Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems
Abstract
:1. Introduction
2. Evaluating Substrate Potential for Biogas Production
- Manure from livestock farms,
- Agricultural production residues,
- Biodegradable organic waste from the food industry and similar sectors,
- The biodegradable fraction of municipal waste and waste from the hospitality sector (food waste),
- Wastewater from the food industry and sewage sludge from wastewater treatment plants,
- Energy crops (corn silage, sorghum, and various grass species).
- Biomass from crop production: 41.99%,
- Waste from livestock production: 16.87%,
- Municipal waste: 8.16%,
- Corn silage: 32.98%.
2.1. Manure from Livestock Farms
- -
- Liquid manures from beef and pork contain lower dry matter content (8–11% and 7%, respectively) but have a high percentage of organic matter (75–86%).
- -
- Solid manures: solid cattle and pig manures have higher dry matter percentages (25% and 20–25%, respectively) than liquid forms, indicating a greater potential for solid substrates in biogas production due to their higher organic content.
- -
- Solid poultry manure produces the highest biogas volume, ranging from 70 to 90 Stm3/t of fresh matter, while consistently maintaining a methane content of approximately 60%.
- -
- Solid pig manure also demonstrates notable performance, yielding between 55 and 65 Stm3/t, highlighting its suitability as an effective substrate for biogas production.
- -
- Poultry manure exhibits the highest average methane yield at 280 Nm3/t of organic dry matter. This is closely followed by both pork liquid manure and solid beef manure, each yielding 250 Nm3/t, demonstrating their considerable effectiveness in methane generation.
2.2. Energy Plants
Substrate | Dry Matter (%) | Organic Dry Matter (%) | Biogas Yield | Potential Yields of CH4 | ||
---|---|---|---|---|---|---|
Stm3/t Fresh Matter | Stm3/t oDM | CH4 (%) | Nm3/t oDM (Mean Values) | |||
Corn silage | 20–35 | 85–95 | 170–200 | 450–700 | 50–55 | 340 |
Grass silage | 25–50 | 70–95 | 170–200 | 550–620 | 54–55 | 380 |
Sugar beet | 23 | 90–95 | 170–180 | 800–860 | 53 | 350 |
- -
- Sugar beet shows high biogas yields (170–180 Stm3/t) and high methane content (around 53%).
- -
- Corn silage also demonstrates significant potential with yields of 170–200 Stm3/t, indicating its effectiveness as a substrate.
- -
- Cereal grains offer the highest yield potential at 380 Nm3/t, while corn silage also ranks favorably at 340 Nm3/t, underscoring their efficiency in methane generation.
2.3. Organic Waste of the Food Industry
- -
- Molasses has a high dry matter content of 80–90% and a significant organic matter percentage of 85–90%, emphasizing its potential as a valuable substrate for biogas production.
- -
- This metric indicates the total volume of biogas produced per ton of fresh organic waste. It includes all components in the waste, regardless of their dry matter content. For example, molasses yields between 290 and 340 Stm3/t of fresh matter, which illustrates its potential to produce significant amounts of biogas due to its high organic content.
- -
- This metric focuses on the biogas yield relative to the organic dry matter present in the waste. It provides a more accurate measure of the substrate’s effectiveness for biogas production because it accounts only for the decomposable organic components. In the case of molasses, the high organic dry matter percentage contributes to its strong yield, making it an efficient substrate for anaerobic digestion.
2.4. Organic Waste from the Animal Food Production Industry
2.5. Municipal and Wastewater of the Food Industry
2.6. Municipal Solid Organic Waste
3. Optimizing Biogas Production: Case from Practice
- Assess the availability and quality of biomass resources in the region.
- Develop a feasibility study on integrating biomass into the existing wastewater treatment infrastructure.
- Provide technical recommendations for optimizing biogas production and energy recovery.
- Support policy and decision-making for future large-scale implementation of biomass utilization.
