Activated Carbon from Selected Wood-Based Waste Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Pyrolysis and Activation Procedure
2.3. Activation Process
2.4. Physicochemical Analysis of Waste and Chars
2.5. Heavy Metals
2.6. ATR-FTIR and Raman Spectroscopic Analysis
2.7. Scanning and Transmission Electron Microscopy
3. Results and Discussion
3.1. Elemental Analysis
3.2. Heavy Metals Analysis
3.3. FTIR Spectroscopy
3.4. Raman Spectroscopy
3.5. Scanning Electron Microscopy (SEM)
3.6. Transmission Electron Microscopy (TEM)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BF | Bamboo flooring |
BF-C | Char from bamboo floor |
BF-C850 | Char from bamboo floor thermally activated at 850 °C for 15 min |
BF-C700 | Char from bamboo floor thermally activated at 700 °C for 15 min |
BF-C700KOH | Char from bamboo floor chemically activated with 2 M KOH at 700 °C for 15 min |
FTIR-ATR | Fourier Transform Infrared Spectroscopy—Attenuated Total Reflectance |
HDF | high-density fiberboards |
HDF-C | Char from HDF floor panel |
HDF-C850 | Char from HDF floor panel thermally activated at 850 °C for 15 min |
HDF-C700 | Char from HDF floor panel thermally activated at 700 °C for 15 min |
HDF-C700KOH | Char from HDF floor panel chemically activated with 2 M KOH at 700 °C for 15 min |
SEM | Scanning electron microscope |
TEM | Transmission electron microscope |
References
- Zhang, C.; Ge-Zhang, S.; Wang, Y.; Mu, H. A Wooden Carbon-Based Photocatalyst for Water Treatment. Int. J. Mol. Sci. 2024, 25, 4743. [Google Scholar] [CrossRef] [PubMed]
- Ge-Zhang, S.; Yang, H.; Mu, H. Interfacial Solar Steam Generator by MWCNTs/Carbon Black Nanoparticles Coated Wood. Alex. Eng. J. 2023, 63, 1–10. [Google Scholar] [CrossRef]
- European Environmental Bureau (EEB). This Report Was Produced for the European Environment Bureau (EEB); Eunomia Research & Consulting Ltd.: Brooklyn, NY, USA, 2017. [Google Scholar]
- Yang, D.; Zhu, J. Recycling and Value-Added Design of Discarded Wooden Furniture. Bioresources 2021, 16, 6954–6964. [Google Scholar] [CrossRef]
- Karidis, A. Tackling a Multi-Million-Ton Furniture Waste Problem. Available online: https://www.waste360.com/waste/tackling-multi-million-ton-furniture-waste-problem (accessed on 23 November 2023).
- Foong, S.Y.; Liew, R.K.; Lee, C.L.; Tan, W.P.; Peng, W.; Sonne, C.; Tsang, Y.F.; Lam, S.S. Strategic Hazard Mitigation of Waste Furniture Boards via Pyrolysis: Pyrolysis Behavior, Mechanisms, and Value-Added Products. J. Hazard. Mater. 2022, 421, 126774. [Google Scholar] [CrossRef]
- European Parliament Directive (EU) 2018/850 Amending Directive 1999/31/EC on the Landfill of Waste, 30 May 2018. Available online: https://www.fao.org/faolex/results/details/en/c/LEX-FAOC178842/ (accessed on 13 February 2025).
