Assessing Rural Habitat Suitability in Anhui Province: A Socio-Economic and Environmental Perspective
Abstract
:1. Introduction
2. Research Framework and Theoretical Basic
3. Materials and Methods
3.1. Study Area
3.2. Data Resource
3.3. Selected Variables and Description
3.4. Method
Motivation for Model Choice
3.5. Mathematical Model Specifications for Different ARDL Models
3.6. Hausman Test for Model Selection
- (a)
- Levin–Lin–Chu and MW test for stationarity
- (b)
- Granger causality test
- (c)
- Hausman specification test
- (d)
- Mean group vs. dynamic fixe effect
- (e)
- Pool means group vs. mean group
- (f)
- Summary of Hausman Tests:
4. Results
4.1. Autoregressive Distributed Lag (ARDL) Results
4.2. Regional Heterogeneity Analysis
5. Discussion
5.1. Influence Mechanisms
5.2. Temporal and Regional Heterogeneity of Income Influence Mechanisms
5.3. Policy Implications
5.4. Potential Limits and Future Research
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Chen, Y.; Zhang, X. Spatial restructuring and development characteristics of villages and the revitalization path: A case study of the X County of Zhejiang Province in China. Front. Sustain. Cities 2024, 6, 1441750. [Google Scholar] [CrossRef]
- Yang, W.; Li, W.; Wang, L. How should rural development be chosen? The mechanism narration of rural regional function: A case study of Gansu Province, China. Heliyon 2023, 9, e20485. [Google Scholar] [CrossRef]
- Faye, B.; Diéne, J.C.; Du, G.; Liang, C.; Kouadio, Y.D.; Mbaye, E.; Li, Y. Decentralization Policies and Rural Socio-Economic Growth in Senegal: An Exploration of Their Contributions to Development and Transformation. World 2024, 5, 1054–1076. [Google Scholar] [CrossRef]
- Shi, J.; Yang, X. Sustainable Development Levels and Influence Factors in Rural China Based on Rural Revitalization Strategy. Sustainability 2022, 14, 8908. [Google Scholar] [CrossRef]
- Guo, Y.; Li, S. A policy analysis of China’s sustainable rural revitalization: Integrating environmental, social and economic dimensions. Front. Environ. Sci. 2024, 12, 1436869. [Google Scholar] [CrossRef]
- Cai, M.; Ouyang, B.; Quayson, M. Navigating the Nexus between Rural Revitalization and Sustainable Development: A Bibliometric Analyses of Current Status, Progress, and Prospects. Sustainability 2024, 16, 1005. [Google Scholar] [CrossRef]
- Fei, W.; Opoku, A.; Agyekum, K.; Oppon, J.A.; Ahmed, V.; Chen, C.; Lok, K.L. The Critical Role of the Construction Industry in Achieving the Sustainable Development Goals (SDGs): Delivering Projects for the Common Good. Sustainability 2021, 13, 9112. [Google Scholar] [CrossRef]
- Dumenu, W.K.; Obeng, E.A. Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- Xu, Y.; Lyu, J.; Xue, Y.; Liu, H. Does the Agricultural Productive Service Embedded Affect Farmers’ Family Economic Welfare Enhancement? An Empirical Analysis in Black Soil Region in China. Agriculture 2022, 12, 1880. [Google Scholar] [CrossRef]
- Abiri, R.; Rizan, N.; Balasundram, S.K.; Shahbazi, A.B.; Abdul-Hamid, H. Application of digital technologies for ensuring agricultural productivity. Heliyon 2023, 9, e22601. [Google Scholar] [CrossRef]
- Xiong, Z.; Huang, Y.; Yang, L. Rural revitalization in China: Measurement indicators, regional differences and dynamic evolution. Heliyon 2024, 10, e29880. [Google Scholar] [CrossRef] [PubMed]
