Enhancing Sustainability in Renewable Energy: Comparative Analysis of Optimization Algorithms for Accurate PV Parameter Estimation
Abstract
:1. Introduction
- Introducing advanced optimization algorithms, such as the Hippopotamus Optimization Algorithm (HOA), Arithmetic Optimization Algorithm (AOA), Genetic Algorithm (GA), Differential Evolution (DE), Particle Swarm Optimization (PSO), and Grey Wolf Optimizer (GWO), to identify unknown parameters in SDM, DDM, and TDM models.
- Evaluating the effectiveness of these algorithms in parameter identification for photovoltaic models through rigorous experimental testing.
- Comparing the performance of the employed algorithms against one another to assess their convergence speed, accuracy in minimizing the RMSE, and the ability to avoid local optima through various exploration-enhancing strategies. Differential Evolution (DE) employs mutation and crossover operations to maintain population diversity and escape local minima. Particle Swarm Optimization (PSO) utilizes inertia weight and velocity updates to balance exploration and exploitation, reducing the risk of premature convergence. The Hippopotamus Optimization Algorithm (HOA) integrates adaptive randomization and dynamic parameter tuning to enhance global search capabilities. Additionally, hybrid methods, such as combining DE with PSO, leverage the strengths of both techniques to further minimize stagnation in local optima. These strategies collectively improve the robustness of optimization algorithms in accurately estimating photovoltaic model parameters.
- Providing a comprehensive analysis based on experimental results to demonstrate the 111 strengths and weaknesses of each optimization technique.
- Highlighting the superior performance of specific algorithms, such as DE and the HOA, which yielded the most accurate results for parameter identification across the tested models.
2. Related Work
3. Definition of PV Models
3.1. Single-Diode Model
3.2. Double-Diode Model
3.3. Three-Diode Model
4. Problem Formulation
- Single-Diode Model (SDM):
- Double-Diode Model (DDM):
- Three-Diode Model (TDM):
Parameters | Lower Bound | Upper Bound |
---|---|---|
Ipv | 0 | 1 |
Io1, Io2 and Io3 (µA) | 0 | 1 |
Rs, Rs1 | 0 | 0.5 |
Rp | 0 | 100 |
n1, n2 and n3 | 1 | 2 |
5. Results and Simulation
5.1. Experiments with Single-Diode Model
5.2. Experiments with Double-Diode Model
5.3. Experiments with Triple-Diode Model
5.4. An Analysis That Evaluates Statistical Performance and Stability as a Comparison Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Halkos, G.E.; Gkampoura, E.C. Reviewing usage, potentials, and limitations of renewable energy sources. Energies 2020, 13, 2906. [Google Scholar] [CrossRef]
- Ruuska, A.; Häkkinen, T. Material efficiency of building construction. Buildings 2014, 4, 266–294. [Google Scholar] [CrossRef]
- Eldin, S.S.; Abd-Elhady, M.; Kandil, H. Feasibility of solar tracking systems for PV panels in hot and cold regions. Renew. Energy 2016, 85, 228–233. [Google Scholar] [CrossRef]
- Hao, Q.; Zhou, Z.; Wei, Z.; Chen, G. Parameters identification of photovoltaic models using a multi-strategy Success-History-Based adaptive differential evolution. IEEE Access 2020, 8, 35979–35994. [Google Scholar] [CrossRef]