- van den Broek, J.; Klein Cerrejon, D.; Pratsinis, S.E.; Güntner, A.T. Selective Formaldehyde Detection at Ppb in Indoor Air with a Portable Sensor. J. Hazard. Mater. 2020, 399, 123052. [Google Scholar] [CrossRef]
- Khan, T.A.; Gupta, A.; Jamari, S.S.; Nasir, M.; Jang, S.; Kim, H.J.; Asim, M. Synthesis of Micro Carbonaceous Material by Pyrolysis of Rubber Wood and Its Effect on Properties of Urea-Formaldehyde (UF) Resin. Int. J. Adhes. Adhes. 2020, 99, 102589. [Google Scholar] [CrossRef]
- Zhao, Z.; Sakai, S.; Wu, D.; Chen, Z.; Zhu, N.; Huang, C.; Sun, S.; Zhang, M.; Umemura, K.; Yong, Q. Further Exploration of Sucrose–Citric Acid Adhesive: Investigation of Optimal Hot-Pressing Conditions for Plywood and Curing Behavior. Polymers 2019, 11, 1996. [Google Scholar] [CrossRef]
- Rodgers, K.M.; Bennett, D.; Moran, R.; Knox, K.; Stoiber, T.; Gill, R.; Young, T.M.; Blum, A.; Dodson, R.E. Do Flame Retardant Concentrations Change in Dust after Older Upholstered Furniture Is Replaced? Environ. Int. 2021, 153, 106513. [Google Scholar] [CrossRef]
- Wi, S.; Park, J.H.; Kim, Y.U.; Kim, S. Evaluation of Environmental Impact on the Formaldehyde Emission and Flame-Retardant Performance of Thermal Insulation Materials. J. Hazard. Mater. 2021, 402, 123463. [Google Scholar] [CrossRef]
- Pouikli, K. Concretising the Role of Extended Producer Responsibility in European Union Waste Law and Policy through the Lens of the Circular Economy. ERA Forum 2020, 20, 491–508. [Google Scholar] [CrossRef]
- Shen, W. Recycling Wooden Furniture Processing Waste. Available online: https://medium.com/@shen4396/recycling-wooden-furniture-processing-waste-6d9fcb129e8d (accessed on 9 August 2024).
- Szwaja, S.; Magdziarz, A.; Zajemska, M.; Poskart, A. A Torrefaction of Sida Hermaphrodita to Improve Fuel Properties. Advanced Analysis of Torrefied Products. Renew. Energy 2019, 141, 894–902. [Google Scholar] [CrossRef]
- Czerwińska, K.; Śliz, M.; Wilk, M. Hydrothermal Carbonization Process: Fundamentals, Main Parameter Characteristics and Possible Applications Including an Effective Method of SARS-CoV-2 Mitigation in Sewage Sludge. A Review. Renew. Sustain. Energy Rev. 2022, 154, 111873. [Google Scholar] [CrossRef]
- Gao, N.; Li, A.; Quan, C.; Qu, Y.; Mao, L. Characteristics of Hydrogen-Rich Gas Production of Biomass Gasification with Porous Ceramic Reforming. Int. J. Hydrogen Energy 2012, 37, 9610–9618. [Google Scholar] [CrossRef]
- Roman, K.; Barwicki, J.; Hryniewicz, M.; Szadkowska, D.; Szadkowski, J. Production of Electricity and Heat from Biomass Wastes Using a Converted Aircraft Turbine AI-20. Processes 2021, 9, 364. [Google Scholar] [CrossRef]
- Mlonka-Mędrala, A.; Evangelopoulos, P.; Sieradzka, M.; Zajemska, M.; Magdziarz, A. Pyrolysis of Agricultural Waste Biomass towards Production of Gas Fuel and High-Quality Char: Experimental and Numerical Investigations. Fuel 2021, 296, 120611. [Google Scholar] [CrossRef]
- Rosales, E.; Meijide, J.; Pazos, M.; Sanromán, M.A. Challenges and Recent Advances in Biochar as Low-Cost Biosorbent: From Batch Assays to Continuous-Flow Systems. Bioresour. Technol. 2017, 246, 176–192. [Google Scholar] [CrossRef]
- Sajdak, M.; Muzyka, R.; Gałko, G.; Ksepko, E.; Zajemska, M.; Sobek, S.; Tercki, D. Actual Trends in the Usability of Biochar as a High-Value Product of Biomass Obtained through Pyrolysis. Energies 2023, 16, 355. [Google Scholar] [CrossRef]
