Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Extruded Corn Snacks
2.2. Evaluation of Nutritional Value
2.3. Amino Acids Composition
2.4. Minerals Profiles
2.5. Instrumental Color Measurement
2.6. Evaluation of the Water Absorption Index (WAI)
2.7. Evaluation of Water Solubility Index (WSI)
2.8. Evaluation of the Expansion Ratio (ER)
2.9. Determination of Texture Parameters
2.10. Water Activity Assessment
2.11. Evaluation of Sorption Properties
2.11.1. Static-Desiccator Method
2.11.2. Dynamic Method—Sorption Kinetics
2.12. Statistical Analysis
3. Results and Discussion
3.1. Nutritional Value of Final Products
3.2. Color and Appearance of Enriched Extrudates
3.3. WAI, WSI and ER Results
3.4. Textural Parameters
3.5. Sorption Properties of Enriched Snacks
3.6. Kinetics of the Sorption Process
4. Comparison of Effect of HP- and CP-Enrichment of Corn Snacks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gwiazdowska, D.; Marchwińska, K.; Juś, K. Sustainable food production and processing—Sustainable agriculture and biotechnological approaches in food chain. In Sustainable Food. Production and Consumption Perspectives; Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu: Poznań, Poland, 2024; pp. 13–28. [Google Scholar] [CrossRef]
- Kumar, P.; Mehta, N.; Abubakar, A.A.; Verma, A.K.; Kaka, U.; Sharma, N.; Sazili, A.Q.; Pateiro, M.; Kumar, M.; Lorenzo, J.M. Potential Alternatives of Animal Proteins for Sustainability in the Food Sector. Food Rev. Int. 2023, 39, 5703–5728. [Google Scholar] [CrossRef]
- Shah, F.-H.; Sharif, M.K.; Ahmad, Z.; Amjad, A.; Javed, M.S.; Suleman, R.; Sattar, D.-S.; Amir, M.; Anwar, M.J. Nutritional characterization of the extrusion-processed micronutrient-fortified corn snacks enriched with protein and dietary fiber. Front. Nutr. 2022, 9, 1062616. [Google Scholar] [CrossRef]
- Amer, S.A.; Rizk, A.E. Production and evaluation of novel functional extruded corn snacks fortified with ginger, bay leaves and turmeric powder. Food Prod. Process. Nutr. 2022, 4, 4. [Google Scholar] [CrossRef]
- Jozinović, A.; Lončarić, Z.; Ačkar, Đ.; Šubarić, D.; Horvat, D.; Kovačević, M.; Heffer, H.; Babić, J.; Kajić, N. Teksturalna i senzorska svojstva ekstrudiranih kukuruznih snack proizvoda s dodatkom pčenice obogaćane cinkom i selenom. Poljoprivreda 2022, 28, 17–26. [Google Scholar] [CrossRef]
- Sahu, C.; Patel, S.; Tripathi, A.K. Effect of extrusion parameters on physical and functional quality of soy protein enriched maize based extruded snack. Appl. Food Res. 2022, 2, 100072. [Google Scholar] [CrossRef]
- Dwinata, V.F.S.; Karyadi, J.N.W.; Susanti, D.Y.; Samodra, A.S.; Mahanani, R.S.; Rahmawati, D.K.; Sinuhaji, P.F.P. Physical characteristics of extrudate with treatment composition ratio of mixed corn grit-soybean flour and extruder barrel temperature. IOP Conf. Ser. Earth Environ. Sci. 2024, 1290, 012009. [Google Scholar] [CrossRef]
- Tomaszewska-Ciosk, E.; Zdybel, E.; Kapelko-Żeberska, M. Evaluation of Selected Properties of Corn Snacks Enriched with Pomace from Common Flaxseed (Linum usitatissimum L.) and Golden Flaxseed (Linum flavum L.) with the Addition of Cocoa. Appl. Sci. 2025, 15, 1414. [Google Scholar] [CrossRef]
- Tomaszewska-Ciosk, E.; Zdybel, E. Properties of extruded corn snacks with common flax (Linum usitatissimum L.) and golden flax (Linum flavum L.) pomace. Int. J. Food Sci. Technol. 2021, 56, 2009–2018. [Google Scholar] [CrossRef]
- Singh, J.P.; Kaur, A.; Singh, B.; Singh, N.; Singh, B. Physicochemical evaluation of corn extrudates containing varying buckwheat flour levels prepared at various extrusion temperatures. J. Food Sci. Technol. 2019, 56, 2205–2212. [Google Scholar] [CrossRef]
