Foliar Application of Manganese-Zinc Fertilizer Mitigated the Harmful Effects of Cadmium on Wheat and Reduced Human Health Risks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Experimental Design
2.3. Sample Collection
2.4. Determination of Soil Physiochemical Parameters
2.5. Determination of Cd Concentrations in Plants
2.6. Human Health Risk Assessment in Plants
THQ = EDI/Rf D
2.7. Statistical Analysis
3. Results
3.1. Effects of Different Foliar Fertilizers and Spraying Times on Wheat Growth Status
3.2. Effects of Foliar Fertilizer and Spraying Times on Plant Cd Contents
3.3. Effects of Foliar Fertilizers and Spraying Times on Cd Transport Factor (TF)
3.4. Effects of Foliar Fertilizer and Spraying Times on Human Health Risks
4. Discussion
4.1. Effects of Different Foliar Fertilizers on the Growth of Wheat
4.2. Effect of Different Foliar Fertilizers on the Transport Factor of Cd in Wheat
4.3. Effect of Different Foliar Fertilizers on Health Risk Assessment of Wheat Grain
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khadka, K.; Earl, H.J.; Raizada, M.N.; Navabi, A. A Physio-Morphological Trait-Based Approach for Breeding Drought Tolerant Wheat. Front. Plant Sci. 2020, 11, 715. [Google Scholar]
- Liu, A.; Wang, W.; Zheng, X.; Chen, X.; Fu, W.; Wang, G.; Ji, J.; Jin, C.; Guan, C. Improvement of the Cd and Zn phytoremediation efficiency of rice (Oryza sativa) through the inoculation of a metal-resistant PGPR strain. Chemosphere 2022, 302, 134900. [Google Scholar]
- Bashir, S.; Qayyum, M.A.; Husain, A.; Bakhsh, A.; Ahmed, N.; Hussain, M.B.; Elshikh, M.S.; Alwahibi, M.S.; Almunqedhi, B.M.A.; Hussain, R.; et al. Efficiency of different types of biochars to mitigate Cd stress and growth of sunflower (Helianthus L.) in wastewater irrigated agricultural soil. Saudi J. Biol. Sci. 2021, 28, 2453–2459. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Losantos, D.; Li, Y.; Sarrà, M. Biotransformation of chloramphenicol by white-rot-fungi Trametes versicolor under cadmium stress. Bioresour. Technol. 2023, 369, 128508. [Google Scholar]
- Zhang, X.; Gu, P.; Liu, X.; Huang, X.; Wang, J.; Zhang, S.; Ji, J. Effect of crop straw biochars on the remediation of Cd-contaminated farmland soil by hyperaccumulator Bidens pilosa L. Ecotoxicol. Environ. Saf. 2021, 219, 112332. [Google Scholar] [CrossRef] [PubMed]
- Latif, J.; Akhtar, J.; Ahmad, I.; Mahmood-ur-Rehman, M.; Shah, G.M.; Zaman, Q.; Javaid, T.; Farooqi, Z.U.R.; Shakar, M.; Saleem, A.; et al. Unraveling the effects of cadmium on growth, physiology and associated health risks of leafy vegetables. Braz. J. Bot. 2020, 43, 799–811. [Google Scholar]
- Pathy, A.; Ray, J.; Paramasivan, B. Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar 2020, 2, 287–305. [Google Scholar]
- Raza, A.; Habib, M.; Kakavand, S.N.; Zahid, Z.; Zahra, N.; Sharif, R.; Hasanuzzaman, M. Phytoremediation of Cadmium: Physiological, Biochemical, and Molecular Mechanisms. Biology 2020, 9, 177. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Sohail, M.I.; Cao, X.; Hussain, B.; Aziz, M.Z.; Usman, M.; He, Z.; Yang, X. An explanation of soil amendments to reduce cadmium phytoavailability and transfer to food chain. Sci. Total Environ. 2019, 660, 80–96. [Google Scholar]