- Poskart, A.; Skrzyniarz, M.; Sajdak, M.; Zajemska, M.; Skibiński, A. Management of Lignocellulosic Waste towards Energy Recovery by Pyrolysis in the Framework of Circular Economy Strategy. Energies 2021, 14, 5864. [Google Scholar] [CrossRef]
- Ayiania, M.; Terrell, E.; Dunsmoor, A.; Carbajal-Gamarra, F.M.; Garcia-Perez, M. Characterization of Solid and Vapor Products from Thermochemical Conversion of Municipal Solid Waste Woody Fractions. Waste Manag. 2019, 84, 277–285. [Google Scholar] [CrossRef]
- Kajda-Szcześniak, M.; Ścierski, W. Studies on the Migration of Sulphur and Chlorine in the Pyrolysis Products of Floor and Furniture Joinery. Energies 2023, 16, 7446. [Google Scholar] [CrossRef]
- Lee, Y.; Park, J.; Ryu, C.; Gang, K.S.; Yang, W.; Park, Y.-K.; Jung, J.; Hyun, S. Comparison of Biochar Properties from Biomass Residues Produced by Slow Pyrolysis at 500 °C. Bioresour. Technol. 2013, 148, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, Y.; Ryu, C.; Park, Y.K. Slow Pyrolysis of Rice Straw: Analysis of Products Properties, Carbon and Energy Yields. Bioresour. Technol. 2014, 155, 63–70. [Google Scholar] [CrossRef]
- Hilber, I.; Blum, F.; Leifeld, J.; Schmidt, H.P.; Bucheli, T.D. Quantitative Determination of PAHs in Biochar: A Prerequisite to Ensure Its Quality and Safe Application. J. Agric. Food Chem. 2012, 60, 3042–3050. [Google Scholar] [CrossRef]
- Ronsse, F.; van Hecke, S.; Dickinson, D.; Prins, W. Production and Characterization of Slow Pyrolysis Biochar: Influence of Feedstock Type and Pyrolysis Conditions. GCB Bioenergy 2013, 5, 104–115. [Google Scholar] [CrossRef]
- Suliman, W.; Harsh, J.B.; Abu-Lail, N.I.; Fortuna, A.M.; Dallmeyer, I.; Garcia-Perez, M. Influence of Feedstock Source and Pyrolysis Temperature on Biochar Bulk and Surface Properties. Biomass Bioenergy 2016, 84, 37–48. [Google Scholar] [CrossRef]
- Lehmann, J. A Handful of Carbon. Nature 2007, 447, 143–144. [Google Scholar] [CrossRef]
- Marris, E. Putting the Carbon Back: Black Is the New Green. Nature 2006, 442, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.P.; Hatton, B.J.; Singh, B.; Cowie, A.L.; Kathuria, A. Influence of Biochars on Nitrous Oxide Emission and Nitrogen Leaching from Two Contrasting Soils. J. Environ. Qual. 2010, 39, 1224–1235. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Yao, Y.; Xue, Y.; Inyang, M. Synthesis of Porous MgO-Biochar Nanocomposites for Removal of Phosphate and Nitrate from Aqueous Solutions. Chem. Eng. J. 2012, 210, 26–32. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M. Preparation and Characterization of a Novel Magnetic Biochar for Arsenic Removal. Bioresour. Technol. 2013, 130, 457–462. [Google Scholar] [CrossRef]
- Taylor, J.H.; Masoudi Soltani, S. Carbonaceous Adsorbents in the Removal of Aquaculture Pollutants: A Technical Review of Methods and Mechanisms. Ecotoxicol. Environ. Saf. 2023, 266, 115552. [Google Scholar] [CrossRef]
- Ullah, M.; Nazir, R.; Khan, M.; Khan, W.; Shah, M.; Afridi, S.G.; Zada, A. The Effective Removal of Heavy Metals from Water by Activated Carbon Adsorbents of Albizia Lebbeck and Melia Azedarach Seed Shells. Soil Water Res. 2020, 15, 30–37. [Google Scholar] [CrossRef]
- Vo, A.T.; Nguyen, V.P.; Ouakouak, A.; Nieva, A. Efficient Removal of Cr(VI) from Water by Biochar and Activated Carbon Prepared through Hydrothermal Carbonization and Pyrolysis: Adsorption-Coupled Reduction Mechanism. Water 2019, 11, 1164. [Google Scholar] [CrossRef]