- Guo, R. Research on the Transformation of Rural Governance Models under the Background of Rural Revitalization. Open J. Bus. Manag. 2020, 8, 1274–1280. [Google Scholar] [CrossRef]
- Wang, J.; Yang, S.; Hu, S.; Li, Q.; Liu, C.; Gao, Y.; Huang, J.; Chow, C.W.K.; Liu, F.; Zheng, X. Evaluation of the Effectiveness of High-Level Construction of Rural Living Environment in China Under the Incentive Policies. Sustainability 2024, 17, 107. [Google Scholar] [CrossRef]
- Zougmoré, R.B.; Läderach, P.; Campbell, B.M. Transforming Food Systems in Africa under Climate Change Pressure: Role of Climate-Smart Agriculture. Sustainability 2021, 13, 4305. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, L.; Chen, L. Rural revitalization of China: A new framework, measurement and forecast. Socio-Economic Plan. Sci. 2023, 89, 101696. [Google Scholar] [CrossRef]
- Ren, K. Following Rural Functions to Classify Rural Sites: An Application in Jixi, Anhui Province, China. Land 2021, 10, 418. [Google Scholar] [CrossRef]
- Huang, A.; Liu, B.; Zhang, A.; Zhan, J. Coordinated development of rural habitat in China: A study of measurement, spatio-temporal evolution and convergence. J. Clean. Prod. 2023, 398, 136651. [Google Scholar] [CrossRef]
- Song, R.; Li, X. Urban Human Settlement Vulnerability Evolution and Mechanisms: The Case of Anhui Province, China. Land 2023, 12, 994. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Global synthesis reveals heterogeneous changes in connection of humans to nature. One Earth 2023, 6, 131–138. [Google Scholar] [CrossRef]
- Soga, M.; Gaston, K.J. Towards a unified understanding of human–nature interactions. Nat. Sustain. 2021, 5, 374–383. [Google Scholar] [CrossRef]
- Yanbo, Q.; Guanghui, J.; Wenqiu, M.; Zitong, L. How does the rural settlement transition contribute to shaping sustainable rural development? Evidence from Shandong, China. J. Rural Stud. 2021, 82, 279–293. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Zhang, R. Efficiency Analysis of Land Use and the Degree of Coupling Link between Population Growth and Global Built-Up Area in the Subregion of West Africa. Land 2022, 11, 847. [Google Scholar] [CrossRef]
- Yan, L.; Jiao, D.; Yongshi, Z. Evaluation of regional water resources carrying capacity in China based on variable weight model and grey-markov model: A case study of Anhui province. Sci. Rep. 2023, 13, 1–17. [Google Scholar] [CrossRef]
- Zhou, W.; Li, M.; Achal, V. A comprehensive review on environmental and human health impacts of chemical pesticide usage. Emerg. Contam. 2025, 11, 100410. [Google Scholar] [CrossRef]
- Ahmad, F.; Ahmad, F.A.; Alsayegh, A.A.; Zeyaullah, M.; AlShahrani, A.M.; Muzammil, K.; Saati, A.A.; Wahab, S.; Elbendary, E.Y.; Kambal, N.; et al. Pesticides impacts on human health and the environment with their mechanisms of action and possible countermeasures. Heliyon 2024, 10, e29128. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, T.; Niu, Y.; Mukherjee, S.; Abou-Elwafa, S.F.; Nguyen, N.S.H.; Al Aboud, N.M.; Wang, Y.; Pu, M.; Zhang, Y.; et al. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. Sci. Total Environ. 2024, 942, 173567. [Google Scholar] [CrossRef]
- Xiaoke, G.; Hongmei, D.; Khan, J. Disentangling the heterogeneous effects of different support policies on livestock and poultry farmers’ willingness to utilize manure resources: Evidence from central China. Front. Environ. Sci. 2023, 11, 1070423. [Google Scholar] [CrossRef]
