Evolving Critical Metal Systems: Hype Cycles and Implications for Sustainable Innovation
Abstract
:1. Introduction
2. Conceptual Framework
2.1. Critical Metal System
2.2. Hype Cycle
2.3. Process Perspective
3. Data and Methods
4. Results
4.1. Event Graphs
4.1.1. Lithium
4.1.2. Tantalum
4.1.3. Cobalt
4.2. Ideal-Type Hype Cycle for a CMS
4.2.1. Knowledge Development Followed by an Innovation Trigger and Commercial Availability
4.2.2. Mass Production and Managing Supply–Demand Imbalances
4.2.3. Increasing Contestation
4.2.4. Reconfiguration of Rules and Standards
5. Discussion
6. Conclusions: Sustainable Evolution of CRMs: The Potential of Responsible Innovation
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Filho, W.L.; Kotter, R.; Özuyar, P.G.; Abubakar, I.R.; Eustachio, J.H.P.P.; Matandirotya, N.R. Understanding rare earth elements as critical raw materials. Sustainability 2023, 15, 1919. [Google Scholar] [CrossRef]
- Lusty, P.A.J.; Shaw, R.A.; Gunn, A.G.; Idoine, N.E. UK Criticality Assessment of Technology Critical Minerals and Metals; British Geological Survey Commissioned Report; British Geological Survey: Nottingham, UK, 2021; 76p. [Google Scholar]
- Graham, J.D.; Rupp, J.A.; Brungard, E. Lithium in the green energy transition: The quest for both sustainability and security. Sustainability 2021, 13, 11274. [Google Scholar] [CrossRef]
- Walton, A.; Anderson, P.; Harper, G.; Mann, V.; Beddington, J.; Abbott, A.; Bloodworth, A.; OudeNijeweme, D.; Schofield, E.; Wall, F. Securing Technology-Critical Metals for Britain; University of Birmingham: Birmingham, UK, 2021. [Google Scholar]
- Harper, G.D. Upcycle for enhanced performance. Nat. Sustain. 2023, 6, 725–726. [Google Scholar] [CrossRef]
- IEA. Critical Minerals Threaten a Decades-Long Trend of Cost Declines for Clean Energy Technologies. 2022. Available online: https://www.iea.org/commentaries/critical-minerals-threaten-a-decades-long-trend-of-cost-declines-for-clean-energy-technologies (accessed on 17 March 2025).
- Wellmer, F.-W.; Dalheimer, M. The feedback control cycle as regulator of past and future mineral supply. Miner. Depos. 2012, 47, 713–729. [Google Scholar] [CrossRef]
- Petavratzi, E.; Sanchez-Lopez, D.; Hughes, A.; Stacey, J.; Ford, J.; Butcher, A. The impacts of environmental, social and governance (ESG) issues in achieving sustainable lithium supply in the Lithium Triangle. Miner. Econ. 2022, 35, 673–699. [Google Scholar] [CrossRef]
- UK GOV. Resilience for the Future: The UK’s Critical Minerals Strategy; UK GOV: London, UK, 2023. [Google Scholar]
- Boons, F.; Montalvo, C.; Quist, J.; Wagner, M. Sustainable innovation, business models and economic performance: An overview. J. Clean. Prod. 2013, 45, 1–8. [Google Scholar] [CrossRef]
- Van Lente, H.; Spitters, C.; Peine, A. Comparing technological hype cycles: Towards a theory. Technol. Forecast. Soc. Change 2013, 80, 1615–1628. [Google Scholar] [CrossRef]
- Bengtsson, B.; Hertting, N. Generalization by Mechanism: Thin Rationality and Ideal-type Analysis in Case Study Research. Philos. Soc. Sci. 2014, 44, 707–732. [Google Scholar] [CrossRef]
- Hirth, S.; Boons, F.; Doherty, B. Unpacking food to go: Packaging and food waste of on the go provisioning practices in the UK. Geoforum 2021, 126, 115–125. [Google Scholar] [CrossRef]
- Rödl, M.B.; Boons, F.; Spekkink, W. From responsible to responsive innovation: A systemic and historically sensitive approach to innovation processes. Technol. Forecast. Soc. Change 2022, 174, 121231. [Google Scholar] [CrossRef]
- Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory; Oxford University Press: Oxford, UK, 2005. [Google Scholar]
- Callon, M. Some elements of a sociology of translation: Domestication of the scallops and the fishermen of St Brieuc Bay. Sociol. Rev. 1984, 32 (Suppl. S1), 196–233. [Google Scholar] [CrossRef]
- Cordella, A.; Shaikh, M. From Epistemology to Ontology: Challenging the Constructed ‘Truth’ of ANT. 2006. Available online: https://www.researchgate.net/profile/Antonio-Cordella/publication/301295219_From_Epistemology_to_Ontology_Challenging_the_Constructed_Truth_of_ANT/links/57109b2908aefb6cadaaad9b/From-Epistemology-to-Ontology-Challenging-the-Constructed-Truth-of-ANT.pdf (accessed on 17 March 2025).