- Ghaedi, A.M.; Baneshi, M.M.; Vafaei, A.; Nejad, A.R.S.; Tyagi, I.; Kumar, N.; Galunin, E.; Tkachev, A.G.; Agarwal, S.; Gupta, V.K. Comparison of Multiple Linear Regression and Group Method of Data Handling Models for Predicting Sunset Yellow Dye Removal onto Activated Carbon from Oak Tree Wood. Environ. Technol. Innov. 2018, 11, 262–275. [Google Scholar] [CrossRef]
- Yang, G.; Song, S.; Li, J.; Tang, Z.; Ye, J.; Yang, J. Preparation and CO2 Adsorption Properties of Porous Carbon by Hydrothermal Carbonization of Tree Leaves. J. Mater. Sci. Technol. 2019, 35, 875–884. [Google Scholar] [CrossRef]
- Goel, C.; Mohan, S.; Dinesha, P.; Rosen, M.A. CO2 Adsorption by KOH-Activated Hydrochar Derived from Banana Peel Waste. Chem. Pap. 2024, 78, 3845–3856. [Google Scholar] [CrossRef]
- Xu, J.; Shi, J.; Cui, H.; Yan, N.; Liu, Y. Preparation of Nitrogen Doped Carbon from Tree Leaves as Efficient CO2 Adsorbent. Chem. Phys. Lett. 2018, 711, 107–112. [Google Scholar] [CrossRef]
- El Mouchtari, E.M.; Daou, C.; Rafqah, S.; Najjar, F.; Anane, H.; Piram, A.; Hamade, A.; Briche, S.; Wong-Wah-Chung, P. TiO2 and Activated Carbon of Argania Spinosa Tree Nutshells Composites for the Adsorption Photocatalysis Removal of Pharmaceuticals from Aqueous Solution. J. Photochem. Photobiol. A Chem. 2020, 388, 112183. [Google Scholar] [CrossRef]
- Yue, Y.; Yue, X.; Tang, X.; Han, L.; Wang, J.; Wang, S.; Du, C. Synergistic Adsorption and Photocatalysis Study of TiO2 and Activated Carbon Composite. Heliyon 2024, 10, e30817. [Google Scholar] [CrossRef]
- Wood, A.R.; Garg, R.; Justus, K.; Cohen-Karni, T.; Leduc, P.; Russell, A.J. Intact Mangrove Root Electrodes for Desalination. RSC Adv. 2019, 9, 4735–4743. [Google Scholar] [CrossRef]
- Kant Pandey, L.; Gaikwad, M.S.; Chaudhari, P.K. Biowaste Materials Derived Activated Carbon (BMDAC) Electrodes for Removal of Pollutant Ions Using Capacitive Deionization: A Mini Review. Mater. Lett. 2023, 340, 134165. [Google Scholar] [CrossRef]
- Fahran, S.; Wang, R.; Li, K. Physical and Electromagnetic Shielding Properties of Green Carbon Foam Prepared from Biomaterials. Trans. Nonferrous Met. Soc. China Engl. Ed. 2018, 28, 103–113. [Google Scholar] [CrossRef]
- Gokce, C.E.; Calisir, M.D.; Selcuk, S.; Gungor, M.; Acma, M.E. Electromagnetic Interference Shielding Using Biomass-Derived Carbon Materials. Mater. Chem. Phys. 2024, 317, 129165. [Google Scholar] [CrossRef]
- Momodu, D.; Sylla, N.F.; Mutuma, B.; Bello, A.; Masikhwa, T.; Lindberg, S.; Matic, A.; Manyala, N. Stable Ionic-Liquid-Based Symmetric Supercapacitors from Capsicum Seed-Porous Carbons. J. Electroanal. Chem. 2019, 838, 119–128. [Google Scholar] [CrossRef]
- Fasakin, O.; Oyedotun, K.O.; Mirghni, A.A.; Sylla, N.F.; Mahmoud, B.A.; Manyala, N. Synthesis and Characterization of Activated Carbon Derived from Agricultural Waste (Cocoa Pod Husks) as Potential Electrode for Symmetric Supercapacitor. Mater. Today Sustain. 2024, 28, 101028. [Google Scholar] [CrossRef]
- Selvan, R.K.; Zhu, P.; Yan, C.; Zhu, J.; Dirican, M.; Shanmugavani, A.; Lee, Y.S.; Zhang, X. Biomass-Derived Porous Carbon Modified Glass Fiber Separator as Polysulfide Reservoir for Li-S Batteries. J. Colloid Interface Sci. 2018, 513, 231–239. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, J.; Jiao, X.; Li, Z. A Low-Cost Biomass-Derived Carbon for High-Performance Aqueous Zinc Ion Battery Diaphragms. J. Energy Storage 2024, 100, 113780. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, R.; Chen, Y.; Xiao, X.; Zhao, G.; Yang, H.; Li, J.; Xu, W.; Wang, X. Banyan-Inspired Hierarchical Evaporators for Efficient Solar Photothermal Conversion. Appl. Energy 2020, 276, 115545. [Google Scholar] [CrossRef]