- Yao, L. Assessment of long time-series greening signatures across the urban–rural gradient in Chinese cities. Ecol. Indic. 2024, 160, 111826. [Google Scholar] [CrossRef]
- Roshani; Sajjad, H.; Rahaman, H.; Masroor; Sharma, Y.; Sharma, A.; Saha, T.K. Vulnerability assessment of forest ecosystem based on exposure, sensitivity and adaptive capacity in the Valmiki Tiger Reserve, India: A geospatial analysis. Ecol. Inform. 2024, 80, 102494. [Google Scholar] [CrossRef]
- Wang, L.; Faye, B.; Li, Q.; Li, Y. A Spatio-Temporal Analysis of the Ecological Compensation for Cultivated Land in Northeast China. Land 2023, 12, 2179. [Google Scholar] [CrossRef]
- Du, G.; Wang, X.; Wang, J.; Liu, Y.; Zhang, H. Analysis of the Spatial–Temporal Pattern of the Newly Increased Cultivated Land and Its Vulnerability in Northeast China. Land 2023, 12, 796. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Du, G.; Xie, J.; Hou, D.; Yu, F. Regional differences in the green use level of cultivated land in the Heilongjiang reclamation area. Front. Environ. Sci. 2023, 11, 411. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J.; Song, M.; Li, Z.; Han, Z.; Zhang, F.; Cheng, W. Agricultural land-use system management: Research progress and perspectives. Fundam. Res. 2024; in press. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Mbaye, E.; Liang, C.; Sané, T.; Xue, R. Assessing the Spatial Agricultural Land Use Transition in Thiès Region, Senegal, and Its Potential Driving Factors. Land 2023, 12, 779. [Google Scholar] [CrossRef]
- Zhang, G.; Quan, L. Impact of Habitat Quality Changes on Regional Thermal Environment: A Case Study in Anhui Province, China. Sustainability 2024, 16, 8560. [Google Scholar] [CrossRef]
- Faye, B.; Du, G. Agricultural Land Transition in the “Groundnut Basin” of Senegal: 2009 to 2018. Land 2021, 10, 996. [Google Scholar] [CrossRef]
- Makowski, D.; Marajo-Petitzon, E.; Durand, J.-L.; Ben-Ari, T. Quantitative synthesis of temperature, CO2, rainfall, and adaptation effects on global crop yields. Eur. J. Agron. 2020, 115, 126041. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, J.; Xing, Q. Evaluation of synergy between low-carbon development and socio-economic development based on a composite system: A case study of Anhui Province (China). Sci. Rep. 2022, 12, 20294. [Google Scholar] [CrossRef]
- Shin, Y.; Pesaran, M.H. An Autoregressive Distributed Lag Modelling Approach to Cointegration Analysis; Cambridge University Press: Cambridge, UK, 1999; pp. 371–413. Available online: https://pure.york.ac.uk/portal/en/publications/an-autoregressive-distributed-lag-modelling-approach-to-cointegra (accessed on 11 October 2024).
- Levin, A.; Lin, C.-F.; Chu, C.-S.J. Unit root tests in panel data: Asymptotic and finite-sample properties. J. Econ. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Maddala, G.S.; Wu, S. A Comparative Study of Unit Root Tests with Panel Data and a New Simple Test. Oxf. Bull. Econ. Stat. 1999, 61, 631–652. [Google Scholar] [CrossRef]