Study Limitations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olabi, A.G.; Abdelkareem, M.A. Renewable energy and climate change. Renew. Sustain. Energy Rev. 2022, 158, 112111. [Google Scholar] [CrossRef]
- Reid, W.V.; Ali, M.K.; Field, C.B. The future of bioenergy. Global Change Biol. 2020, 26, 274–286. [Google Scholar] [CrossRef]
- Kilibarda, N.; Karabasil, N.; Stojanović, J. Meat matters: Tackling food loss and waste in the meat sector. Meat Technol. 2023, 64, 177–182. [Google Scholar] [CrossRef]
- Liobikienė, G.; Miceikienė, A. Contribution of the European bioeconomy strategy to the green deal policy: Challenges and opportunities in implementing these policies. Sustainability 2023, 15, 7139. [Google Scholar] [CrossRef]
- Pavičić, J.; Novak Mavar, K.; Brkić, V.; Simon, K. Biogas and biogas production and usage: Technology development, advantages and challenges in Europe. Energies 2022, 15, 2940. [Google Scholar] [CrossRef]
- Eder, A.; Mahlberg, B. Size, subsidies and technical efficiency in renewable energy production: The case of Austrian biogas plants. Energy J. 2018, 39, 185–210. [Google Scholar] [CrossRef]
- Piwowar, A.; Dzikuć, M. Bioethanol production in Poland in the context of sustainable development—Current status and future prospects. Energies 2022, 15, 2582. [Google Scholar] [CrossRef]
- IRENA; ILO. Renewable Energy and Jobs: Annual Review 2022; International Renewable Energy Agency, Abu Dhabi and International Labour Organization: Geneva, Switzerland, 2022; Available online: http://www.irena.org/ (accessed on 20 January 2025).
- Simionescu, M.; Păuna, C.B.; Diaconescu, T. Renewable energy and economic performance in the context of the European Green Deal. Energies 2020, 13, 6440. [Google Scholar] [CrossRef]
- Singh, A.K.; Pal, P.; Rathore, S.S.; Sahoo, U.K.; Sarangi, P.K.; Prus, P.; Dziekański, P. Sustainable utilization of biowaste resources for biogas production to meet rural bioenergy requirements. Energies 2023, 16, 5409. [Google Scholar] [CrossRef]
- Habermann, H.; Breustedt, G. Einfluss der Biogaserzeugung auf landwirtschaftliche Pachtpreise in Deutschland. Ger. J. Agric. Econ. 2011, 60, 85–100. [Google Scholar] [CrossRef]
- Kothari, R.; Goria, K.; Bharti, A.; Singh, H.M.; Pathak, V.V.; Pathak, A.; Tyagi, V.V. Sustainable Development Goals (SDGs-7) for bioeconomy with bioenergy sector. In Sustainable Butanol Biofuels; CRC Press: Boca Raton, FL, USA, 2023; pp. 29–56. [Google Scholar]
- Regulation on Categories, Testing, and Classification of Waste. Official Gazette of the Republic of Serbia. No. 56/2010. Available online: https://www.ekologija.gov.rs/sites/default/files/2022-03/program_upravljanja_otpadom_eng_-_adopted_version.pdf (accessed on 22 January 2025).
- Law on Environmental Protection. Official Gazette of the Republic of Serbia. No. 135/2004, 36/2009, 36/2009—Amended Law, 72/2009—Amended Law, 43/2011—Decision of the Constitutional Court and 14/2016). Available online: http://www.pravno-informacioni-sistem.rs/reg-overview# (accessed on 24 January 2025).
- Law on Waste Management. Official Gazette of the Republic of Serbia. No. 36/2009, 88/2010, 14/2016, 95/2018—Amended law and 35/2023). Available online: http://www.pravno-informacioni-sistem.rs/reg-overview# (accessed on 27 January 2025).
- Scarlat, N.; Fahl, F.; Dallemand, J.F. Status and Opportunities for Energy Recovery from Municipal Solid Waste in Europe. Waste Biomass Valorization 2019, 10, 2425–2444. [Google Scholar] [CrossRef]
- Milicevic, D.; Udovicki, B.; Susa, A.; Curcic, S. Responsible Consumption and Production: Challenges and Opportunities for Sustainable Development from Serbian Perspectives. Hrana I Ishr. 2024, 65, 18–30. [Google Scholar]
- Vinti, G.; Batinić, B.; Bauza, V.; Clasen, T.; Tudor, T.; Zurbrügg, C.; Vaccari, M. Municipal Solid Waste Management and Health Risks: Application of Solid Waste Safety Plan in Novi Sad, Serbia. Int. J. Environ. Res. 2024, 18, 91. [Google Scholar] [CrossRef]
- Cvetković, S.; Radoičić, T.K.; Vukadinović, B.; Kijevčanin, M. Potentials and status of biogas as energy source in the Republic of Serbia. Renew. Sustain. Energy Rev. 2014, 31, 407–416. [Google Scholar] [CrossRef]
- Divya, D.; Gopinath, L.R.; Christy, P.M. A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 2015, 42, 690–699. [Google Scholar] [CrossRef]
- Statistical Office of the Republic of Serbia. Agricultural, Forestry and Fishery Database. 2022. Available online: https://data.stat.gov.rs/ (accessed on 17 January 2025).