- Guo, F.; Ding, C.; Zhou, Z.; Huang, G.; Wang, X. Stability of immobilization remediation of several amendments on cadmium contaminated soils as affected by simulated soil acidification. Ecotoxicol. Environ. Saf. 2018, 161, 164–172. [Google Scholar]
- Hui, C.; Guo, Y.; Liu, L.; Yi, J. Recent advances in bacterial biosensing and bioremediation of cadmium pollution: A mini-review. World J. Microbiol. Biotechnol. 2022, 38, 9. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Tao, R.; Cao, C.; Xie, J.; Gao, Y.; Hu, H.; Ma, Z.; Ma, Y. Effect of Leaf Surface Regulation of Zinc Fertilizer on Absorption of Cadmium, Plumbum and Zinc in Rice (Oryza sativa L.). Sustainability 2023, 15, 1877. [Google Scholar] [CrossRef]
- Zhi, Y.; Sun, T.; Zhou, Q.; Leng, X. Screening of safe soybean cultivars for cadmium contaminated fields. Sci. Rep. 2020, 10, 12965. [Google Scholar] [CrossRef] [PubMed]
- Reza Boorboori, M.; Qiu, H.; Liu, J.; Zhang, H. Application of Silicon and Selenium in Rice for Reducing Cadmium Stress. Phyton-Int. J. Exp. Bot. 2023, 92, 1873–1886. [Google Scholar] [CrossRef]
- Qiu, R.-L.; Thangavel, P.; Hu, P.-J.; Senthilkumar, P.; Ying, R.-R.; Tang, Y.-T. Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. J. Hazard. Mater. 2011, 186, 1425–1430. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Afyuni, M.; Norouzi, M.; Ghiasi, S.; Schulin, R. Fractionation and bioavailability of zinc (Zn) in the rhizosphere of two wheat cultivars with different Zn deficiency tolerance. Geoderma 2018, 309, 1–6. [Google Scholar] [CrossRef]
- Sharifan, H.; Ma, X. Foliar Application of Zn Agrichemicals Affects the Bioavailability of Arsenic, Cadmium and Micronutrients to Rice (Oryza sativa L.) in Flooded Paddy Soil. Agriculture 2021, 11, 505. [Google Scholar] [CrossRef]
- Gu, X.; Wen, X.; Yi, N.; Liu, Y.; Wu, J.; Li, H.; Liu, G. Effect of foliar application of silicon, selenium and zinc on heavy metal accumulation in wheat grains in field studies. Environ. Pollut. Bioavailab. 2022, 34, 246–252. [Google Scholar] [CrossRef]
- Rizwan, M.; Ali, S.; ur Rehman, M.Z.; Malik, S.; Adrees, M.; Qayyum, M.F.; Alamri, S.A.; Alyemeni, M.N.; Ahmad, P. Correction to: Effect of foliar applications of silicon and titanium dioxide nanoparticles on growth, oxidative stress, and cadmium accumulation by rice (Oryza sativa). Acta Physiol. Plant. 2019, 41, 72. [Google Scholar] [CrossRef]
- Hao, M.; Liu, M.; Wang, Q.; Zhao, B.; Guan, S. Manganese and Zinc Foliar Applications Increase Nutrient Content and Mitigate Cadmium-Induced Growth Inhibition in Spring Wheat. Pol. J. Environ. Stud. 2024, 33, 5725–5734. [Google Scholar] [CrossRef]
- Munawar, S.; Ghani, M.A.; Ali, B.; Azam, M.; Rashid, M.Z.; Anjum, R.; Sarwar, M.; Ahmad, T.; Noor, A.; Iqbal, Q.; et al. Attenuation of cadmium induced oxidative stress in cucumber seedlings by modulating the photosynthesis and antioxidant machinery through foliar applied glutamic acid. Hortic. Sci. 2022, 49, 19–28. [Google Scholar]