- Sayes, E. Actor–Network Theory and methodology: Just what does it mean to say that nonhumans have agency? Soc. Stud. Sci. 2014, 44, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Fenn, J.; Raskino, M. Mastering the Hype Cycle: How to Choose the Right Innovation at the Right Time; Harvard Business Press: Boston, MA, USA, 2008. [Google Scholar]
- Shi, Y.; Herniman, J. The role of expectation in innovation evolution: Exploring hype cycles. Technovation 2023, 119, 102459. [Google Scholar] [CrossRef]
- Fligstein, N.; McAdam, D. Toward a General Theory of Strategic Action Fields. Sociol. Theory 2011, 29, 1–26. [Google Scholar] [CrossRef]
- Zante, G.; Elgar, C.E.; Hartley, J.M.; Mukherjee, R.; Kettle, J.; Horsfall, L.E.; Walton, A.; Harper, G.D.; Abbott, A.P. A toolbox for improved recycling of critical metals and materials in low-carbon technologies. RSC Sustain. 2024, 2, 320–347. [Google Scholar] [CrossRef]
- Nguyen-Tien, V.; Dai, Q.; Harper, G.D.; Anderson, P.A.; Elliott, R.J. Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy. Appl. Energy 2022, 321, 119230. [Google Scholar] [CrossRef]
- Linden, A.; Fenn, J. Understanding Gartner’s Hype Cycles; Strategic Analysis Report No R-20-1971; Gartner Inc.: Stamford, CT, USA, 2003; Volume 88, p. 1423. [Google Scholar]
- Renner, S.; Wellmer, F.W. Volatility drivers on the metal market and exposure of producing countries. Miner. Econ. 2020, 33, 311–340. [Google Scholar] [CrossRef]
- Suchman, M.C. Managing legitimacy: Strategic and institutional approaches. Acad. Manag. Rev. 1995, 20, 571–610. [Google Scholar] [CrossRef]
- Miranda, M.; Chambers, D.; Coumans, C. Framework for Responsible Mining: A Guide to Evolving Standards. 2005. Available online: http://www.frameworkforresponsiblemining.org/pubs/Framework_20051018.pdf (accessed on 17 March 2025).
- Dedehayir, O.; Steinert, M. The hype cycle model: A review and future directions. Technol. Forecast. Soc. Change 2016, 108, 28–41. [Google Scholar] [CrossRef]
- Moore, K.R.; Segura-Salazar, J.; Bridges, L.; Diallo, P.; Doyle, K.; Johnson, C.; Foster, P.; Pollard, N.; Whyte, N.; Wright, O. The out-of-this-world hype cycle: Progression towards sustainable terrestrial resource production. Resour. Conserv. Recycl. 2022, 186, 106519. [Google Scholar] [CrossRef]
- Jiao, W.; Boons, F. Policy durability of Circular Economy in China: A process analysis of policy translation. Resour. Conserv. Recycl. 2017, 117, 12–24. [Google Scholar] [CrossRef]
- Boons, F.; Spekkink, W.; Jiao, W. A process perspective on industrial symbiosis: Theory, methodology, and application. J. Ind. Ecol. 2014, 18, 341–355. [Google Scholar] [CrossRef]
- Warnaars, X.S. Why be poor when we can be rich? Constructing responsible mining in El Pangui, Ecuador. Resour. Policy 2012, 37, 223–232. [Google Scholar] [CrossRef]
- Boons, F.; Spekkink, W. Field evolution as a social process. Dutch chemical industry and environmental impact, 1990–2012. Acad. Manag. Proc. 2016, 2016, 16019. [Google Scholar] [CrossRef]
- Poole, M.S.; Ven AHV de Dooley, K.; Holmes, M.E. Organizational Change and Innovation Processes: Theory and Methods for Research; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Hull, D.L. Central Subjects and Historical Narratives. Hist. Theory 1975, 14, 253–274. [Google Scholar] [CrossRef]