- Martinov, M.; Scarlat, N.; Djatkov, D.; Dallemand, J.F.; Viskovic, M.; Zezelj, B. Assessing sustainable biogas potentials—Case study for Serbia. Biomass Convers. Bioref. 2020, 10, 367–381. [Google Scholar] [CrossRef]
- Seadi, T.A.; Rutz, D.; Prassl, H.; Kottner, M.; Finsterwalder, T.; Volk, S.; Janssen, R. Biogas Handbook; University of Southern Denmark: Esbjerg, Denmark, 2008; Available online: https://www.lemvigbiogas.com/BiogasHandbook.pdf (accessed on 29 January 2025).
- Nwokolo, N.; Mukumba, P.; Obileke, K.; Enebe, M. Waste to energy: A focus on the impact of substrate type in biogas production. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Cveković, S. Modeling and Optimization of the Process of Using Biogas in the Production of Green Energy; Faculty of Technology and Metallurgy: Belgrade, Serbia, 2016. [Google Scholar]
- Kafle, G.K.; Kim, S.H. Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation. Appl. Energy 2013, 103, 61–72. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Angelidaki, I.; Ellegaard, L. Codigestion of manure and organic wastes in centralized biogas plants: Status and future trends. Appl. Biochem. Biotechnol. 2003, 109, 95–105. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Lee, J.; Loh, K.C.; Dai, Y.; Tong, Y.W. Enhancement of biogas production in anaerobic co-digestion of food waste and waste activated sludge by biological co-pretreatment. Energy 2017, 137, 479–486. [Google Scholar] [CrossRef]
- Rostocki, A.; Wieczorek, D.; Pipiak, P.; Ławińska, K. Use of biostimulants in energy crops as a new approach for the improvement of performance sequestration CO2. Energies 2024, 17, 2881. [Google Scholar] [CrossRef]
- Levavasseur, F.; Kouakou, P.K.; Constantin, J.; Cresson, R.; Ferchaud, F.; Girault, R.; Jean-Baptiste, V.; Lagrange, H.; Marsac, S.; Pellerin, S.; et al. Energy cover crops for biogas production increase soil organic carbon stocks: A modeling approach. GCB Bioenergy 2023, 15, 224–238. [Google Scholar] [CrossRef]
- Professional Agency for Renewable Resources, Registered Association (FNR). Handbook on Biogas, from Production to Use; Professional Agency for Renewable Resources, Registered Association (FNR): Gülzow-Prüzen, Germany, 2016; Available online: https://energypedia.info/images/4/46/Guide_to_Biogas-_From_Production_to_Use.pdf (accessed on 31 January 2025).
- Kothari, R.; Pandey, A.K.; Kumar, S.; Tyagi, V.V.; Tyagi, S.K. Different aspects of dry anaerobic digestion for bioenergy: An overview. Renew. Sustain. Energy Rev. 2014, 39, 174–195. [Google Scholar] [CrossRef]
- Hutňan, M.; Špalková, V.; Bodík, I.; Kolesárová, N.; Lazor, M. Biogas production from maize grains and maize silage. Polish J. Environ. Stud. 2010, 19, 323–329. [Google Scholar]
- Senghor, A.; Dioh, R.M.N.; Müller, C.; Youm, I. Cereal crops for biogas production: A review of possible impact of elevated CO2. Renew. Sustain. Energy Rev. 2017, 71, 548–554. [Google Scholar] [CrossRef]
- Republic of Serbia Republic Hydrometeorological Service Department of Applied Climatology and Agrometeorology Agrometeorological Conditions in the 2023/2024 Production Year on the Territory of the Republic of Serbia. 2024. Available online: https://www.hidmet.gov.rs/data/agro/godina.pdf (accessed on 31 January 2025).