- Ziar, H.; Manganiello, P.; Isabella, O.; Zeman, M. Photovoltatronics: Intelligent PV-based devices for energy and information applications. Energy Environ. Sci. 2021, 14, 106–126. [Google Scholar] [CrossRef]
- Beccali, M.; Cellura, M.; Longo, S.; Guarino, F. Solar heating and cooling systems versus conventional systems assisted by photovoltaic: Application of a simplified LCA tool. Sol. Energy Mater. Sol. Cells 2016, 156, 92–100. [Google Scholar] [CrossRef]
- Premkumar, M.; Babu, T.S.; Umashankar, S.; Sowmya, R. A new metaphor-less algorithms for the photovoltaic cell parameter estimation. Optik 2020, 208, 164559. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, X.; Yu, T.; Yao, W.; Shu, H.; Zeng, F.; Sun, L. Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification. Energy Convers. Manag. 2020, 208, 112595. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A review on representative swarm intelligence algorithms for solving optimization problems: Applications and trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Bhattacharyya, T.; Chatterjee, B.; Singh, P.K.; Yoon, J.H.; Geem, Z.W.; Sarkar, R. Mayfly in Harmony: A New Hybrid Meta-Heuristic Feature Selection Algorithm. IEEE Access 2020, 8, 195929–195945. [Google Scholar] [CrossRef]
- Ridha, H.M.; Heidari, A.A.; Wang, M.; Chen, H. Boosted mutation-based Harris hawks optimizer for parameters identification of single-diode solar cell models. Energy Convers. Manag. 2020, 209, 112660. [Google Scholar] [CrossRef]
- Abdolrasol, M.G.; Hussain, S.S.; Ustun, T.S.; Sarker, M.R.; Hannan, M.A.; Mohamed, R.; Ali, J.A.; Mekhilef, S.; Milad, A. Artificial neural networks-based optimization techniques: A review. Electronics 2021, 10, 2689. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New metaheuristic algorithm for solving optimization problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Elhammoudy, A.; Elyaqouti, M.; Hmamou, D.B.; Lidaighbi, S.; Saadaoui, D.; Choulli, I.; Abazine, I. Dandelion Optimizer algorithm-based method for accurate photovoltaic model parameter identification. Energy Convers. Manag. X 2023, 19, 100405. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhu, L.; Tan, J.; Zhun, Y.; Yang, C. MPPT Study of Outdoor Sensing Terminal PV System Based on Improved PSO Algorithm. J. Phys. Conf. Ser. 2023, 2456, 012036. [Google Scholar] [CrossRef]
- Nagadurga, T.; Devarapalli, R.; Knypin’ski, Ł. Comparison of Meta-Heuristic Optimization Algorithms for Global Maximum Power Point Tracking of Partially Shaded Solar Photovoltaic Systems. Algorithms 2023, 16, 376. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M. A novel algorithm for global optimization: Rat swarm optimizer. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8457–8482. [Google Scholar] [CrossRef]
- Ellithy, H.H.; Hasanien, H.M.; Alharbi, M.; Sobhy, M.A.; Taha, A.M.; Attia, M.A. Marine Predator Algorithm-Based Optimal PI Controllers for LVRT Capability Enhancement of Grid-Connected PV Systems. Biomimetics 2024, 9, 66. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, A.; Rajput, S.; Bose, A.; Hu, X. An investigation on hybrid particle swarm optimization algorithms for parameter optimization of PV cells. Electronics 2022, 11, 909. [Google Scholar] [CrossRef]