- Wells, P.; Nieuwenhuis, P. Operationalizing Deep Structural Sustainability in Business: Longitudinal Immersion as Extensive Engaged Scholarship. Br. J. Manag. 2017, 28, 45–63. [Google Scholar] [CrossRef]
- Vayda, A.P. Progressive contextualization: Methods for research in human ecology. Hum. Ecol. 1983, 11, 265–281. [Google Scholar] [CrossRef]
- Gerhardt, U. The Use of Weberian Ideal-Type Methodology in Qualitative Data Interpretation: An Outline for Ideal-Type Analysis. BMS Bull. Sociol. Methodol. Bull. Méthodol. Sociol. 1994, 45, 74–126. [Google Scholar] [CrossRef]
- Swedberg, R. How to use Max Weber’s ideal type in sociological analysis. J. Class. Sociol. 2018, 18, 181–196. [Google Scholar] [CrossRef]
- Stapley, E.; O’Keeffe, S.; Midgley, N. Developing typologies in qualitative research: The use of ideal-type analysis. Int. J. Qual. Methods 2022, 21, 16094069221100632. [Google Scholar] [CrossRef]
- Philips, B.; Werbart, A.; Wennberg, P.; Schubert, J. Young adults’ ideas of cure prior to psychoanalytic psychotherapy. J. Clin. Psychol. 2007, 63, 213–232. [Google Scholar] [PubMed]
- Werbart, A.; Brusell, L.; Iggedal, R.; Lavfors, K.; Widholm, A. Changes in self-representations following psychoanalytic psychotherapy for young adults: A comparative typology. J. Am. Psychoanal. Assoc. 2016, 64, 917–958. [Google Scholar] [CrossRef] [PubMed]
- Casadei, P.; Gilbert, D.; Lazzeretti, L. Urban fashion formations in the Twenty-First Century: Weberian Ideal Types as a heuristic device to unravel the fashion city. Int. J. Urban Reg. Res. 2021, 45, 879–896. [Google Scholar]
- Soliva, R. Landscape stories: Using ideal type narratives as a heuristic device in rural studies. J. Rural Stud. 2007, 23, 62–74. [Google Scholar] [CrossRef]
- Tutka, P.; Seifried, C. The historical ideal-type as a heuristic device for academic storytelling by sport scholars. Quest 2015, 67, 17–29. [Google Scholar]
- Gallivan, F.; Ang-Olson, J.; Turchetta, D. Toward a Better State Climate Action Plan: Review and Assessment of Proposed Transportation Strategies. Transp. Res. Rec. 2011, 2244, 1–8. [Google Scholar] [CrossRef]
- Malhi, G.S.; Gessler, D.; Outhred, T. The use of lithium for the treatment of bipolar disorder: Recommendations from clinical practice guidelines. J. Affect. Disord. 2017, 217, 266–280. [Google Scholar] [CrossRef]
- Alkadi, L.; Ruse, N.D. Fracture toughness of two lithium disilicate dental glass ceramics. J. Prosthet. Dent. 2016, 116, 591–596. [Google Scholar] [CrossRef]
- Johnson, C.E. Tritium behavior in lithium ceramics. J. Nucl. Mater. 1999, 270, 212–220. [Google Scholar] [CrossRef]
- Kim, J.H. Grand challenges and opportunities in batteries and electrochemistry. Front. Batter. Electrochem. 2022, 1, 1066276. [Google Scholar]
- Brandt, K. Historical development of secondary lithium batteries. Solid State Ion. 1994, 69, 173–183. [Google Scholar] [CrossRef]
- Sun, X.; Hao, H.; Zhao, F.; Liu, Z. Global Lithium Flow 1994–2015: Implications for Improving Resource Efficiency and Security. Environ. Sci. Technol. 2018, 52, 2827–2834. [Google Scholar] [CrossRef] [PubMed]
