting | ANFIS, GMDHNN, GA, SVD | Higher effectiveness compared to BPNN, e.g., ANFIS better performance, improve dgeothermal reservoir temperature prediction | [116,117,118] |
Category | Purpose | Method | Results | References |
---|---|---|---|---|
ANN techniques | Optimization, prediction, and scheduling | BPNN, GD, AR | High accuracy in operation scheduling peak discharge prediction, RMSE of 0.061 for power outage estimation | [121,122,123,124] |
Fuzzy logic and EA techniques | Optimization, material selection | GA, Fuzzy, CH-GA, NP | Improved system performance and efficiency, e.g., GA lowers operating costs, fuzzy fuzzy logic selects best material for turbines | [125,126,127,128] |
ANFIS and hybrid AI approaches | Water release prediction, flow estimation, PM, AGC | ANFIS, LVQ, ART-MAP, GA-FLC, PSO-FLC, CBR | Higher effectiveness compared to traditional methods, e.g., ANFIS outperforms M-5 rule curves, GA-FLC and PSO-FLC improve AGC | [128,129,130,131,132,133,134] |
Category | Purpose | Method | Results | References |
---|---|---|---|---|
ANN techniques | Sea level variation, wave conditions estimation | BPNN, RBFNN, GRNN | High accuracy in sea level prediction (correlation coefficient 0.7–0.9), wave height prediction (67% correlation) | [138,139,140,141] |
Fuzzy logic and GP approaches | Reducing impact of wave forces, sea level prediction | FLC, GP, ANN | Stable control under wave forces, better sea level prediction accuracy (MSE of 22.5–28.2) compared to BPNN | [142,143] |
ANFIS and hybrid AI approaches | Improving prediction accuracy for sea level and waves | ANFIS, NWM, SVR, CVR | Comparable performance with ANN, better than ARMA, improved CO2 flux prediction, better wave hindcasting performance | [144,145,146,147] |
Category | Purpose | Method | Results | References |
---|---|---|---|---|
ANN techniques | Fuel properties estimation, methane production | BPNN, GRNN, RBFNN RNN | High accuracy in fuel properties estimation methane measurement (RMSE of 0.00263–0.00250) biodiesel engine performance analysis | [148,149,150,151,152,153] |
Other AI techniques | Classification, optimization | SVM, GP | Improved accuracy in biodiesel classification, optimized biomass supply chain, higher heating value estimation (RMSE of 0.942–0.987) | [154,155,156] |
Hybrid AI techniques | Bioenergy production optimization, efficiency | Fuzzy Logic-ANN, ANN-ARIMA, BPNN-GA | Better fuelwood cost estimation (MAPE of 14%), improved biomass boiler efficiency (saves 12 GWh annually), increased methane production (6.9% more methane) | [157,158,159,160] |
Category | Purpose | Method | Key Findings | References |
---|---|---|---|---|
ANN techniques | Voltage prediction, emissions prediction, performance optimization | BPNN, MGGP, SVR | High accuracy in voltage prediction, CO emission prediction (100% accuracy), RMSE for hydrogen engine parameters | [37,163,164,165,166,167,168,169,170] |
Stability and fault detection | Monitoring stability, detecting faults | Bayesian Method, LM | Effective PEM fuel cell stability and fault detection | [165] |
Parameter prediction | Hydrogen ngine parameters, PEMFC parameters | BPNN, PSO | Accurate prediction of parameters like mass air flow, engine temperature, fuel pulse width | [167,168,169,187] |
Fuzzy logic techniques | Optimization and control | fuzzy Logic, GA PSO | Optimized hydrogen consumption, modeled current density properties, ignition time prediction | [171,172,173] |
Evolution aryalgorithms | Modeling and | GA, BMO | Efficient optimization for PEMFC and hydrogen generation modelling | [174,175,176] |
ANFIS techniques | Safety parameters forecasting, PEM electrolyzer performance | ANFIS | High accuracy in forecasting safety parameters, hydrogen pressure, flow rate, and PEM electrolyzer efficiency prediction | [177,178,179,180] |
Hybrid AI AI approaches | Improving prediction a accuracy, reducing energy usage | SVR, PSO, ABC, RBFNN | Improved HEV energy usage reduction, high precision temperature forecasting, minimized sum of squared errors for PEMFC | [182,183,184,185,186] |
Category | Purpose | Method | Applications | Impact | References |
---|---|---|---|---|---|