- Jozinović, A.; Šubarić, D.; Ačkar, Đ.; Babić, J.; Klarić, I.; Kopjar, M.; Valek Lendić, K. Influence of buckwheat and chestnut flour addition on properties of corn extrudates. Croat. J. Food Sci. Technol. 2012, 4, 26–33. [Google Scholar]
- Ruszkowska, M.; Tańska, M.; Miedzianka, J.; Kowalczewski, P.Ł. Field Cricket (Gryllus bimaculatus) and Spirulina (Arthrospira platensis) Powders as Environmentally Friendly Protein Enrichment Ingredients in Corn Snacks. Foods 2024, 13, 2390. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Sismour, E.; Britland, J.W.; Sellers, A.; Abraha-Eyob, Z.; Yousuf, A.; Rao, Q.; Kim, J.; Zhao, W. Physicochemical, Structural, and Functional Properties of Hemp Protein vs Several Commercially Available Plant and Animal Proteins: A Comparative Study. ACS Food Sci. Technol. 2022, 2, 1672–1680. [Google Scholar] [CrossRef]
- El-Sohaimy, S.A.; Androsova, N.V.; Toshev, A.D.; El Enshasy, H.A. Nutritional Quality, Chemical, and Functional Characteristics of Hemp (Cannabis sativa ssp. sativa) Protein Isolate. Plants 2022, 11, 2825. [Google Scholar] [CrossRef]
- Szumny, A.; Żołnierczyk, A.K. By-products of hemp from a nutritional point of view: New perspectives and opportunities. In Current Applications, Approaches, and Potential Perspectives for Hemp; Elsevier: Amsterdam, The Netherlands, 2023; pp. 493–518. [Google Scholar] [CrossRef]
- Kavya Jyothi, H. A review on hemp (Cannabis sativa L) seed & its milk. In Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 12; Iterative International Publisher, Selfypage Developers Pvt Ltd.: Novi, MI, USA, 2024; pp. 39–44. [Google Scholar] [CrossRef]
- Aleksanochkin, D.I.; Fomenko, I.A.; Alekseeva, E.A.; Chernukha, I.M.; Mashentseva, N.G. Production of plant protein from seeds and cake of industrial hemp: Overview of processing methods for food industry. Food Syst. 2024, 7, 188–197. [Google Scholar] [CrossRef]
- Korneeva, O.S.; Vasilenko, L.I.; Meshcheryakova, O.L.; Berestovoy, A.A.; Isuwa, M.M. Hemp protein: Obtaining and functional and technological properties. Proc. Vor. State Univ. Eng. Technol. 2023, 85, 170–177. [Google Scholar] [CrossRef]
- Montowska, M.; Kowalczewski, P.Ł.; Rybicka, I.; Fornal, E. Nutritional value, protein and peptide composition of edible cricket powders. Food Chem. 2019, 289, 130–138. [Google Scholar] [CrossRef]
- Cadinu, L.A.; Barra, P.; Torre, F.; Delogu, F.; Madau, F.A. Insect Rearing: Potential, Challenges, and Circularity. Sustainability 2020, 12, 4567. [Google Scholar] [CrossRef]
- van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Moruzzo, R.; Mancini, S.; Guidi, A. Edible Insects and Sustainable Development Goals. Insects 2021, 12, 557. [Google Scholar] [CrossRef]
- Musungu, A.L.; Muriithi, B.W.; Ghemoh, C.J.; Nakimbugwe, D.; Tanga, C.M. Production, consumption, and market supply of edible crickets: Insights from East Africa. Agric. Food Econ. 2023, 11, 28. [Google Scholar] [CrossRef]
- Rowe, E.; Robles López, K.Y.; Robinson, K.M.; Baudier, K.M.; Barrett, M. Farmed cricket (Acheta domesticus, Gryllus assimilis, and Gryllodes sigillatus; Orthoptera) welfare considerations: Recommendations for improving global practice. J. Insects Food Feed 2024, 10, 1253–1311. [Google Scholar] [CrossRef]
- Oonincx, D.G.A.B.; van Itterbeeck, J.; Heetkamp, M.J.W.; van den Brand, H.; van Loon, J.J.A.; van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef]
- van Huis, A. Potential of insects as food and feed in assuring food security. Annu. Rev. Entomol. 2013, 58, 563–583. [Google Scholar] [CrossRef] [PubMed]
- ISO 1871; Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. ISO: Geneva, Switzerland, 2009.