- Gil-Alana, L.A.; Monge, M. Lithium: Production and estimated consumption. Evidence of persistence. Resour. Policy 2019, 60, 198–202. [Google Scholar] [CrossRef]
- Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710–721. [Google Scholar] [CrossRef]
- Parker, J.F.; Chervin, C.N.; Pala, I.R.; Machler, M.; Burz, M.F.; Long, J.W.; Rolison, D.R. Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 415–418. [Google Scholar] [CrossRef]
- Maxwell, P. Analysing the lithium industry: Demand, supply, and emerging developments. Miner. Econ. 2014, 26, 97–106. [Google Scholar] [CrossRef]
- Bradley, D.C.; Munk, L.; Jochens, H.; Hynek, S.; Labay, K. A Preliminary Deposit Model for Lithium Brines; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2013. [Google Scholar]
- Cabello, J. Lithium brine production, reserves, resources and exploration in Chile: An updated review. Ore Geol. Rev. 2021, 128, 103883. [Google Scholar] [CrossRef]
- Munk, L.A.; Hynek, S.A.; Bradley, D.C.; Boutt, D.; Labay, K.; Jochens, H. Lithium Brines: A Global Perspective; Society of Economic Geologists: Littleton, CO, USA, 2016. [Google Scholar]
- Dawson, L.; Ahuja, J.; Lee, R. Steering extended producer responsibility for electric vehicle batteries. Environ. Law Rev. 2021, 23, 128–143. [Google Scholar] [CrossRef]
- Jiang, S.; Zhang, L.; Li, F.; Hua, H.; Liu, X.; Yuan, Z.; Wu, H. Environmental impacts of lithium production showing the importance of primary data of upstream process in life-cycle assessment. J. Environ. Manag. 2020, 262, 110253. [Google Scholar] [CrossRef]
- Kaunda, R.B. Potential environmental impacts of lithium mining. J. Energy Nat. Resour. Law 2020, 38, 237–244. [Google Scholar] [CrossRef]
- Clavijo, A.; Díaz Paz, W.F.; Lorca, M.; Olivera Andrade, M.; Iribarnegaray, M.A.; Garcés, I. Environmental information access and management in the Lithium Triangle: Is it transparent information? J. Energy Nat. Resour. Law 2022, 40, 293–314. [Google Scholar] [CrossRef]
- Voskoboynik, D.M.; Andreucci, D. Greening extractivism: Environmental discourses and resource governance in the ‘Lithium Triangle’. Environ. Plan. E Nat. Space 2022, 5, 787–809. [Google Scholar] [CrossRef]
- The Guardian. 2025. Available online: https://www.theguardian.com/world/2025/feb/22/its-blackmail-ukrainians-react-to-trump-demand-for-500bn-share-of-minerals (accessed on 17 March 2025).
- Ma, X.; Meng, Z.; Bellonia, M.V.; Spangenberger, J.; Harper, G.; Gratz, E.; Olivetti, E.; Arsenault, R.; Wang, Y. The evolution of lithium-ion battery recycling. Nat. Rev. Clean Technol. 2025, 1, 75–94. [Google Scholar] [CrossRef]
- Gao, X.S.; Meng, W.U.; Zhao, G.J.; Gu, K.H.; Wu, J.J.; Zeng, H.B.; Qin, W.; Han, J.W. Recycling technologies of spent lithium-ion batteries and future directions: A review. Trans. Nonferrous Met. Soc. China 2025, 35, 271–295. [Google Scholar] [CrossRef]
- Harper, G.; Anderson, P.A.; Kendrick, E.; Mrozik, W.; Christensen, P.; Lambert, S.; Greenwood, D.; Das, P.K.; Ahmeid, M.; Milojevic, Z. Roadmap for a sustainable circular economy in lithium-ion and future battery technologies. J. Phys. Energy 2022, 5, 021501. [Google Scholar] [CrossRef]
- WEF. 2022. Available online: https://www.weforum.org/stories/2022/07/electric-vehicles-world-enough-lithium-resources/ (accessed on 17 March 2025).