Generation forecasting | Predicting VRE generation & improving accuracy | Model based simulations, machine learning | Simulated day-ahead solar power generation in ISO New England system improved forecasting and reduced costs by up to USD 0.95/MWh. Machine learning blended meteorological models increased solar power forecast accuracy by over 30%. AI improved solar power predictions by 33% using 80 input factors in the UK. DeepMind and Google used ML to predict wind power capacity, increasing value by 20% | Enhanced forecast accuracy, reduce dreduced operational costs, increased value of renewable energy | [219,220,221,222,223,224,225,226] |
Demand forecasting | Maintaining grid balance predicting energy demand | Linear models, ANN, hybrid models | Linear models showed better performance at national & regional levels with average error 2.04%. ANN-based models performed better at smart grid levels in smart cities with average error 2.28%. Hybrid model for peak load forecasting at a US institution saved USD 80,000 | Improved grid balance, reduced operational costs, enhanced demand response | [225,226,227,228] |
Market design | Reducing balancing costs, optimizing market operations | Multi-agent reinforcement learning, optimizational gorithms | EUPHEMIA algorithm estimated day-ahead electricity pricing for 25 European countries. Multi-agent reinforcement learning improved power flow simulation and increased net earnings by 15–20% | Reduced balancing costs, increased net earnings | [229,230,231,232,233] |
Demand response | Adjusting consumption habits, reducing peak demand | Evolutionary game theory, AI approaches | Reduced demand peaks by up to 17% and carbon emissions by 6% in UK homes. AI-based energy planning saved 51.4% in costs for smart homes. Predictive algorithm reduced electricity end-use expenses by 41.8%. Deep learning-based optimizer reduced data centre energy costs by 25% on average. Google’s DeepMind reduced cooling energy consumption by 40% in data centres | Lowered peak demand, reduced carbon emissions, cost savings in energy use | [234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249] |
Storage solutions | Enhancing system flexibility, reducing curtailment | Machine learning, deep learning | Battery storage costs decreased by 85% from 2010 to 2018. AI algorithms for EV charging response to real-time pricing optimized energy costs. AI-supported battery storage system in Australia improved grid stability and increased revenue. AI-based smart battery trading systems were five times more effective than human traders. AI-optimized battery management reduced microgrid operating costs by up to 11.5% | Enhanced system flexibility, reduced curtailment, increased revenue and cost savings | [250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265] |
Power quality disturbance | Enhancing grid power quality, reducing disturbances | AI approaches | AI techniques improved power quality prediction accuracy to 98.57% for real conflicts and 99.93% for simulated results. AI-enhanced solar PV power filter improved power quality performance | Improved power quality, reduced grid disturbances, increased system stability | [266,267] |
Predictive maintenance | Optimizing maintenance, reducing grid-related costs | Machine learning, reinforcement learning | AI-based predictive maintenance system in NYC improved failure-free network days by 60%. Reinforcement learning algorithm optimized distribution network, reducing weekly operational costs by up to 60%. PredATur system enhanced wind turbine maintenance, increasing annual EBITDA impact by €3.2–5.7 million. | Reduced maintenance costs, increased system reliability, enhanced asset availability | [268,269,270,271,272,273,274,275] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, A.; Ahmed, U.; Hassan, S.Z.; Khan, A.R.; Mahmood, A. Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review. Sustainability 2025, 17, 2599. https://doi.org/10.3390/su17062599
Masood A, Ahmed U, Hassan SZ, Khan AR, Mahmood A. Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review. Sustainability. 2025; 17(6):2599. https://doi.org/10.3390/su17062599
Chicago/Turabian StyleMasood, Arsalan, Ubaid Ahmed, Syed Zulqadar Hassan, Ahsan Raza Khan, and Anzar Mahmood. 2025. "Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review" Sustainability 17, no. 6: 2599. https://doi.org/10.3390/su17062599
APA StyleMasood, A., Ahmed, U., Hassan, S. Z., Khan, A. R., & Mahmood, A. (2025). Economic Value Creation of Artificial Intelligence in Supporting Variable Renewable Energy Resource Integration to Power Systems: A Systematic Review. Sustainability, 17(6), 2599. https://doi.org/10.3390/su17062599