- Geng, Y.; Jiao, K.; Liu, X.; Ying, P.; Odunmbaku, O.; Zhang, Y.; Tan, S.C.; Li, L.; Zhang, W.; Li, M. Applications of Bio-Derived/Bio-Inspired Materials in the Field of Interfacial Solar Steam Generation. Nano Res. 2022, 15, 3122–3142. [Google Scholar] [CrossRef]
- Jaworski, T.; Kajda-Szcześniak, M. Research on the Kinetics of Pyrolysis of Wood-Based Panels in Terms of Waste Management. Energies 2019, 12, 3705. [Google Scholar] [CrossRef]
- Gan, Y.X. Activated Carbon from Biomass Sustainable Sources. C 2021, 7, 39. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, Y.; Wang, Z.; Li, Y.; Wang, L.; Ding, L.; Gao, X.; Ma, Y.; Guo, Y. Application Studies of Activated Carbon Derived from Rice Husks Produced by Chemical-Thermal Process—A Review. Adv. Colloid Interface Sci. 2011, 163, 39–52. [Google Scholar] [CrossRef]
- Januszewicz, K.; Kazimierski, P.; Klein, M.; Kardaś, D.; Łuczak, J. Activated Carbon Produced by Pyrolysis of Waste Wood and Straw for Potential Wastewater Adsorption. Materials 2020, 13, 2047. [Google Scholar] [CrossRef] [PubMed]
- Hui, T.S.; Zaini, M.A.A. Potassium Hydroxide Activation of Activated Carbon: A Commentary. Carbon Lett. 2015, 16, 275–280. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Firoozian, P.; Bakare, I.O.; Akil, H.M.; Noor, A.M. Exploring Biomass Based Carbon Black as Filler in Epoxy Composites: Flexural and Thermal Properties. Mater. Des. 2010, 31, 3419–3425. [Google Scholar] [CrossRef]
- Kwiatkowski, M.; Fierro, V.; Celzard, A. Numerical Studies of the Effects of Process Conditions on the Development of the Porous Structure of Adsorbents Prepared by Chemical Activation of Lignin with Alkali Hydroxides. J. Colloid Interface Sci. 2017, 486, 277–286. [Google Scholar] [CrossRef]
- Nandi, R.; Jha, M.K.; Guchhait, S.K.; Sutradhar, D.; Yadav, S. Impact of KOH Activation on Rice Husk Derived Porous Activated Carbon for Carbon Capture at Flue Gas Alike Temperatures with High CO2/N2 Selectivity. ACS Omega 2023, 8, 4802–4812. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour, A.; Rashidi, H.; Mahboub, M.; Farmad, M. Comparing the Performance of KOH with NaOH-Activated Anthracites in Terms of Methane Storage. Adsorpt. Sci. Technol. 2013, 31, 729–745. [Google Scholar] [CrossRef]
- Jedynak, K.; Charmas, B. Adsorption Properties of Biochars Obtained by KOH Activation. Adsorption 2024, 30, 167–183. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for Preparation and Activation of Activated Carbon: A Review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Liu, J.; Sun, N.; Sun, C.; Liu, H.; Snape, C.; Li, K.; Wei, W.; Sun, Y. Spherical Potassium Intercalated Activated Carbon Beads for Pulverised Fuel CO2 Post-Combustion Capture. Carbon. 2015, 94, 243–255. [Google Scholar] [CrossRef]
- Sieradzka, M.; Kirczuk, C.; Kalemba-rec, I.; Mlonka-mędrala, A.; Magdziarz, A. Pyrolysis of Biomass Wastes into Carbon Materials. Energies 2022, 15, 1941. [Google Scholar] [CrossRef]
- PN-EN 15934:2013-02; Determination of Moisture Content. Polish Committee for Standardization: Warsaw, Poland, 2013.