- Anderson, R.A.; Conway, H.F.; Pfeifer, V.F.; Griffin, E.L.J. Gelatinization of corn grits by roll- and extrusion-cooking. Cereal Sci. Today 1969, 14, 4–7. [Google Scholar]
- Harper, J.M. Extrusion of Foods; CRC Press: Boca Raton, FL, USA, 1981. [Google Scholar]
- Makowska, A.; Zielińska-Dawidziak, M.; Niedzielski, P.; Michalak, M. Effect of extrusion conditions on iron stability and physical and textural properties of corn snacks enriched with soybean ferritin. Int. J. Food Sci. Technol. 2018, 53, 296–303. [Google Scholar] [CrossRef]
- Liu, L.; Li, S.; Zhong, Y.; Li, Y.; Qu, J.; Feng, J.; Xu, S.; Zhang, R.; Xue, J.; Guo, D. Nutritional, physical and sensory properties of extruded products from high-amylose corn grits. Emir. J. Food Agric. 2017, 29, 846. [Google Scholar] [CrossRef]
- Yang, Y.; Jiao, A.; Liu, Q.; Xu, E.; Chen, Y.; Jin, Z. Functional and physical properties of naked barley-based unexpanded extrudates: Effects of low temperature. Int. J. Food Prop. 2020, 23, 1886–1898. [Google Scholar] [CrossRef]
- Radočaj, O.; Dimić, E.; Tsao, R. Effects of Hemp (Cannabis sativa L.) Seed Oil Press-Cake and Decaffeinated Green Tea Leaves (Camellia sinensis) on Functional Characteristics of Gluten-Free Crackers. J. Food Sci. 2014, 79, C318–C325. [Google Scholar] [CrossRef]
- Goes, E.S.d.R.; Souza, M.L.R.d.; Campelo, D.A.V.; Yoshida, G.M.; Xavier, T.O.; Moura, L.B.d.; Monteiro, A.R.G. Extruded snacks with the addition of different fish meals. Food Sci. Technol. 2015, 35, 683–689. [Google Scholar] [CrossRef]
- Tańska, M.; Konopka, I.; Ruszkowska, M. Sensory, Physico-Chemical and Water Sorption Properties of Corn Extrudates Enriched with Spirulina. Plant Foods Hum. Nutr. 2017, 72, 250–257. [Google Scholar] [CrossRef]
- Igual, M.; García-Segovia, P.; Martínez-Monzó, J. Effect of Acheta domesticus (house cricket) addition on protein content, colour, texture, and extrusion parameters of extruded products. J. Food Eng. 2020, 282, 110032. [Google Scholar] [CrossRef]
- Norajit, K.; Gu, B.-J.; Ryu, G.-H. Effects of the addition of hemp powder on the physicochemical properties and energy bar qualities of extruded rice. Food Chem. 2011, 129, 1919–1925. [Google Scholar] [CrossRef]
- Merenkova, S.; Ilkov, D.; Matveev, A.; Zhmachinskaya, E. Prospects for the implementation of the hemp seeds biological potential in the food industry. AIP Conf. Proc. 2022, 2636, 020016. [Google Scholar]
- Pihlanto, A.; Nurmi, M.; Mäkinen, S. Hempseed Protein: Processing and Functional Properties. In Sustainable Agriculture Reviews 42; Springer: Berlin/Heidelberg, Germany, 2020; pp. 223–237. [Google Scholar] [CrossRef]
- Smarzyński, K.; Sarbak, P.; Kowalczewski, P.Ł.; Różańska, M.B.; Rybicka, I.; Polanowska, K.; Fedko, M.; Kmiecik, D.; Masewicz, Ł.; Nowicki, M.; et al. Low-field NMR study of shortcake biscuits with cricket powder, and their nutritional and physical characteristics. Molecules 2021, 26, 5417. [Google Scholar] [CrossRef]
- Alan, L.K. Enhancement of Amino Acid Availability in Corn Grain. In Molecular Genetic Approaches to Maize Improvement; Springer: Berlin/Heidelberg, Germany, 2009; pp. 79–89. [Google Scholar] [CrossRef]