- Pesaran, M.; Smith, R. Estimating long-run relationships from dynamic heterogeneous panels. J. Econ. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Pesaran, H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econ. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Granger, C.W.J. Investigating Causal Relations by Econometric Models and Cross-spectral Methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Econometrica 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econ. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Wang, Y.; Bai, H. The impact and regional heterogeneity analysis of tourism development on urban-rural income gap. Econ. Anal. Policy 2023, 80, 1539–1548. [Google Scholar] [CrossRef]
- Pawlak, K.; Kołodziejczak, M. The Role of Agriculture in Ensuring Food Security in Developing Countries: Considerations in the Context of the Problem of Sustainable Food Production. Sustainability 2020, 12, 5488. [Google Scholar] [CrossRef]
- Liu, B.; Li, N.; Liao, C. Effects of Social Capital on the Adoption of Green Production Technologies by Rice Farmers: Moderation Effects Based on Risk Preferences. Sustainability 2024, 16, 8879. [Google Scholar] [CrossRef]
- Kos, D.; Lensink, R.; Meuwissen, M. The role of social capital in adoption of risky versus less risky subsidized input supplies: An empirical study of cocoa farmers in Ghana. J. Rural Stud. 2022, 97, 140–152. [Google Scholar] [CrossRef]
- Ji, Q.; Yang, J.; Chu, Y.; Chen, H.; Guo, X. Inequality of rural residents’ income in China since the targeted poverty alleviation strategy: New trends, causes, and policy implications. Res. Cold Arid Reg. 2024, 16, 201–213. [Google Scholar] [CrossRef]
- Du, X.; Zhang, H.; Han, Y. How Does New Infrastructure Investment Affect Economic Growth Quality? Empirical Evidence from China. Sustainability 2022, 14, 3511. [Google Scholar] [CrossRef]
- Zhang, G.; Roslan, S.N.A.; Quan, L.; Yuan, P. Simulation of spatiotemporal patterns of habitat quality and driving mechanism in Anhui province, China. Front. Environ. Sci. 2023, 11, 1145626. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, T.; Gao, W.; Guo, Y. Assessment of Urban Sustainability and Coupling Coordinated Development: An Empirical Study in Anhui Province, China. Sustainability 2024, 16, 2282. [Google Scholar] [CrossRef]
- Mao, H.; Cui, G.; Hussain, Z.; Shao, L. Investigating the simultaneous impact of infrastructure and geographical factors on international trade: Evidence from asian economies. Heliyon 2023, 10, e23791. [Google Scholar] [CrossRef]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
Rural habitat suitability (Indice) | 0.221 | 0.049 | 0.128 | 0.331 |
Rural greening rate (%) | 5.523 | 1.385 | 2.647 | 8.965 |
Village plans (%) | 7.698 | 1.848 | 4.281 | 12.372 |
Temperature (average °C) | 16.059 | 1.594 | 10.889 | 23.055 |
Rainfall (average mm) | 0.003 | 0.001 | 0.002 | 0.007 |
Income of farmers (growth rate%) | 34.462 | 1.443 | 30.132 | 37.199 |
Living space (square meters) | 7.715 | 1.82 | 4.123 | 12.829 |
IPS | MW | |||
---|---|---|---|---|
Variables | Level | First Difference | Level | First Difference |
Rural habitat suitability | −2.4464 | −21.5366 *** | 4.3969 | −24.3730 *** |
Rural greening rate | −4.1793 | −22.4959 *** | 2.3929 | −25.9378 *** |
Village plans | −3.4191 | −20.9160 *** | 3.4000 | −23.3371 *** |
Temperature | −11.9629 *** | −6.0081 *** | ||
Rainfall | −13.9955 *** | −9.5721 *** | ||
Income of farmers | −4.7940 * | −23.1128 *** | 1.4016 | −28.7511 *** |
Living space | −3.6105 | −20.2596 *** | 3.1768 | −21.4768 *** |
Test Statistics (Z-Bar) | Decision |
---|---|
12.0652 *** | Rural habitat suitability—Granger-cause rural greening rate |