- Zhang, S.; Zhong, B.; An, X.; Han, Y.; Xiao, X.; Zhang, Q. Effect of Moisture Content on the Evolution of Bacterial Communities and Organic Matter Degradation During Bioaugmented Biogas Residues Composting. World J. Microbiol. Biotechnol. 2023, 39, 1. [Google Scholar]
- Kashyap, S.; Reddy, B.H.R.; Devi, S.; Kurpad, A.V. Potential Impact of Climate Change on Dietary Grain Protein Content and Its Bioavailability—A Mini Review. Front. Nutr. 2024, 11, 1397219. [Google Scholar]
- Ravi, R.; de Souza, M.F.; Adriaens, A.; Vingerhoets, R.; Luo, H.; Van Dael, M.; Meers, E. Exploring the Environmental Consequences of Roadside Grass as a Biogas Feedstock in Northwest Europe. J. Environ. Manag. 2023, 344, 118538. [Google Scholar]
- Morales-Polo, C.; Cledera-Castro, M.D.M.; Revuelta-Aramburu, M.; Hueso-Kortekaas, K. Enhancing energy recovery in form of biogas from vegetable and fruit wholesale markets by-products and wastes, with pretreatments. Plants 2021, 10, 1298. [Google Scholar] [CrossRef]
- Wang, L.J. Production of bioenergy and bioproducts from food processing wastes: A review. Trans. ASABE 2013, 56, 217–230. [Google Scholar] [CrossRef]
- Soja, J.; Oniszczuk, T.; Vaskina, I.; Combrzyński, M.; Wójtowicz, A. Integration of plant pomace into extruded products: Analysis of process conditions, post-production waste properties and biogas potential. Energies 2024, 17, 6476. [Google Scholar] [CrossRef]
- Nair, L.G.; Agrawal, K.; Verma, P. An overview of sustainable approaches for bioenergy production from agro-industrial wastes. Energy Nexus 2022, 6, 100086. [Google Scholar] [CrossRef]
- Piekutin, J.; Puchlik, M.; Haczykowski, M.; Dyczewska, K. The efficiency of the biogas plant operation depending on the substrate used. Energies 2021, 14, 3157. [Google Scholar] [CrossRef]
- Kilibarda, N. Food Safety and Waste in Hospitality. In Zero Hunger. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 338–347. [Google Scholar] [CrossRef]
- Regulation (EC) No 1069/2009 of the European Parliament and of the Council of 21 October 2009 Laying Down Health Rules as Regards Animal by-Products and Derived Products not Intended for Human Consumption and Repealing Regulation (EC). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009R1069 (accessed on 31 January 2025).
- Rulebook on How to Sort and Handle Side Products of Animal Origin. RS Official Gazette, 31/2011, 97/2013, 15/2015, 61/2017 and 118/2023. Available online: https://www.vet.minpolj.gov.rs/dokumenta/pravilnici/ (accessed on 31 January 2025).
- Hejnfelt, A.; Angelidaki, I. Anaerobic Digestion of Slaughterhouse By-Products. Biomass Bioenergy 2009, 33, 1046–1054. [Google Scholar] [CrossRef]
- Pitk, P.; Kaparaju, P.; Vilu, R. Methane Potential of Sterilized Solid Slaughterhouse Wastes. Bioresour. Technol. 2012, 116, 42–46. [Google Scholar] [CrossRef]
- Bachmann, N.; la Cour Jansen, J.; Bochmann, G.; Montpart, N. Sustainable Biogas Production in Municipal Wastewater Treatment plants; IEA Bioenergy: Massongex, Switzerland, 2015; Volume 20, Available online: http://www.iea-biogas.net (accessed on 3 February 2025).
- Ounsaneha, W.; Rattanapan, C.; Suksaroj, T.T.; Kantachote, D.; Klawech, W.; Rakkamon, T. Biogas production by co-digestion of municipal wastewater and food waste: Performance in semi-continuous and continuous operation. Water Environ. Res. 2021, 93, 306–315. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, T.; Chen, X.; Yu, Z. Life-cycle assessment of energy consumption and environmental impact of an integrated food waste-based biogas plant. Appl. Energy 2015, 151, 227–236. [Google Scholar] [CrossRef]
- Law on Water. Official Gazette of the Republic of Serbia. no. 30 of 7 May 2010, 93 of 28 September 2012, 101 of 16 December 2016, 95 of 8 December 2018, 95 of 8 December 2018—Dr. Law. Available online: http://www.pravno-informacioni-sistem.rs/reg-overview# (accessed on 3 February 2025).