- Stini, W.A. The Interaction between Environment and Nutrition. Mt. Res. Dev. 1982, 2, 281. [Google Scholar] [CrossRef]
- Davidson, E.A.; Howarth, R.W. Nutrients in synergy. Nature 2007, 449, 1000–1001. [Google Scholar] [CrossRef]
- Gorban, A.N.; Pokidysheva, L.I.; Smirnova, E.V.; Tyukina, T.A. Law of the Minimum Paradoxes. Bull. Math. Biol. 2011, 73, 2013–2044. [Google Scholar] [CrossRef]
- Absi, Y.; Revilla, I.; Vivar-Quintana, A.M. Commercial Hemp (Cannabis sativa Subsp. sativa) Proteins and Flours: Nutritional and Techno-Functional Properties. Appl. Sci. 2023, 13, 10130. [Google Scholar] [CrossRef]
- Arango, S.; Kojić, J.; Perović, L.; Đermanović, B.; Stojanov, N.; Sikora, V.; Tomičić, Z.; Raffrenato, E.; Bailoni, L. Chemical Characterization of 29 Industrial Hempseed (Cannabis sativa L.) Varieties. Foods 2024, 13, 210. [Google Scholar] [CrossRef]
- Capcanari, T.; Covaliov, E.; Negoița, C.; Siminiuc, R.; Chirsanova, A.; Reșitca, V.; Țurcanu, D. Hemp Seed Cake Flour as a Source of Proteins, Minerals and Polyphenols and Its Impact on the Nutritional, Sensorial and Technological Quality of Bread. Foods 2023, 12, 4327. [Google Scholar] [CrossRef]
- Filippini, T.; Malavolti, M.; Whelton, P.K.; Vinceti, M. Sodium Intake and Risk of Hypertension: A Systematic Review and Dose–Response Meta-analysis of Observational Cohort Studies. Curr. Hypertens. Rep. 2022, 24, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Dmowski, P.; Śmiechowska, M.; Sagan, E. Effect of brewing time and fragmentation degree of black tea on colour of infusion and its antioxidant properties. ŻYWNOŚĆ. Nauk. Technol. Jakość/Food. Sci. Technol. Qual. 2014, 5, 206–216. [Google Scholar] [CrossRef]
- Venskutonis, P.R.; Kraujalis, P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr. Rev. Food Sci. Food Saf. 2013, 12, 381–412. [Google Scholar] [CrossRef] [PubMed]
- Oikonomou, N.A.; Krokida, M.K. Literature Data Compilation of WAI and WSI of Extrudate Food Products. Int. J. Food Prop. 2011, 14, 199–240. [Google Scholar] [CrossRef]
- Guan, Z.; Zhang, Z.; Ren, X.; Bian, S.; Xu, E.; Jin, Z.; Jiao, A. Study on the relationship between the degradation degrees of glutinous rice starch extruded with different α-amylases and the qualities of Chinese rice wine. Int. J. Food Sci. Technol. 2022, 57, 4792–4803. [Google Scholar] [CrossRef]
- Ding, Q.B.; Ainsworth, P.; Plunkett, A. The comparison of the effects of extrusion conditions on the physicochemical properties and sensory characteristics of maize, rice and wheat-based expanded snacks. In Using Cereal Science and Technology for the Benefit of Consumers; Elsevier: Amsterdam, The Netherlands, 2005; pp. 474–479. [Google Scholar] [CrossRef]
- Menis-Henrique, M.E.C.; Janzantti, N.S.; Monteiro, M.; Conti-Silva, A.C. Physical and sensory characteristics of cheese-flavored expanded snacks obtained using butyric acid and cysteine as aroma precursors: Effects of extrusion temperature and sunflower oil content. LWT 2020, 122, 109001. [Google Scholar] [CrossRef]
- Day, L.; Swanson, B.G. Functionality of Protein-Fortified Extrudates. Compr. Rev. Food Sci. Food Saf. 2013, 12, 546–564. [Google Scholar] [CrossRef]