- Mirrashid, M.; Naderpour, H. Transit search: An optimization algorithm based on exoplanet exploration. Results Control Optim. 2022, 7, 100127. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, B. Optimal PV array reconfiguration under partial shading condition through dynamic leader based collective intelligence. Prot. Control Mod. Power Syst. 2023, 8, 1–16. [Google Scholar] [CrossRef]
- Ali, Z.M.; Ćalasan, M.; Mostafa, M.H.; Abdel Aleem, S.H.E. Analytical modeling of novel equivalent circuits of double diode solar cell circuits using a special transcendental function approach. PLoS ONE 2024, 19, e0313713. [Google Scholar] [CrossRef] [PubMed]
- Shanmugapriya, M.; Mayurappriyan, P.; Lakshmi, K. Firefly-optimized PI and PR controlled single-phase grid-linked solar PV system to mitigate the power quality and to improve the efficiency of the system. Electr. Eng. 2024. [Google Scholar] [CrossRef]
- Aslani, S.; Rastegarfatemi, S.; Solat, A. Optimization of PI Controller Using Hybrid Algorithm (GA-PSO) to Reduce Harmonics in Photovoltaic Systems by (Q-ZSI). J. Hunan Univ. 2024, 51. [Google Scholar] [CrossRef]
- Anand, P.; Kamboj, V.; Rizwan, M. Optimal sizing of hybrid energy system using an improved gazelle optimization algorithm. Electr. Eng. 2024. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A.; Mirjalili, S.; Abd Elaziz, M.; Gandomi, A.H. The Arithmetic Opti-mization Algorithm. Comput. Methods Appl. Mech. Eng. 2021, 376, 113609. [Google Scholar] [CrossRef]
- Ramesh, M.; Yadav, A.; Pathak, P. A novel fuzzy-assisted sliding mode control approach for frequency regulation of wind-supported autonomous microgrid. Sci. Rep. 2024, 14, 31526. [Google Scholar] [CrossRef]
- Yu, K.; Liang, J.; Qu, B.; Cheng, Z.; Wang, H. Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models. Appl. Energy 2018, 226, 408–422. [Google Scholar] [CrossRef]
Reference | Year | Algorithm | Results |
---|---|---|---|
[18] | 2021 | RSO | Enhancement of optimization |
[17] | 2022 | Golden Jackal | Innovative and inventive algorithm |
[13] | 2022 | HBA | Enhanced optimization |
[20] | 2022 | Hybrid PSO | Refinement of parameter estimation |
[21] | 2022 | TS | More promising optimization performance |
[14] | 2023 | DO | Enhanced parameter identification |
[16] | 2023 | PSO, GA, ACO, TLBO, FA, and Chimp Optimization Algorithm | Global and varied MPPT enhancement |
[22] | 2023 | DLCI | Improvement of PV array reconfiguration |
[15] | 2023 | Boosted MPPT | PSO functionality |
Algorithm | Iph (A) | Isd (A) | Rs (Ω) | Rp (Ω) | Non-Ideality | Isc (A) | Voc (V) | Imp (A) | Vmp (V) | Pmp (W) | Fill Factor | RMSE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
HOA | 0.9482 | 5.36 × 10−7 | 0 | 48.4515 | 1.4821 | 0.9482 | 0.5479 | 0.9999 | 0.4303 | 0.4303 | 0.8281 | 0.1307 |
GA | 0.7859 | 4.07 × 10−7 | 0.0034 | 47.1925 | 1.4445 | 0.7859 | 0.5373 | 0.9999 | 0.4303 | 0.4303 | 1.0189 | 0.1918 |
DE | 1 | 9.27 × 10−7 | 0.0101 | 100 | 1.4919 | 1 | 0.5326 | 0.9999 | 0.4303 | 0.4303 | 0.8078 | 0.0005 |
PSO | 1 | 1.00 × 10−6 | 0.01 | 100 | 1.5 | 1 | 0.5326 | 0.9999 | 0.4303 | 0.4303 | 0.8079 | 1.31 × 10−7 |
AOA | 0.5921 | 1.77 × 10−7 | 0.0494 | 93.7213 | 1.4458 | 0.5921 | 0.5581 | 0.9999 | 0.4303 | 0.4303 | 1.3019 | 0.6242 |