- PN-EN 15403:2011; Solid Secondary Fuels—Determination of Ash Content. Polish Committee for Standardization: Warsaw, Poland, 2011.
- PN-G-04516:1998; Solid Fuels—Determination of Volatile Matter Content. Polish Committee for Standardization: Warsaw, Poland, 1998.
- PN-ISO 1928:2002; Solid Fuels—Determination of Combustion Heat in a Calorimetric Bomb and Calculation of Calorific Value. Polish Committee for Standardization: Warsaw, Poland, 2002.
- PN-ISO 334:1997; Solid Fuels—Determination of Total Sulfur (Eschka’s Method). Polish Committee for Standardization: Warsaw, Poland, 1997.
- PN-ISO 587:2000; Solid Mineral Fuels—Determination of the Chlorine Content Using the Eschka Mixture. Polish Committee for Standardization: Warsaw, Poland, 2000.
- PN-EN 15407:2011; Solid Secondary Fuels—Methods for the Determination of Carbon (C), Hydrogen (H) and Nitrogen (N) Content. Polish Committee for Standardization: Warsaw, Poland, 2011.
- Konieczyński, J.; Zajusz-Zubek, E.; Jabłońska, M. The Release of Trace Elements in the Process of Coal Coking. Sci. World J. 2012, 2012, 294927. [Google Scholar] [CrossRef] [PubMed]
- Zajusz-Zubek, E.; Konieczyński, J. Dynamics of Trace Elements Release in a Coal Pyrolysis Process. Fuel 2003, 82, 1281–1290. [Google Scholar] [CrossRef]
- Singh, B.; Camps-Arbestain, M.; Lehmann, J. Biochar: A Guide to Analytical Methods; CRC Press Taylor & Francis Group: New York, NY, USA, 2017. [Google Scholar]
- Chatterjee, R.; Sajjadi, B.; Chen, W.Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 530643. [Google Scholar] [CrossRef]
- Boraah, N.; Chakma, S.; Kaushal, P. Optimum Features of Wood-Based Biochars: A Characterization Study. J. Environ. Chem. Eng. 2023, 11, 109976. [Google Scholar] [CrossRef]
- Amin, F.R.; Huang, Y.; He, Y.; Zhang, R.; Liu, G.; Chen, C. Biochar Applications and Modern Techniques for Characterization. Clean Technol. Environ. Policy 2016, 18, 1457–1473. [Google Scholar] [CrossRef]
- Cheng, S.; Zhang, L.; Xia, H.; Zhang, S.; Peng, J.; Wang, S. Crofton Weed Derived Activated Carbon by Microwave-Induced KOH Activation and Application to Wastewater Treatment. J. Porous Mater. 2016, 23, 1597–1607. [Google Scholar] [CrossRef]
- Wu, J.; Wang, L.; Ma, H.; Zhou, J. Investigation of Element Migration Characteristics and Product Properties during Biomass Pyrolysis: A Case Study of Pine Cones Rich in Nitrogen. RSC Adv. 2021, 11, 34795–34805. [Google Scholar] [CrossRef]
- Xu, D.; Gao, Y.; Lin, Z.; Gao, W.; Zhang, H.; Karnowo, K.; Hu, X.; Sun, H.; Syed-Hassan, S.S.A.; Zhang, S. Application of Biochar Derived from Pyrolysis of Waste Fiberboard on Tetracycline Adsorption in Aqueous Solution. Front. Chem. 2020, 7, 943. [Google Scholar] [CrossRef]
- Nicewicz, D. Płyty Pilśniowe MDF; Wydawnictwo SGGW: Warszawa, Poland, 2003; ISBN 83-7244-753-5. [Google Scholar]
- Roffael, E.; Schneider, T.; Dix, B.; Buchholz, T. Zur Hydrophobierung von Mitteldichten Faserplatten (MDF) Mit Paraffinen. Tl.1. Holz Als Roh-Und Werkst. 2005, 63, 192–203. [Google Scholar] [CrossRef]