- Szpendowski, J.; Śmietana, Z.; Swigon, J. Studies on selected physicochemical properties of extruded protein-starch preparations (in Polish: Badania wybranych właściwości fizykochemicznych koekstrudowanych preparatów białkowo-skrobiowych). Przem. Spożywczy 1999, 50, 31–32. [Google Scholar]
- Ruszkowska, M. Jakość Ekstrudatów Kukurydzianych Wzbogacanych Spiruliną i Chlorellą; Wydawnictwo Uniwersytetu Morskiego w Gdyni: Gdynia, Poland, 2018. [Google Scholar]
- Sun, Y.; Muthukumarappan, K. Changes in functionality of soy-based extrudates during single-screw extrusion processing. Int. J. Food Prop. 2002, 5, 379–389. [Google Scholar] [CrossRef]
- do Nascimento, E.M.d.G.C.; Carvalho, C.W.P.; Takeiti, C.Y.; Freitas, D.D.G.C.; Ascheri, J.L.R. Use of sesame oil cake (Sesamum indicum L.) on corn expanded extrudates. Food Res. Int. 2012, 45, 434–443. [Google Scholar] [CrossRef]
- Nuchsai, T.; Sakphisutthikul, C. Correlation between Physical properties and sensory evaluation of Extruded Phyto-snack. Int. J. Public Health Asia Pac. 2024, 2, 74–81. [Google Scholar] [CrossRef]
- Rodríguez-Vidal, A.; Martínez-Flores, H.E.; González Jasso, E.; Velázquez de la Cruz, G.; Ramírez-Jiménez, A.K.; Morales-Sánchez, E. Extruded snacks from whole wheat supplemented with textured soy flour: Effect on instrumental and sensory textural characteristics. J. Texture Stud. 2017, 48, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, S.; Jaros, D.; Rohm, H.; Ziems, A. Relationship between water activity and crispness of extruded rice crisps. J. Texture Stud. 2004, 35, 621–633. [Google Scholar] [CrossRef]
- Sharma, R.; Srivastava, T.; Saxena, D.C. Moisture Sorption Isotherm Modeling Approach and Effect of Packaging Material on Quality Changes in Extruded Product Stored Under Controlled Conditions. J. Packag. Technol. Res. 2019, 3, 57–65. [Google Scholar] [CrossRef]
- Wani, S.A.; Kumar, P. Moisture sorption isotherms and evaluation of quality changes in extruded snacks during storage. LWT 2016, 74, 448–455. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Włodarczyk-Stasiak, M.; Jamroz, J. Analysis of sorption properties of starch–protein extrudates with the use of water vapour. J. Food Eng. 2008, 85, 580–589. [Google Scholar] [CrossRef]
- Sobowale, S.S.; Adebo, O.A.; Mulaba-Bafubiandi, A.F. Production of extrudate pasta from optimal sorghum–peanut flour blend and influence of composite flours on some quality characteristics and sorption isotherms. Trans. R. Soc. South Afr. 2019, 74, 268–275. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Das, C. Influence of extrusion cooking on phytochemical, physical and sorption isotherm properties of rice extrudate infused with microencapsulated anthocyanin. Food Sci. Biotechnol. 2021, 30, 65–76. [Google Scholar] [CrossRef]
- Dushkova, M.A.; Simitchiev, A.T.; Kalaydzhiev, H.R.; Ivanova, P.; Menkov, N.D.; Chalova, V.I. Comparison and modeling of moisture sorption isotherms of deproteinized rapeseed meal and model extrudate. J. Food Process. Preserv. 2022, 46, e16978. [Google Scholar] [CrossRef]
- Ocieczek, A.; Ruszkowska, M. Porównanie właściwości sorpcyjnych ziarna wybranych odmian komosy ryżowej (Chenopodium quinoa Willd.). Zywn. Nauk. Technol. Jakosc/Food Sci. Technol. Qual. 2018, 116, 71–88. [Google Scholar] [CrossRef]