GWO | 0.9116 | 6.26 × 10−9 | 0.0002 | 26.3633 | 1.1503 | 0.9116 | 0.5557 | 0.9999 | 0.4303 | 0.4303 | 0.8494 | 0.2068 |
Algorithm | Iph (A) | Io1 (A) | Io2 (A) | n1 | n2 | Rs (Ω) | Rp (Ω) | Isc (A) | Voc (V) | Imp (A) | Vmp (V) | Pmp (W) | RMSE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOA | 0.9609 | 3.38 × 10−7 | 5.37 × 10−8 | 1.4131 | 2.1633 | 0.0061 | 50.2621 | 0.9609 | 0.5396 | 0.9999 | 0.4303 | 0.4303 | 0.0614 |
GA | 0.9432 | 4.79 × 10−7 | 4.77 × 10−9 | 1.7552 | 1.7805 | 0.0573 | 10.2567 | 0.9432 | 0.6537 | 0.9999 | 0.4303 | 0.4303 | 0.6005 |
DE | 1 | 9.88 × 10−7 | 3.42 × 10−8 | 1.4985 | 2.3283 | 0.0100 | 92.4936 | 1 | 0.5325 | 0.9999 | 0.4303 | 0.4303 | 0.0001 |
PSO | 1 | 1.00 × 10−6 | 1.00 × 10−7 | 1.5027 | 1.6508 | 0.0099 | 99.9692 | 1 | 0.5335 | 0.9999 | 0.4303 | 0.4303 | 0.0004 |
AOA | 0.7207 | 2.63 × 10−7 | 8.89 × 10−8 | 1.6043 | 2.4334 | 0.0650 | 17.3512 | 0.7207 | 0.6112 | 0.9999 | 0.4303 | 0.4303 | 0.5537 |
GWO | 0.9623 | 8.14 × 10−8 | 5.06 × 10−8 | 1.3012 | 2.7782 | 0.0039 | 36.6844 | 0.9623 | 0.5446 | 0.9999 | 0.4303 | 0.4303 | 0.1093 |
Algorithm | Iph (A) | Io1 (A) | Io2 (A) | Io3 (A) | n1 | n2 | n3 | Rs (Ω) | Rp (Ω) | Isc (A) | Voc (V) | Imp (A) | Vmp (V) | RMSE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HOA | 1 | 1.00 × 10−6 | 6.54 × 10−9 | 3.70 × 10−9 | 1.5124 | 1.5093 | 1.7913 | 0.0075 | 22.4997 | 1 | 0.5370 | 0.9999 | 0.4303 | 0.0261 |
GA | 0.6782 | 8.44 × 10−7 | 8.57 × 10−8 | 9.65 × 10−9 | 1.8978 | 2.9386 | 1.3710 | 0.0578 | 56.6795 | 0.6782 | 0.6632 | 0.9999 | 0.4303 | 0.5807 |
DE | 1 | 9.65 × 10−7 | 7.47 × 10−8 | 1.00 × 10−8 | 1.4958 | 3 | 3 | 0.0101 | 83.4497 | 1 | 0.5325 | 0.9999 | 0.4303 | 0.0005 |
PSO | 1 | 1.00 × 10−6 | 1.00 × 10−7 | 0 | 1.5480 | 3 | 3 | 0 | 3.9267 | 1 | 0.5496 | 0.9999 | 0.4303 | 0.1046 |
AOA | 0.6284 | 4.18 × 10−8 | 9.06 × 10−8 | 6.80 × 10−9 | 1.5836 | 2.3878 | 2.6047 | 0.1340 | 57.8373 | 0.6284 | 0.6725 | 0.9999 | 0.4303 | 0.6326 |
GWO | 0.9999 | 6.10 × 10−10 | 5.35 × 10−10 | 3.43 × 10−10 | 1.5225 | 1 | 1.1682 | 0.0072 | 2.3600 | 0.9999 | 0.8302 | 0.9999 | 0.4303 | 0.1100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fathi, H.; Alsekait, D.M.; Tawil, A.A.; Kamal, I.W.; Aloun, M.S.; Manhrawy, I.I.M. Enhancing Sustainability in Renewable Energy: Comparative Analysis of Optimization Algorithms for Accurate PV Parameter Estimation. Sustainability 2025, 17, 2718. https://doi.org/10.3390/su17062718
Fathi H, Alsekait DM, Tawil AA, Kamal IW, Aloun MS, Manhrawy IIM. Enhancing Sustainability in Renewable Energy: Comparative Analysis of Optimization Algorithms for Accurate PV Parameter Estimation. Sustainability. 2025; 17(6):2718. https://doi.org/10.3390/su17062718
Chicago/Turabian StyleFathi, Hanaa, Deema Mohammed Alsekait, Arar Al Tawil, Israa Wahbi Kamal, Mohammad Sameer Aloun, and Ibrahim I. M. Manhrawy. 2025. "Enhancing Sustainability in Renewable Energy: Comparative Analysis of Optimization Algorithms for Accurate PV Parameter Estimation" Sustainability 17, no. 6: 2718. https://doi.org/10.3390/su17062718
APA StyleFathi, H., Alsekait, D. M., Tawil, A. A., Kamal, I. W., Aloun, M. S., & Manhrawy, I. I. M. (2025). Enhancing Sustainability in Renewable Energy: Comparative Analysis of Optimization Algorithms for Accurate PV Parameter Estimation. Sustainability, 17(6), 2718. https://doi.org/10.3390/su17062718