- Rahmat, A.; Pramudya, Y.; Triwisesa, E. Converting Sawdust to Biochar and Its Mineral Content: A Preliminary Analysis. IOP Conf. Ser. Earth Environ. Sci. 2023, 1201, 012075. [Google Scholar] [CrossRef]
- Pei, X.; Yi, S.; Zhao, Y.; Mu, Y.; Yu, Y.; Cui, M.; Meng, C.; Huang, C.; Zhang, Y. Nickel Oxide Nanoparticles Dispersed on Biomass–Derived Amorphous Carbon/Cobalt Silicate Support Accelerate the Oxygen Evolution Reaction. J. Colloid Interface Sci. 2022, 616, 476–487. [Google Scholar] [CrossRef]
- Rangabhashiyam, S.; Balasubramanian, P. The Potential of Lignocellulosic Biomass Precursors for Biochar Production: Performance, Mechanism and Wastewater Application—A Review. Ind. Crops Prod. 2019, 128, 405–423. [Google Scholar] [CrossRef]
- Guillén, C.; Herrero, J. Single-Phase Cu2O and CuO Thin Films Obtained by Low-Temperature Oxidation Processes. J. Alloys Compd. 2018, 737, 718–724. [Google Scholar] [CrossRef]
- Kaur, K.; Kaur, R.; Kaur, H. A Systematic Review of Lignocellulosic Biomass for Remediation of Environmental Pollutants. Appl. Surf. Sci. Adv. 2024, 19, 100547. [Google Scholar] [CrossRef]
- Li, Z.; Deng, H.; Yang, L.; Zhang, G.; Li, Y.; Ren, Y. Influence of Potassium Hydroxide Activation on Characteristics and Environmental Risk of Heavy Metals in Chars Derived from Municipal Sewage Sludge. Bioresour. Technol. 2018, 256, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Dz.U. Rozporządzenie Ministra Rolnictwa i Rozwoju Wsi w Sprawie Wykonania Niektórych Przepisów Ustawy o Nawozach i Nawożeniu. Dzienniku Ustaw. 2008, nr 119. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20081190765 (accessed on 13 February 2025).
- Ray, A. Characterization of Biochars from Various Agricultural By-Products Using FTIR Spectroscopy, SEM Focused with Image Processing. Int. J. Agric. Environ. Biotechnol. 2020, 13, 423–430. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Choi, S.W.; Dissanayake, P.D.; Shang, J.; Wang, C.H.; Yang, X.; Kim, S.; Tsang, D.C.W.; Lee, K.B.; Ok, Y.S. Gasification Biochar from Biowaste (Food Waste and Wood Waste) for Effective CO2 Adsorption. J. Hazard. Mater. 2020, 391, 121147. [Google Scholar] [CrossRef]
- Yang, K.; Jiang, Y.; Yang, J.; Lin, D. Correlations and Adsorption Mechanisms of Aromatic Compounds on Biochars Produced from Various Biomass at 700 °C. Environ. Pollut. 2018, 233, 64–70. [Google Scholar] [CrossRef]
- De Sousa, D.V.; Guimarães, L.M.; Félix, J.F.; Ker, J.C.; Schaefer, C.E.R.G.; Rodet, M.J. Dynamic of the Structural Alteration of Biochar in Ancient Anthrosol over a Long Timescale by Raman Spectroscopy. PLoS ONE 2020, 15, e0229447. [Google Scholar] [CrossRef]
- Major, I.; Pin, J.M.; Behazin, E.; Rodriguez-Uribe, A.; Misra, M.; Mohanty, A. Graphitization of Miscanthus Grass Biocarbon Enhanced by in Situ Generated FeCo Nanoparticles. Green Chem. 2018, 20, 2269–2278. [Google Scholar] [CrossRef]
- Pilon, G.; Lavoie, J.M. Pyrolysis of Switchgrass (Panicum virgatum L.) at Low Temperatures within N2 and CO2 Environments: Product Yield Study. ACS Sustain. Chem. Eng. 2013, 1, 198–204. [Google Scholar] [CrossRef]