- Shah, F.; Sharif, M.K.; Butt, M.S.; Shahid, M. Development of protein, dietary fiber, and micronutrient enriched extruded corn snacks. J. Texture Stud. 2017, 48, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Ocieczek, A.; Skotnicka, M.; Baranowska, K. Sorptive properties of modified maize starch as indicators of their quality. Int. Agrophysics 2017, 31, 383–392. [Google Scholar] [CrossRef]
- Włodarczyk-Stasiak, M.; Jamroz, J. Specific surface area and porosity of starch extrudates determined from nitrogen adsorption data. J. Food Eng. 2009, 93, 379–385. [Google Scholar] [CrossRef]
- Ocieczek, A.; Schur, J. Impact Assessment of Selected Additives on Sorptive Properties of Wheat Bread Crumb. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2015, 1, 143–154. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture Sorption Isotherm Characteristics of Food Products: A Review. Food Bioprod. Process. 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Ekielski, A.; Powałka, M.; Żelaziński, T. The effect of the surface development of extrudate on the dynamics of water sorption in various storage conditions. Inżynieria Rol. 2013, 17, 31–38. [Google Scholar]
- Gondek, E.; Jakubczyk, E.; Wieczorek, B. Physical properties of gluten-free crisp bread. Zesz. Probl. Postępów Nauk Rol. 2013, 574, 23–38. [Google Scholar]
Sample Code | Percentage of the Component (%) | |||
---|---|---|---|---|
Corn Grits | Hemp Protein (HP) | Cricket Protein (CP) | Baking Powder | |
R | 98 | 0 | 0 | 2 |
HP2 | 96 | 2 | 0 | 2 |
HP4 | 94 | 4 | 0 | 2 |
HP7 | 91 | 7 | 0 | 2 |
CP2 | 96 | 0 | 2 | 2 |
CP4 | 94 | 0 | 4 | 2 |
CP7 | 91 | 0 | 7 | 2 |
Sample | Protein (g/100 g) | Fat (g/100 g) | Ash (g/100 g) | Carbohydrates 1 (g/100 g) | Energy Value 2 (kcal/100 g) |
---|---|---|---|---|---|
R | 9.25 ± 0.48 c | 2.11 ± 0.21 ab | 1.55 ± 0.01 f | 81.01 | 380 |
HP2 | 9.43 ± 0.51 bc | 1.37 ± 0.14 c | 1.66 ± 0.00 e | 81.26 | 375 |
HP4 | 10.00 ± 0.60 b | 1.67 ± 0.17 b | 1.92 ± 0.01 b | 80.43 | 377 |
HP7 | 10.94 ± 0.75 b | 2.26 ± 0.23 a | 2.17 ± 0.01 a | 78.76 | 379 |
CP2 | 9.31 ± 0.89 c | 2.05 ± 0.21 ab | 1.65 ± 0.01 e | 81.03 | 380 |
CP4 | 12.19 ± 0.95 ab | 2.43 ± 0.24 a | 1.73 ± 0.01 d | 78.06 | 383 |
CP7 | 14.19 ± 0.81 a | 2.55 ± 0.26 a | 1.81 ± 0.01 c | 78.32 | 385 |
Amino Acid (mg/g) | R | HP2 | HP4 | HP7 | CP2 | CP4 | CP7 |
---|---|---|---|---|---|---|---|
Essential amino acids | |||||||
Histidine | 1.56 ± 0.27 e | 1.58 ± 0.07 e | 1.88 ± 0.12 d | 2.27 ± 0.09 c | 2.01 ± 0.08 cd | 2.50 ± 0.04 bc | 2.96 ± 0.05 a |
Isoleucine | 2.29 ± 0.06 e | 2.49 ± 0.02 d | 2.90 ± 0.11 cd | 3.39 ± 0.13 cd | 2.96 ± 0.03 cd | 4.89 ± 0.08 b | 6.63 ± 0.09 a |
Leucine | 8.83 ± 0.24 e | 11.22 ± 0.48 cd | 12.57 ± 0.29 c | 12.57 ± 0.36 c | 10.57 ± 0.07 d | 13.81 ± 0.24 b | 15.06 ± 0.14 a |
Lysine | 1.16 ± 0.44 d | 1.11 ± 0.02 d | 1.35 ± 0.06 d | 1.86 ± 0.20 c | 1.79 ± 0.03 c | 2.32 ± 0.04 b | 3.31 ± 0.05 a |
Methionine | 1.15 ± 0.10 d | 1.23 ± 0.02 d | 1.31 ± 0.05 c | 1.69 ± 0.07 b | 1.36 ± 0.01 c | 1.75 ± 0.03 b | 1.98 ± 0.04 a |