- Wang, Y.; Xu, Y.; Liang, X.; Wang, L.; Sun, Y.; Huang, Q.; Qin, X.; Zhao, L. Soil application of manganese sulfate could reduce wheat Cd accumulation in Cd contaminated soil by the modulation of the key tissues and ionomic of wheat. Sci. Total Environ. 2021, 770, 145328–145339. [Google Scholar]
- Liao, J.; Wen, Z.; Ru, X.; Chen, J.; Wu, H.; Wei, C. Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicol. Environ. Saf. 2016, 124, 460–469. [Google Scholar]
- Liu, Y.; Cui, J.; Peng, Y.; Lu, Y.; Yao, D.; Yang, J.; He, Y. Atmospheric deposition of hazardous elements and its accumulation in both soil and grain of winter wheat in a lead-zinc smelter contaminated area, Central China. Sci. Total Environ. 2020, 707, 135789. [Google Scholar] [PubMed]
- Li, H.; Luo, N.; Li, Y.W.; Cai, Q.Y.; Li, H.Y.; Mo, C.H.; Wong, M.H. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures. Environ. Pollut. 2017, 224, 622–630. [Google Scholar] [PubMed]
- Wu, C.; Dun, Y.; Zhang, Z.; Li, M.; Wu, G. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotoxicol. Environ. Saf. 2020, 190, 110091. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Effects of zinc application on cadmium (Cd) accumulation and plant growth through modulation of the antioxidant system and translocation of Cd in low- and high-Cd wheat cultivars. Environ. Pollut. 2020, 265, 115045. [Google Scholar]
- Cai, F.; Chen, W.; Wei, Z.; Pang, G.; Li, R.; Ran, W.; Shen, Q. Colonization of Trichoderma harzianum strain SQR-T037 on tomato roots and its relationship to plant growth, nutrient availability and soil microflora. Plant Soil 2015, 388, 337–350. [Google Scholar]
- Li, Y.; Gong, X. Effects of Dissolved Organic Matter on the Bioavailability of Heavy Metals During Microbial Dissimilatory Iron Reduction: A Review. Rev. Environ. Contam. Toxicol. Vol. 2021, 257, 69–92. [Google Scholar]
- Li, X.; Topbjerg, H.B.; Jiang, D.; Liu, F. Drought priming at vegetative stage improves the antioxidant capacity and photosynthesis performance of wheat exposed to a short-term low temperature stress at jointing stage. Plant Soil 2015, 393, 307–318. [Google Scholar]
- Jarecki, W.; Czernicka, M. Reaction of Winter Wheat (Triticum aestivum L.) Depending on the Multi-Component Foliar Fertilization. IOCAG 2022, 10, 68. [Google Scholar]
- Pan, L.; Feng, X.; Jing, J.; Zhang, J.; Zhuang, M.; Zhang, Y.; Wang, K.; Zhang, H. Effects of Pymetrozine and Tebuconazole with Foliar Fertilizer Through Mixed Application on Plant Growth and Pesticide Residues in Cucumber. Bull. Environ. Contam. Toxicol. 2022, 108, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Arsic, M.; Persson, D.P.; Schjoerring, J.K.; Thygesen, L.G.; Lombi, E.; Doolette, C.L.; Husted, S. Foliar-applied manganese and phosphorus in deficient barley: Linking absorption pathways and leaf nutrient status. Physiol. Plant. 2022, 174, e13761. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Chen, Y.; Yang, Y.; Lu, L.; Yuan, X.; Zeng, H.; Zeng, Q. Cadmium accumulation in rice (Oryza sativa L.) alleviated by basal alkaline fertilizers followed by topdressing of manganese fertilizer. Environ. Pollut. 2020, 262, 114289. [Google Scholar]