- Sadaka, S.; Sharara, M.A.; Ashworth, A.; Keyser, P.; Allen, F.; Wright, A. Characterization of Biochar from Switchgrass Carbonization. Energies 2014, 7, 548–567. [Google Scholar] [CrossRef]
- Keown, D.M.; Li, X.; Hayashi, J.I.; Chiro; Li, C.Z. Evolution of Biomass Char Structure during Oxidation in O2 as Revealed with FT-Raman Spectroscopy. Fuel Process. Technol. 2008, 89, 1429–1435. [Google Scholar] [CrossRef]
- Xu, J.; Liu, J.; Ling, P.; Zhang, X.; Xu, K.; He, L.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Raman Spectroscopy of Biochar from the Pyrolysis of Three Typical Chinese Biomasses: A Novel Method for Rapidly Evaluating the Biochar Property. Energy 2020, 202, 117644. [Google Scholar] [CrossRef]
Samples | Elemental Analysis | Fuel Analysis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
% | % | MJ/kg | ||||||||
C | H | O * | N | S | Cl | M | A | VM | CV | |
BF | 49.68 | 4.99 | 36.35 | 0.14 | 0.65 | 0.73 | 5.97 | 1.49 | 72.81 | 15.18 |
HDF | 45.36 | 4.80 | 38.55 | 4.88 | 0.25 | <LOD | 6.16 | 0.83 | 77.09 | 18.58 |
BF-C | 81.00 | 4.50 | 6.70 | 0.28 | 0.02 | 0.40 | 4.49 | 2.61 | 22.54 | 25.59 |
HDF-C | 75.00 | 4.10 | 8.99 | 5.12 | 0.07 | <LOD | 4.65 | 2.07 | 19.81 | 24.17 |
Sample | Content, µg/g = ppm | ||||||||
---|---|---|---|---|---|---|---|---|---|
Cd | Co | Cr | Cu | Fe | Mn | Ni | Pb | Zn | |
BF-C | 30 | ND | ND | 2532 | 1661 | 3064 | 1956 | ND | 2637 |
BF-C850 | ND | ND | ND | 1940 | 165 | 243 | ND | ND | 203 |
BF-C700 | 23 | ND | ND | 2359 | 885 | 1284 | 988 | ND | 1206 |
BF-C700 KOH | ND | ND | ND | 2007 | 771 | 476 | 624 | ND | 427 |
HDF-C | ND | ND | ND | 3515 | 1838 | 1395 | 1094 | ND | 2770 |
HDF-C850 | ND | ND | ND | 2361 | 1339 | 232 | ND | ND | 201 |
HDF-C700 | ND | ND | ND | 1896 | 732 | 148 | ND | ND | 1380 |
HDF-C700 KOH | ND | ND | ND | 697 | 850 | 175 | ND | ND | 281 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kajda-Szcześniak, M.; Mainka, A.; Ścierski, W.; Pawlyta, M.; Łukowiec, D.; Matus, K.; Turyła, K.; Lot, D.; Barańska, W.; Jabłońska, A. Activated Carbon from Selected Wood-Based Waste Materials. Sustainability 2025, 17, 2995. https://doi.org/10.3390/su17072995
Kajda-Szcześniak M, Mainka A, Ścierski W, Pawlyta M, Łukowiec D, Matus K, Turyła K, Lot D, Barańska W, Jabłońska A. Activated Carbon from Selected Wood-Based Waste Materials. Sustainability. 2025; 17(7):2995. https://doi.org/10.3390/su17072995
Chicago/Turabian StyleKajda-Szcześniak, Małgorzata, Anna Mainka, Waldemar Ścierski, Mirosława Pawlyta, Dariusz Łukowiec, Krzysztof Matus, Kalina Turyła, Daniel Lot, Weronika Barańska, and Anna Jabłońska. 2025. "Activated Carbon from Selected Wood-Based Waste Materials" Sustainability 17, no. 7: 2995. https://doi.org/10.3390/su17072995
APA StyleKajda-Szcześniak, M., Mainka, A., Ścierski, W., Pawlyta, M., Łukowiec, D., Matus, K., Turyła, K., Lot, D., Barańska, W., & Jabłońska, A. (2025). Activated Carbon from Selected Wood-Based Waste Materials. Sustainability, 17(7), 2995. https://doi.org/10.3390/su17072995