Cysteine | 0.38 ± 0.04 c | 0.36 ± 0.06 c | 0.34 ± 0.05 c | 0.47 ± 0.01 b | 0.29 ± 0.18 c | 0.40 ± 0.01 b | 0.60 ± 0.01 a |
Phenylalanine | 3.11 ± 0.09 c | 3.60 ± 0.01 c | 3.90 ± 0.13 b | 4.64 ± 0.16 ab | 3.59 ± 0.57 b | 4.90 ± 0.10 ab | 5.44 ± 0.06 a |
Tyrosine | 1.78 ± 0.01 d | 2.09 ± 0.05 c | 1.94 ± 0.11 c | 2.47 ± 0.09 bc | 2.00 ± 0.01 c | 2.96 ± 0.07 b | 3.64 ± 0.04 a |
Threonine | 2.12 ± 0.04 e | 2.42 ± 0.02 d | 2.67 ± 0.07 cd | 3.13 ± 0.10 b | 2.63 ± 0.02 cd | 3.44 ± 0.05 b | 4.04 ± 0.07 a |
Valine | 3.00 ± 0.16 cd | 3.22 ± 0.11 cd | 3.58 ± 0.12 c | 4.18 ± 0.13 b | 3.69 ± 0.03 c | 4.77 ± 0.09 b | 5.91 ± 0.18 a |
Non-essential amino acids | |||||||
Alanine | 5.98 ± 0.18 c | 6.05 ± 0.04 c | 6.06 ± 0.16 c | 6.75 ± 0.14 b | 6.29 ± 0.04 bc | 9.15 ± 0.13 a | 10.97 ± 0.14 a |
Arginine | 2.65 ± 0.13 cd | 2.35 ± 0.02 d | 4.14 ± 0.11 a | 4.52 ± 0.14 a | 2.87 ± 0.04 c | 3.62 ± 0.08 b | 4.77 ± 0.04 a |
Aspartic acid | 4.48 ± 0.32 d | 5.03 ± 0.06 cd | 5.83 ± 0.06 c | 6.98 ± 0.20 b | 5.21 ± 0.04 cd | 6.85 ± 0.12 b | 8.11 ± 0.15 a |
Glutamic acid | 15.41 ± 0.56 d | 17.46 ± 0.52 c | 19.87 ± 0.53 b | 21.05 ± 0.56 a | 15.87 ± 0.21 d | 21.11 ± 0.38 a | 22.86 ± 0.42 a |
Glycine | 1.99 ± 0.15 c | 2.31 ± 0.03 c | 2.56 ± 0.10 a | 3.24 ± 0.10 b | 2.75 ± 0.02 c | 3.89 ± 0.08 b | 5.06 ± 0.08 a |
Proline | 6.09 ± 0.04 b | 7.17 ± 0.17 a | 7.25 ± 0.30 a | 6.28 ± 0.07 b | 6.33 ± 0.42 b | 7.12 ± 0.15 a | 7.36 ± 0.16 a |
Serine | 3.40 ± 0.06 c | 3.68 ± 0.21 bc | 4.08 ± 0.12 b | 4.79 ± 0.15 a | 3.68 ± 0.02 bc | 4.86 ± 0.09 a | 5.50 ± 0.05 a |
Minerals (mg/100 g) | R | HP2 | HP4 | HP7 | CP2 | CP4 | CP7 |
---|---|---|---|---|---|---|---|
Calcium (Ca) | 2.37 ± 0.36 f | 7.40 ± 0.06 d | 13.06 ± 1.47 b | 16.73 ± 0.61 a | 5.07 ± 0.11 e | 9.35 ± 0.08 c | 12.37 ± 0.36 b |
Potassium (K) | 340.2 ± 70.8 b | 335.2 ± 45.4 ab | 372.3 ± 17.7 a | 382.0 ± 22.1 a | 301.4 ± 44.7 b | 313.0 ± 60.1 b | 346.5 ± 47.2 ab |
Iron (Fe) | 0.84 ± 0.01 c | 1.07 ± 0.06 c | 2.15 ± 0.08 b | 3.13 ± 0.34 a | 0.88 ± 0.04 c | 0.82 ± 0.08 c | 1.82 ± 0.26 b |
Magnesium (Mg) | 13.75 ± 0.50 f | 32.01 ± 0.26 c | 42.96 ± 1.33 b | 59.93 ± 0.81 a | 17.47 ± 1.93 e | 20.19 ± 2.47 d | 21.02 ± 0.85 d |
Manganese (Mn) | 0.15 ± 0.01 f | 0.42 ± 0.01 c | 0.71 ± 0.03 b | 1.08 ± 0.01 a | 0.19 ± 0.01 e | 0.23 ± 0.00 e | 0.32 ± 0.02 d |
Copper (Cu) | 0.25 ± 0.03 d | 0.24 ± 0.01 d | 0.31 ± 0.03 c | 0.39 ± 0.01 c | 0.22 ± 0.01 d | 0.43 ± 0.01 b | 0.56 ± 0.01 a |
Zinc (Zn) | 0.49 ± 0.03 d | 0.90 ± 0.07 c | 1.32 ± 0.05 b | 2.21 ± 0.40 a | 1.30 ± 0.04 b | 1.43 ± 0.02 b | 1.78 ± 0.09 a |
Sodium (Na) | 634.0 ± 22.5 a | 533.94 ± 69.0 b | 561.9 ± 49.1 b | 571.2 ± 17.1 b | 643.79 ± 19.6 a | 666.28 ± 28.5 a | 703.9 ± 12.8 a |
Sample | L* | a* | b* |
---|---|---|---|
R | 85.48 ± 0.30 a | −3.65 ± 0.19 e | 35.63 ± 0.05 a |
HP2 | 81.46 ± 0.23 c | −2.88 ± 0.07 d | 33.79 ± 0.05 b |
HP4 | 80.47 ± 0.31 c | −2.75 ± 0.006 d | 30.55 ± 0.08 c |
HP7 | 78.03 ± 1.09 d | −2.24 ± 0.020 b | 29.23 ± 0.02 c |
CP2 | 83.55 ± 0.16 b | −2.50 ± 0.006 c | 32.25 ± 0.06 b |
CP4 | 81.23 ± 0.18 c | −2.12 ± 0.007 b | 30.14 ± 0.05 c |
CP7 | 79.72 ± 0.14 d | −1.16 ± 0.008 a | 26.57 ± 0.09 d |
Sample | WAI (g/g) | WSI (%) | ER (-) |
---|---|---|---|
R | 4.86 ± 0.09 c | 32.88 ± 2.14 a | 3.64 ± 0.17 a |