- Zhou, J.; Zhang, C.; Du, B.; Cui, H.; Fan, X.; Zhou, D.; Zhou, J. Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: Comparison of soft vs. durum wheat varieties. J. Hazard. Mater. 2021, 402, 123546. [Google Scholar] [CrossRef]
- Yi, J.; Liu, P.; Li, H.; Geng, J.; Zhou, J. Effects of Zn and Si Fertilizer on the yield and quality of strong gluten wheat. Chin. Agric. Sci. Bull. 2005, 21, 196–197. [Google Scholar]
- Wang, S.; Wang, F.; Gao, S. Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ. Sci. Pollut. Res. 2015, 22, 2837–2845. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, S.; Zhao, J.; Wang, F.; Du, Y.; Zou, S.; Li, H.; Wen, D.; Huang, Y. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ. Exp. Bot. 2017, 133, 1–11. [Google Scholar] [CrossRef]
- Luo, W.; Ma, J.; Aman Khan, M.; Liao, S.; Ruan, Z.; Liu, H.; Zhong, B.; Zhu, Y.; Duan, L.; Fu, L.; et al. Cadmium accumulation in rice and its bioavailability in paddy soil with application of silicon fertilizer under different water management regimes. Soil Use Manag. 2021, 37, 299–306. [Google Scholar] [CrossRef]
- Luís, I.C.; Lidon, F.C.; Pessoa, C.C.; Marques, A.C.; Coelho, A.R.F.; Simões, M.; Patanita, M.; Dôres, J.; Ramalho, J.C.; Silva, M.M.; et al. Zinc Enrichment in Two Contrasting Genotypes of Triticum aestivum L. Grains: Interactions between Edaphic Conditions and Foliar Fertilizers. Plants 2021, 10, 204. [Google Scholar] [CrossRef]
- Li, D.; Liu, H.; Gao, M.; Zhou, J.; Zhou, J. Effects of soil amendments, foliar sprayings of silicon and selenium and their combinations on the reduction of cadmium accumulation in rice. Pedosphere 2022, 32, 649–659. [Google Scholar]
- Yan, L.; Zhou, G.; Shahzad, K.; Zhang, H.; Yu, X.; Wang, Y.; Yang, N.; Wang, M.; Zhang, X. Re-search progress on the utilization technology of broccoli stalk, leaf resources, and the mechanism of action of its bioactive substances. Front. Plant Sci. 2023, 14, 1138700. [Google Scholar]
- Zhuang, Z.; Wang, Q.; Huang, S.; NiñoSavala, A.G.; Wan, Y.; Li, H.; Schweiger, A.H.; Fangmeier, A.; Franzaring, J. Source-specific risk assessment for cadmium in wheat and maize: Towards an enrichment model for China. J. Environ. Sci. 2023, 125, 723–734. [Google Scholar]
- Khoshgoftarmanesh, A.H.; SanaeiOstovar, A.; Sadrarhami, A.; Chaney, R. Effect of tire rubber ash and zinc sulfate on yield and grain zinc and cadmium concentrations of different zinc-deficiency tolerance wheat cultivars under field conditions. Eur. J. Agron. 2013, 49, 42–49. [Google Scholar]
- Fu, X.; Dou, C.; Chen, Y.; Chen, X.; Shi, J.; Yu, M.; Xu, J. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J. Hazard. Mater. 2011, 186, 103–107. [Google Scholar] [CrossRef]
- Chen, X.-X.; Liu, Y.-M.; Zhao, Q.-Y.; Cao, W.-Q.; Chen, X.-P.; Zou, C.-Q. Health risk assessment associated with heavy metal accumulation in wheat after long-term phosphorus fertilizer application. Environ. Pollut. 2020, 262, 114348. [Google Scholar]
- Qiu, Q.; Wang, Y.; Yang, Z.; Yuan, J. Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem. Toxicol. 2011, 49, 2260–2267. [Google Scholar] [PubMed]