- Patel, A.; Arkatkar, A.; Singh, S.; Rabbani, A.; Medina, J.D.S.; Ong, E.S.; Mungray, A.K. Physico-chemical and biological treatment strategies for converting municipal wastewater and its residue to resources. Chemosphere 2021, 282, 130881. [Google Scholar] [CrossRef]
- Pavi, S.; Kramer, L.E.; Gomes, L.P.; Miranda, L.A.S. Biogas production from co-digestion of organic fraction of municipal solid waste and fruit and vegetable waste. Bioresour. Technol. 2017, 228, 362–367. [Google Scholar] [CrossRef]
- Buraimoh, O.M.; Olusola, O.I.; Humphrey, I.; Raheem, I.A.; Onyekachi, U.K.; Ogundipe, O.T. Bioconversion of organic wastes for sustainable biogas production using locally sourced materials. Int. J. Energy Clean Environ. 2020, 21, 201–219. [Google Scholar] [CrossRef]
- Sobczak, A.; Chomać-Pierzecka, E.; Kokiel, A.; Różycka, M.; Stasiak, J.; Soboń, D. Economic conditions of using biodegradable waste for biogas production, using the example of Poland and Germany. Energies 2022, 15, 5239. [Google Scholar] [CrossRef]
- Honcharuk, I. European experience of biogas and biogas production from waste according to the circular economy principle in agriculture. Econ. Fin. Manag. Top. Issues Sci. Pract. Act. 2023, 4, 7–19. [Google Scholar] [CrossRef]
- Slepetys, J.; Kadziuliene, Z.; Sarunaite, L.; Tilvikiene, V.; Kryzeviciene, A. Biomass potential of plants grown for bioenergy production. In Proceedings of the International Scientific Conference “Renewable Energy and Energy Efficiency”, Jelgava, Latvia, 28–30 May 2012; Latvia University of Agriculture: Jelgava, Latvia, 2012; pp. 66–72. [Google Scholar]
- Norouzi, O.; Dutta, A. The current status and future potential of biogas production from Canada’s organic fraction municipal solid waste. Energies 2022, 15, 475. [Google Scholar] [CrossRef]
- Mistretta, M.; Gulotta, T.M.; Caputo, P.; Cellura, M. Bioenergy from anaerobic digestion plants: Energy and environmental assessment of a wide sample of Italian plants. Sci. Total Environ. 2022, 843, 157012. [Google Scholar] [CrossRef]
- Nazari, A.; Soltani, M.; Hosseinpour, M.; Alharbi, W.; Raahemifar, K. Integrated anaerobic co-digestion of municipal organic waste to biogas using geothermal and CHP plants: A comprehensive analysis. Renew. Sustain. Energy Rev. 2021, 152, 111709. [Google Scholar] [CrossRef]
- Ćurčić, S.; Peulić, A. Creation of an energy map of available biomass raw materials in a geographic information system (GIS). Energ. Ekon. Ekol. 2024, XXVI, 48–51. [Google Scholar] [CrossRef]
- Obileke, K.; Nwokolo, N.; Makaka, G.; Mukumba, P.; Onyeaka, H. Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review. Energy Environ. 2021, 32, 191–225. [Google Scholar] [CrossRef]
- Phillip, A.; Bhatt, S.M.; Sharma, N.; Poudel, B. Enhanced biogas production using anaerobic co-digestion of animal waste and food waste: A review. J. Sci. Res. Rep. 2024, 30, 761–781. [Google Scholar] [CrossRef]
- Choudhary, A.; Kumar, A.; Govil, T.; Sani, R.K.; Gorky; Kumar, S. Sustainable production of biogas in large bioreactor under psychrophilic and mesophilic conditions. J. Environ. Eng. 2020, 146, 04019117. [Google Scholar] [CrossRef]
- Sárvári Horváth, I.; Tabatabaei, M.; Karimi, K.; Kumar, R. Recent updates on biogas production: A review. Biofuel Res. J. 2016, 3, 394–402. [Google Scholar] [CrossRef]