- Energy, L.-I.B. Reuse and Recycling: Environmental Sustainability of Lithium-Ion Battery Energy Storage Systems; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Smith, D.C. The importance of lithium in achieving a low-carbon future: Opportunities galore, but coupled with key challenges for legal professionals. J. Energy Nat. Resour. Law 2020, 38, 1–4. [Google Scholar] [CrossRef]
- Walden, J.; Steinbrecher, A.; Marinkovic, M. Digital product passports as enabler of the circular economy. Chem. Ing. Tech. 2021, 93, 1717–1727. [Google Scholar] [CrossRef]
- United Nations. United Nations Framework Classification for Resources; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Espinoza, L.A.T. Case Study: Tantalum in the World Economy: History, Uses and Demand. POLINARES Consortium Grant Agreement 224516. 2012. Available online: https://publica-rest.fraunhofer.de/server/api/core/bitstreams/9e6bf29b-7fb4-43e3-b0ab-e9ba5d8b0a66/content (accessed on 17 March 2025).
- Sweetapple, M.T.; Lumpkin, G.R.; Collins, P.L.; Cornelius, H. Fractionation and Tantalum-Tin Mineralization the Archaean Wodgina Pegmatite District, North Pilbara Craton, Western Australia. In Proceedings of the 11th Quadrennial IAGOD Symposium and Geocongress, Windhoek, Namibia, 22–26 July 2002. [Google Scholar]
- Korinek, G.J. Tantalum in Solid Electrolytic Capacitors—New Developments. Mater. Trans. JIM 1996, 37, 1244–1246. [Google Scholar]
- Schütte, P. Sustainability Information Tantalum; Institute for Geosciences and Natural Resources: Hannover, Germany, 2021. [Google Scholar]
- Amnesty International. Democratic Republic of Congo: Arming the East; Amnesty International: London, UK, 2005. [Google Scholar]
- Carrol, R. Multinationals in Scramble for Congo’s Wealth. The Guardian, 22 October 2002. [Google Scholar]
- Coutsouradis, D.; Davin, A.; Lamberigts, M. Cobalt-based superalloys for applications in gas turbines. Mater. Sci. Eng. 1987, 88, 11–19. [Google Scholar] [CrossRef]
- Korashy, A.; Attia, H.; Thomson, V.; Oskooei, S. Characterization of fretting wear of cobalt-based superalloys at high temperature for aero-engine combustor components. Wear 2015, 330, 327–337. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Sundararajan, A.; Sarwat, A.I. A review of cathode and anode materials for lithium-ion batteries. SoutheastCon 2016, 2016, 1–6. [Google Scholar]
- Earl, C.; Shah, I.H.; Cook, S.; Cheeseman, C.R. Environmental sustainability and supply resilience of cobalt. Sustainability 2022, 14, 4124. [Google Scholar] [CrossRef]
- Deberdt, R.; Le Billon, P. Conflict minerals and battery materials supply chains: A mapping review of responsible sourcing initiatives. Extr. Ind. Soc. 2021, 8, 100935. [Google Scholar] [CrossRef]
- Mancini, L.; Eslava, N.A.; Traverso, M.; Mathieux, F. Assessing impacts of responsible sourcing initiatives for cobalt: Insights from a case study. Resour. Policy 2021, 71, 102015. [Google Scholar]
- Gourley, S.W.D.; Or, T.; Chen, Z. Breaking free from cobalt reliance in lithium-ion batteries. Iscience 2020, 23, 101505. [Google Scholar]
- Muralidharan, N.; Self, E.C.; Nanda, J.; Belharouak, I. Next-Generation Cobalt-Free Cathodes–A Prospective Solution to the Battery Industry’s Cobalt Problem. In Transition Metal Oxides for Electrochemical Energy Storage; Wiley: Hoboken, NJ, USA, 2022; pp. 33–53. [Google Scholar]
- Kim, Y.; Seong, W.M.; Manthiram, A. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. Energy Storage Mater. 2021, 34, 250–259. [Google Scholar]
- Li, W.; Lee, S.; Manthiram, A. High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries. Adv. Mater. 2020, 32, 2002718. [Google Scholar]
- Nayir, D.; Shinnar, R. How founders establish legitimacy: A narrative perspective on social entrepreneurs in a developing country context. Soc. Enterp. J. 2020, 16, 221–241. [Google Scholar] [CrossRef]
- Gunn, G. Critical Metals Handbook; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Ghobadian, A.; Talavera, I.; Bhattacharya, A.; Kumar, V.; Garza-Reyes, J.A.; O’Regan, N. Examining legitimatisation of additive manufacturing in the interplay between innovation, lean manufacturing and sustainability. Int. J. Prod. Econ. 2020, 219, 457–468. [Google Scholar] [CrossRef]