9.4605 *** | Rural habitat suitability—Granger-cause village plans |
−0.5783 | Rural habitat suitability—does not Granger-cause temperature |
0.5405 | Rural habitat suitability—does not Granger-cause rainfall |
18.7343 *** | Rural habitat suitability—Granger-cause income of farmers |
9.1039 *** | Rural habitat suitability—Granger-cause living space |
−0.8492 | Rural greening rate—does not Granger-cause rural habitat suitability |
1.3569 | Rural greening rate—does not Granger-cause village plans |
0.1277 | Rural greening rate—does not Granger-cause temperature |
−0.7473 | Rural greening rate—does not Granger-cause rainfall |
5.8571 | Rural greening rate—does Granger-cause income of farmers |
0.8273 | Rural greening rate—does not Granger-cause living space |
0.6563 | Village plans—does not Granger-cause rural habitat suitability |
10.3655 *** | Village plans—does Granger-cause Rural greening rate |
−1.2596 | Village plans—does not Granger-cause temperature |
3.8782 *** | Village plans—does Granger-cause rainfall |
10.5349 *** | Village plans—does Granger-cause income of farmers |
6.0868 | Village plans—does Granger-cause living space |
1.7948 * | Temperature—does not Granger-cause rural habitat suitability |
1.0358 | Temperature—does not Granger-cause rural greening rate |
−0.2462 | Temperature—does not Granger-cause village plans |
3.7647 | Temperature—does Granger-cause rainfall |
0.1286 | Temp does not Granger-cause income of farmers |
4.5554 *** | Temperature—does Granger-cause living space |
−0.5440 | Rain does not Granger-cause rural habitat suitability |
0.5407 | Rainfall—does not Granger-cause rural greening rate |
1.4295 | Rainfall—does not Granger-cause village plans |
−1.8538 * | Rainfall—does not Granger-cause temperature |
2.2017 ** | Rainfall—does Granger-cause income of farmers |
−1.8674 * | Rainfall—does not Granger-cause living space |
0.7709 | Income of farmers—does not Granger-cause rural habitat suitability |
2.4033 ** | Income of farmers—Granger-cause rural greening rate |
1.3560 | Income of farmers—does not Granger-cause village plans |
−0.3902 | Income of farmers -does not Granger-cause temperature |
−0.6490 | Income of farmers—does not Granger-cause rainfall |
3.3911 *** | Income of farmers—does Granger-cause living space |
1.3704 | Living space—does not Granger-cause rural habitat suitability |
6.3597 *** | Living space—does Granger-cause rural greening rate |
5.6770 *** | Living space—does Granger-cause village plans |
0.3824 | Living space—does not Granger-cause temperature |
1.8505 * | Living space—does not Granger-cause rainfall |
9.5106 *** | Living space—does Granger-cause income of farmers |
Statistic | |
---|---|
Modified Dickey–Fuller t | 0.9181 |
Dickey–Fuller t | −2.5403 *** |
Augmented Dickey–Fuller t | 2.1103 ** |
Unadjusted modified Dickey–Fuller t | −22.2761 *** |
Unadjusted Dickey–Fuller t | −15.3461 *** |
Ho: No cointegration, Ha: All panels are cointegrated |
Model | pmg | DFE |
---|---|---|
Hypothesis | Consistent under Ho and Ha | Inconsistent under Ha, efficient under Ho |
Prob > chi2 | 1.0000 |
Model | mg | DFE |
---|---|---|
Hypothesis | Consistent under Ho and Ha | Inconsistent under Ha, efficient under Ho |
Prob > chi2 | 1.0000 |
Model | mg | pmg |
---|---|---|
Hypothesis | Consistent under Ho and Ha | Inconsistent under Ha, efficient under Ho |
Prob > chi2 | 0.9530 |
(1) | (2) | |
---|---|---|
Variables | __ec | SR |