- Cheong, W.; Chan, Y.; Tiong, T.; Chong, W.; Kiatkittipong, W.; Kiatkittipong, K.; Mohamad, M.; Daud, H.; Suryawani, I.; Sari, M. Anaerobic Co-Digestion of Food Waste with Sewage Sludge: Simulation and Optimization for Maximum Biogas Production. Water 2022, 14, 1075. [Google Scholar] [CrossRef]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Taherzadeh, M.J. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef] [PubMed]
- Phuket, K.R.N.; Srimachai, T.; Luanunkarb, S.; Sompong, O. Enhanced efficiency for biogas production from distillery wastewater as mixed with molasses and glycerol waste in anaerobic co-digestion. Sci. Technol. Indones. 2024, 9, 120–128. [Google Scholar] [CrossRef]
- Mata-Alvarez, J.; Dosta, J.; Romero-Güiza, M.S.; Fonoll, X.; Peces, M.; Astals, S. A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renew. Sustain. Energy Rev. 2014, 36, 412–427. [Google Scholar] [CrossRef]
Substrate | Dry Matter, (%) | Organic Dry Matter, (%) | Biogas Yield | Share of CH4 | ||
---|---|---|---|---|---|---|
Stm3/t Fresh Matter | Stm3/t oDM | (%) | Nm3/t oDM (Mean Values) | |||
Pork liquid manure | 7 | 75–86 | 20–35 | 300–700 | 60–70 | 250 |
Beef liquid manure | 8–11 | 75–82 | 20–30 | 200–500 | 60 | 210 |
Solid poultry manure | 32 | 63–80 | 70–90 | 270–450 | 60 | 280 |
Solid cattle manure | 25 | 68–76 | 40–50 | 210–300 | 60 | 250 |
Substrate | Dry Matter (%) | Organic Dry Matter (%) | Biogas Yield | CH4 (%) | |
---|---|---|---|---|---|
Stm3/t Fresh Mater | Stm3/t oDM | ||||
Potato pomace | 6–7 | 85–95 | 36–42 | 400–700 | 58–65 |
Fruit pomace | 2–3 | 95 | 10–20 | 300–650 | 58–65 |
Molasses | 80–90 | 85–90 | 290–340 | 360–490 | 70–75 |
Substrate | (Nm3/t oDM)—Mean Values |
---|---|
Apple pomace | 453 |
Grape pomace | 448 |
Rapeseed loaf | 396 |
Grain pomace | 385 |
Potato pomace | 362 |
Potato pulp | 336 |
Beer trope | 313 |
Molasses | 308 |
Fruit pomace | 285 |
Sugar beet noodles | 218 |
Crude glycerin | 185 |
Products/Byproducts | m3/Biogas/t Accepted Value | t/Year | Total Biogas m3/Year |
---|---|---|---|
Liquid cattle manure | 300 | 3650 | 1.095000 |
Poultry manure | 280 | 75 | 21,000 |
Corn silage | 330 | 1300 | 420,000 |
Potato pomace | 360 | 3000 | 1.080000 |
Fruit processing residues | 100 | 2000 | 200,000 |
Vegetable processing residues | 120 | 300 | 36,000 |
Molasses | 290 | 1500 | 335,000 |
Grain residues | 310 | 2800 | 868,000 |
Used cooking oil | 500 | 80 | 40,000 |
Herbaceous green mass | 70 | 3000 | 210,000 |
Food waste | 395 | 150 | 59,250 |
Bakery product waste | 450 | 40 | 18,000 |
Wastewater treatment residues | 70 | 1000 | 700,000 |
TOTAL | 5.082250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ćurčić, S.; Milićević, D.; Kilibarda, N.; Peulić, A. Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems. Sustainability 2025, 17, 3144. https://doi.org/10.3390/su17073144
Ćurčić S, Milićević D, Kilibarda N, Peulić A. Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems. Sustainability. 2025; 17(7):3144. https://doi.org/10.3390/su17073144
Chicago/Turabian StyleĆurčić, Srećko, Dragan Milićević, Nataša Kilibarda, and Aleksandar Peulić. 2025. "Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems" Sustainability 17, no. 7: 3144. https://doi.org/10.3390/su17073144
APA StyleĆurčić, S., Milićević, D., Kilibarda, N., & Peulić, A. (2025). Assessing Biogas Production Potential from Organic Waste and Livestock Byproducts in a Serbian Municipality: Implications for Sustainable Food Systems. Sustainability, 17(7), 3144. https://doi.org/10.3390/su17073144