- Heijlen, W.; Franceschi, G.; Duhayon, C.; Van Nijen, K. Assessing the adequacy of the global land-based mine development pipeline in the light of future high-demand scenarios: The case of the battery-metals nickel (Ni) and cobalt (Co). Resour. Policy 2021, 73, 102202. [Google Scholar] [CrossRef]
- Erhardt, N.; Martin-Rios, C.; Bolton, J.; Luth, M. Doing Well by Creating Economic Value through Social Values among Craft Beer Breweries: A Case Study in Responsible Innovation and Growth. Sustainability 2022, 14, 2826. [Google Scholar] [CrossRef]
- Remme, D.; Jackson, J. Green mission creep: The unintended consequences of circular economy strategies for electric vehicles. J. Clean. Prod. 2023, 394, 136346. [Google Scholar] [CrossRef]
- Owen, R.; Pansera, M. Responsible innovation: Process and politics. In International Handbook on Responsible Innovation; Edward Elgar Publishing: Cheltenham, UK, 2019. [Google Scholar]
- Guo, H.; Tang, J.; Su, Z. To be different, or to be the same? The interactive effect of organizational regulatory legitimacy and entrepreneurial orientation on new venture performance. Asia Pac. J. Manag. 2014, 31, 665–685. [Google Scholar] [CrossRef]
- Milne, M.J.; Patten, D.M. Securing organizational legitimacy: An experimental decision case examining the impact of environmental disclosures. Account. Audit. Account. J. 2002, 15, 372–405. [Google Scholar] [CrossRef]
- Parsons, R.; Lacey, J.; Moffat, K. Maintaining legitimacy of a contested practice: How the minerals industry understands its ‘social licence to operate’. Resour. Policy 2014, 41, 83–90. [Google Scholar]
- Arentshorst, M.E.; de Cock Buning, T.; Broerse, J.E.W. Exploring responsible innovation: Dutch public perceptions of the future of medical neuroimaging technology. Technol. Soc. 2016, 45, 8–18. [Google Scholar] [CrossRef]
- Wasmuth, H.; Nitecki, E. (Un) intended consequences in current ECEC policies: Revealing and examining hidden agendas. Policy Futur. Educ. 2020, 18, 686–699. [Google Scholar]
Event Types | Observable Implications |
---|---|
Contestation—events where a proposed or realised practice of one actor is challenged by other actors. | Events related to contestation are likely to decrease legitimacy. |
Market dynamic—the interplay of demand and supply for finished products and the materials necessary to produce them. | Events related to market dynamics are likely to increase or decrease legitimacy.
|
Mass production economics—the process of upscaling the production of products to exploit the cost advantages of large-scale production, leading to a supply push of the materials and products involved. | Events related to mass production are likely to increase or decrease legitimacy.
|
Rules and standards—defining regulations, rules, and standards, by governments, credentialing associations, and professional bodies. | Events related to rules and standards are likely to increase legitimacy. |
Lead time to market—the process necessary between the invention and the actual making available of a product/service to the user. | Events related to lead time to market are likely to increase or decrease legitimacy.
|
Guided research and innovation—the process of steering research and innovation in a particular direction. | Events related to guided research and innovation are likely to increase or decrease legitimacy.
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahanty, S.; Boons, F.; Harper, G. Evolving Critical Metal Systems: Hype Cycles and Implications for Sustainable Innovation. Sustainability 2025, 17, 2778. https://doi.org/10.3390/su17062778
Mahanty S, Boons F, Harper G. Evolving Critical Metal Systems: Hype Cycles and Implications for Sustainable Innovation. Sustainability. 2025; 17(6):2778. https://doi.org/10.3390/su17062778
Chicago/Turabian StyleMahanty, Sampriti, Frank Boons, and Gavin Harper. 2025. "Evolving Critical Metal Systems: Hype Cycles and Implications for Sustainable Innovation" Sustainability 17, no. 6: 2778. https://doi.org/10.3390/su17062778
APA StyleMahanty, S., Boons, F., & Harper, G. (2025). Evolving Critical Metal Systems: Hype Cycles and Implications for Sustainable Innovation. Sustainability, 17(6), 2778. https://doi.org/10.3390/su17062778