__ec | −0.813 *** | |
(0.0819) | ||
D. Rural greening rate | 0.00497 *** | |
(0.000861) | ||
D. Village plans | 0.00691 *** | |
(0.000958) | ||
D. Temperature | 0.000920 ** | |
(0.000426) | ||
D. Rainfall | 0.636 | |
(0.681) | ||
D. Income of farmers | −0.00484 *** | |
(0.000903) | ||
D. Living space | 0.00901 *** | |
(0.000795) | ||
L. Rural greening rate | 0.00632 *** | |
(0.00104) | ||
L. Village plans | 0.00855 *** | |
(0.000954) | ||
L. Temperature | 0.000300 | |
(0.000587) | ||
L. Rainfall | 1.116 | |
(1.126) | ||
L. Income of farmers | −0.00545 *** | |
(0.00101) | ||
L. Living space | 0.0105 *** | |
(0.000899) | ||
Constant | 0.179 *** | |
(0.0177) | ||
Observations | 336 | 336 |
Variables | Héféi shì | Wúhú | Bàngbù | Huainan | Ma’anshan | Huáiběi | Tónglíng | Ānqìng | Huángshān | Chuzhou | Fùyáng | Suzhou | Liù ān | Bózhōu | Chízhōu | Ānhuī |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L Rural habitat suitability | −0.207 | −0.607 | −0.215 | −0.429 | −0.037 | 0.469 | 0.335 | 0.599 | −0.019 | −0.012 | −0.092 | 0.691 * | 0.002 | −0.250 | −0.684 * | −0.163 |
(0.327) | (0.506) | (0.376) | (0.272) | (0.334) | (0.503) | (0.280) | (0.376) | (0.456) | (0.305) | (0.291) | (0.335) | (0.457) | (0.512) | (0.342) | (0.310) | |
Rural greening rate | 0.006 | 0.006 | 0.004 | −0.009 | 0.005 | 0.013 * | 0.010 * | −0.004 | 0.000 | −0.000 | 0.006 | −0.012 * | 0.009 ** | 0.001 | 0.006 | 0.004 |
(0.004) | (0.004) | (0.005) | (0.007) | (0.005) | (0.006) | (0.005) | (0.004) | (0.004) | (0.005) | (0.003) | (0.006) | (0.003) | (0.009) | (0.004) | (0.005) | |
L. Rural greening rate | −0.001 | 0.001 | 0.001 | −0.006 | −0.002 | −0.002 | 0.010 | −0.006 | 0.002 | 0.006 | 0.001 | 0.012 | −0.001 | −0.002 | 0.001 | 0.007 |
(0.005) | (0.004) | (0.008) | (0.006) | (0.006) | (0.008) | (0.006) | (0.008) | (0.004) | (0.005) | (0.004) | (0.007) | (0.004) | (0.008) | (0.005) | (0.006) | |
Village plans | 0.014 ** | 0.010 * | 0.008 * | 0.014 ** | 0.020 *** | −0.010 | −0.004 | 0.011 ** | 0.010 ** | 0.006 | 0.011 * | 0.009 | 0.010 * | 0.011 | 0.008 * | −0.001 |
(0.005) | (0.005) | (0.004) | (0.004) | (0.005) | (0.009) | (0.004) | (0.003) | (0.003) | (0.004) | (0.005) | (0.007) | (0.004) | (0.006) | (0.004) | (0.006) | |
L.Plansdevillage | 0.000 | 0.002 | −0.005 | −0.004 | 0.007 | 0.009 | −0.001 | 0.002 | 0.006 | 0.003 | 0.005 | −0.020 * | −0.000 | 0.003 | 0.009 * | 0.001 |
(0.004) | (0.007) | (0.004) | (0.006) | (0.006) | (0.006) | (0.007) | (0.004) | (0.006) | (0.005) | (0.006) | (0.009) | (0.006) | (0.007) | (0.004) | (0.004) | |
Temperature | −0.001 | 0.005 | −0.000 | −0.004 | −0.000 | 0.000 | 0.000 | 0.002 | 0.002 | −0.001 | −0.002 | −0.008 ** | −0.002 | −0.003 | 0.002 | 0.002 |
(0.002) | (0.003) | (0.004) | (0.003) | (0.002) | (0.002) | (0.002) | (0.002) | (0.001) | (0.002) | (0.002) | (0.003) | (0.002) | (0.004) | (0.002) | (0.003) | |
L. Temperature | −0.003 | 0.000 | −0.003 | −0.004 | −0.002 | −0.002 | 0.003 | 0.000 | 0.002 | −0.002 | −0.003 | 0.001 | 0.001 | 0.001 | 0.003 | −0.004 |
(0.002) | (0.004) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.003) | (0.002) | (0.003) | (0.003) | (0.004) | (0.002) | (0.004) | (0.002) | (0.002) | |
Rainfall | 7.887 | −7.765 | 2.349 | −10.635 | 2.121 | 2.294 | −5.446 | 4.541 | −2.947 | 10.003 | −0.149 | −4.890 | 0.439 | −0.729 | −1.662 | 0.918 |