- Han, X.; Zhang, C.; Wang, C.; Huang, Y.; Liu, Z. Gadolinium inhibits cadmium transport by blocking non-selective cation channels in rice seedlings. Ecotoxicol. Environ. Saf. 2019, 179, 160–166. [Google Scholar]
- Arshad, M.; Ali, S.; Noman, A.; Ali, Q.; Rizwan, M.; Farid, M.; Irshad, M.K. Phosphorus amendment decreased cadmium (Cd) uptake and ameliorates chlorophyll contents, gas exchange attributes, antioxidants, and mineral nutrients in wheat (Triticum aestivum L.) under Cd stress. Arch. Agron. Soil Sci. 2016, 62, 533–546. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 2018, 690–700. [Google Scholar]
- Ahmad, W.; Alharthy, R.D.; Zubair, M.; Ahmed, M.; Hameed, A.; Rafique, S. Toxic and heavy metals contamination assessment in soil and water to evaluate human health risk. Sci. Rep. 2021, 11, 17006. [Google Scholar]
- Gong, C.; Wang, S.; Wang, D.; Lu, H.; Dong, H.; Liu, J.; Yan, B.; Wang, L. Ecological and human health risk assessment of heavy metal(loid)s in agricultural soil in hotbed chives hometown of Tangchang, Southwest China. Sci. Rep. 2022, 12, 8563. [Google Scholar] [CrossRef] [PubMed]
Code | Foliar Fertilizer | Spraying Concentration | Spraying Time | Spraying Amount |
---|---|---|---|---|
Me | Multi-element compound fertilizer | 2 mL/L | 1. Spraying once at the booting stage | 3.5 L liquid per cell at tiller stage and 7 L liquid per cell at booting stage |
MZ | Manganese-zinc fertilizer | 8 g/L | ||
P | Sodium dihydrogen phosphate | 0.5 g/L | 2. Spraying twice at tillering stage and booting stage | |
WO | Water-soluble organic fertilizer | 2 mL/L | ||
Si | Foliar silicon fertilizer | 6 mL/L |
Source | Type III Sum of Squares | Degrees of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Frequency of spraying | 0.039 | 1 | 0.039 | 7.115 | 0.013 |
Types of Foliar Fertilizer | 0.194 | 5 | 0.039 | 7.037 | 0.001 |
Types of Foliar Fertilizer * Frequency of spraying | 0.008 | 5 | 0.002 | 0.274 | 0.923 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T.; Hao, M.; Wang, Q.; Wu, B.; Zhang, Z.; Zhao, B.; Shao, Y.; Liu, M. Foliar Application of Manganese-Zinc Fertilizer Mitigated the Harmful Effects of Cadmium on Wheat and Reduced Human Health Risks. Sustainability 2025, 17, 3058. https://doi.org/10.3390/su17073058
Xie T, Hao M, Wang Q, Wu B, Zhang Z, Zhao B, Shao Y, Liu M. Foliar Application of Manganese-Zinc Fertilizer Mitigated the Harmful Effects of Cadmium on Wheat and Reduced Human Health Risks. Sustainability. 2025; 17(7):3058. https://doi.org/10.3390/su17073058
Chicago/Turabian StyleXie, Ting, Mengjie Hao, Qingyu Wang, Bowen Wu, Zhenguo Zhang, Baoping Zhao, Yufang Shao, and Meiying Liu. 2025. "Foliar Application of Manganese-Zinc Fertilizer Mitigated the Harmful Effects of Cadmium on Wheat and Reduced Human Health Risks" Sustainability 17, no. 7: 3058. https://doi.org/10.3390/su17073058
APA StyleXie, T., Hao, M., Wang, Q., Wu, B., Zhang, Z., Zhao, B., Shao, Y., & Liu, M. (2025). Foliar Application of Manganese-Zinc Fertilizer Mitigated the Harmful Effects of Cadmium on Wheat and Reduced Human Health Risks. Sustainability, 17(7), 3058. https://doi.org/10.3390/su17073058