HP2 | 4.88 ± 0.10 b | 30.15 ± 1.11 a | 3.50 ± 0.18 a |
HP4 | 5.04 ± 0.13 b | 28.07 ± 1.60 ab | 3.31 ± 0.17 b |
HP7 | 5.19 ± 0.13 ab | 26.70 ± 1.12 b | 3.18 ± 0.13 c |
CP2 | 5.38 ± 0.18 a | 25.03 ± 2.18 b | 3.40 ± 0.13 ab |
CP4 | 5.39 ± 0.13 a | 19.86 ± 1.15 c | 3.13 ± 0.10 c |
CP7 | 5.20 ± 0.17 a | 12.90 ± 1.06 d | 2.70 ± 0.12 d |
Sample | Hardness (N) | Hardness (2nd Cycle) (N) | Cohesiveness (-) | Springiness (mm) | Gumminess (N) | Chewiness (mJ) |
---|---|---|---|---|---|---|
R | 88.61 ± 11.97 a | 59.31 ± 16.28 a | 0.09 ± 0.03 a | 1.80 ± 0.22 a | 8.24 ± 3.11 a | 13.77 ± 6.05 a |
HP2 | 80.93 ± 10.20 b | 52.04 ± 10.57 b | 0.08 ± 0.01 a | 1.71 ± 0.24 a | 6.26 ± 1.43 b | 10.77 ± 3.57 ab |
HP4 | 83.63 ± 9.49 b | 48.69 ± 15.01 b | 0.07 ± 0.02 b | 1.49 ± 0.25 b | 5.93 ± 2.27 b | 9.26 ± 4.69 b |
HP7 | 85.91 ± 9.85 ab | 45.20 ± 12.75 bc | 0.06 ± 0.02 b | 1.35 ± 0.20 b | 4.84 ± 1.60 c | 6.85 ± 3.10 bc |
CP2 | 90.27 ± 9.71 a | 49.38 ± 14.06 b | 0.06 ± 0.02 b | 1.36 ± 0.25 b | 5.32 ± 1.99 b | 7.64 ± 4.00 b |
CP4 | 85.68 ± 7.15 ab | 48.72 ± 9.91 b | 0.05 ± 0.01 b | 1.25 ± 0.13 b | 4.27 ± 0.99 c | 5.31 ± 1.42 c |
CP7 | 81.27 ± 12.57 b | 33.13 ± 10.33 c | 0.03 ± 0.01 c | 0.83 ± 0.16 c | 2.17 ± 0.74 d | 1.96 ± 1.01 d |
Sample | Water Content (g/100 g DM) | Water Activity (-) |
---|---|---|
R | 6.08 ± 0.01 b | 0.2130 ± 0.009 a |
HP2 | 6.29 ± 0.02 a | 0.2068 ± 0.009 b |
HP4 | 5.98 ± 0.04 b | 0.2009 ± 0.008 c |
HP7 | 5.87 ± 0.06 c | 0.2058 ± 0.009 b |
CP2 | 5.93 ± 0.02 b | 0.2010 ± 0.009 c |
CP4 | 5.58 ± 0.01 d | 0.1974 ± 0.015 d |
CP7 | 5.13 ± 0.04 e | 0.1736 ± 0.012 e |
Parameter | R | HP2 | HP4 | HP7 | CP2 | CP4 | CP7 |
---|---|---|---|---|---|---|---|
vm (g/100 g s. m.) | 6.5701 | 6.6573 | 6.4859 | 6.5861 | 6.4648 | 7.0441 | 7.4084 |
ce | 4.2141 | 3.9326 | 4.6005 | 4.5714 | 4.4087 | 4.0065 | 3.8913 |
R2 | 0.9579 | 0.9503 | 0.987 | 0.9806 | 0.9428 | 0.9604 | 0.946 |
SKO | 7.1956 | 9.6893 | 3.9066 | 3.7537 | 3.3200 | 3.1295 | 5.3608 |
RMS (%) | 8.0902 | 10.2447 | 5.0374 | 4.6872 | 3.8254 | 3.5211 | 5.2514 |
SSA (m2/g) | 230.83 | 233.9 | 227.88 | 231.4 | 227.14 | 247.49 | 260.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruszkowska, M.; Świtalski, M.; Tańska, M.; Rybicka, I.; Miedzianka, J.; Baranowska, H.M.; Kowalczewski, P.Ł. Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality. Sustainability 2025, 17, 3097. https://doi.org/10.3390/su17073097
Ruszkowska M, Świtalski M, Tańska M, Rybicka I, Miedzianka J, Baranowska HM, Kowalczewski PŁ. Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality. Sustainability. 2025; 17(7):3097. https://doi.org/10.3390/su17073097
Chicago/Turabian StyleRuszkowska, Millena, Maciej Świtalski, Małgorzata Tańska, Iga Rybicka, Joanna Miedzianka, Hanna Maria Baranowska, and Przemysław Łukasz Kowalczewski. 2025. "Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality" Sustainability 17, no. 7: 3097. https://doi.org/10.3390/su17073097
APA StyleRuszkowska, M., Świtalski, M., Tańska, M., Rybicka, I., Miedzianka, J., Baranowska, H. M., & Kowalczewski, P. Ł. (2025). Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality. Sustainability, 17(7), 3097. https://doi.org/10.3390/su17073097