(4.256) | (5.317) | (6.996) | (7.337) | (5.978) | (5.611) | (5.459) | (3.243) | (3.378) | (6.268) | (4.207) | (5.209) | (5.345) | (5.813) | (3.910) | (5.276) | |
L. Rainfall | 10.117** | −3.413 | 2.115 | 0.943 | −2.902 | −2.211 | 8.679 * | −5.047 | 1.986 | 0.361 | 2.434 | −1.106 | −3.282 | 0.045 | 0.219 | 5.708 |
(3.827) | (4.668) | (5.725) | (5.839) | (3.922) | (5.056) | (4.326) | (3.407) | (3.350) | (4.212) | (4.466) | (7.039) | (5.408) | (7.066) | (3.131) | (4.992) | |
Income of farmers | −0.003 | −0.011 ** | −0.009 * | −0.013 ** | 0.010 | −0.011 ** | −0.007 | −0.004 | −0.005 | −0.012 ** | −0.001 | −0.019 *** | −0.005 | −0.006 | −0.007 | −0.006 |
(0.004) | (0.004) | (0.005) | (0.005) | (0.006) | (0.003) | (0.005) | (0.004) | (0.004) | (0.004) | (0.005) | (0.005) | (0.003) | (0.006) | (0.004) | (0.004) | |
L.Income of farmers | −0.003 | −0.002 | 0.001 | 0.003 | 0.003 | 0.011 * | 0.002 | −0.001 | 0.001 | −0.004 | 0.008 | 0.002 | −0.001 | −0.008 | −0.008 | −0.006 |
(0.004) | (0.006) | (0.005) | (0.005) | (0.006) | (0.005) | (0.006) | (0.004) | (0.004) | (0.005) | (0.005) | (0.006) | (0.005) | (0.008) | (0.004) | (0.006) | |
Living space | 0.006 | 0.008 | 0.014 ** | 0.009 | 0.015 *** | 0.012 *** | 0.014 ** | 0.008 | 0.010 ** | 0.005 | 0.003 | 0.004 | 0.005 | 0.009 | 0.009 *** | 0.015 ** |
(0.004) | (0.006) | (0.004) | (0.005) | (0.003) | (0.003) | (0.004) | (0.007) | (0.003) | (0.003) | (0.003) | (0.005) | (0.003) | (0.007) | (0.003) | (0.005) | |
L. Living space | 0.004 | 0.013 * | 0.010 * | 0.022 ** | −0.005 | −0.004 | −0.008 | −0.005 | −0.005 | −0.005 | 0.012 ** | 0.003 | 0.003 | 0.000 | 0.004 | 0.003 |
(0.004) | (0.007) | (0.005) | (0.008) | (0.006) | (0.007) | (0.006) | (0.005) | (0.006) | (0.004) | (0.004) | (0.004) | (0.005) | (0.007) | (0.004) | (0.006) | |
Constant | 0.239 | 0.492 * | 0.335 | 0.576 ** | −0.478 | 0.015 | 0.129 | 0.178 | 0.154 | 0.673 * | −0.168 | 0.816 ** | 0.265 | 0.636 | 0.531 * | 0.465 |
(0.170) | (0.249) | (0.360) | (0.235) | (0.276) | (0.258) | (0.377) | (0.239) | (0.227) | (0.312) | (0.348) | (0.327) | (0.290) | (0.426) | (0.237) | (0.263) | |
Observations | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 | 21 |
R-squared | 0.989 | 0.984 | 0.986 | 0.988 | 0.986 | 0.987 | 0.987 | 0.991 | 0.990 | 0.986 | 0.987 | 0.985 | 0.988 | 0.974 | 0.993 | 0.977 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Su, P.; Xia, Y.; Zhang, H.; Shen, Y.; Faye, B.; Wang, Y.; Liu, L.; Xue, R. Assessing Rural Habitat Suitability in Anhui Province: A Socio-Economic and Environmental Perspective. Sustainability 2025, 17, 2825. https://doi.org/10.3390/su17072825
Shi X, Su P, Xia Y, Zhang H, Shen Y, Faye B, Wang Y, Liu L, Xue R. Assessing Rural Habitat Suitability in Anhui Province: A Socio-Economic and Environmental Perspective. Sustainability. 2025; 17(7):2825. https://doi.org/10.3390/su17072825
Chicago/Turabian StyleShi, Xiaowei, Peitian Su, Yanle Xia, Heng Zhang, Yuzhuo Shen, Bonoua Faye, Yujing Wang, Lei Liu, and Ruhao Xue. 2025. "Assessing Rural Habitat Suitability in Anhui Province: A Socio-Economic and Environmental Perspective" Sustainability 17, no. 7: 2825. https://doi.org/10.3390/su17072825
APA StyleShi, X., Su, P., Xia, Y., Zhang, H., Shen, Y., Faye, B., Wang, Y., Liu, L., & Xue, R. (2025). Assessing Rural Habitat Suitability in Anhui Province: A Socio-Economic and Environmental Perspective. Sustainability, 17(7), 2825. https://doi.org/10.3390/su17072825