Impact of Variables in the UTAUT 2 Model on the Intention to Use a Fully Electric Car
Abstract
:1. Introduction
2. Literature Review
- Higher initial cost compared to petroleum-powered automobiles;
- Uncertainty for long-distance driving due to limited battery capacity;
- Inadequate access to electric charging areas after the vehicle’s low battery;
- Lack of technological maturity may lead to a lack of reliability compared to traditional diesel tractors.
3. Hypothesis Development
4. Materials and Methods
5. Results
6. Discussion and Conclusions
7. Theoretical Contribution
8. Managerial/Practical Implications
9. Limitations and Future Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paparoidamis, N.G.; Tran, H.T.T. Making the World a Better Place by Making Better Products: Eco-Friendly Consumer Innovativeness and the Adoption of Eco-Innovations. Eur. J. Mark. 2019, 53, 1546–1584. [Google Scholar] [CrossRef]
- Mahmoudzadeh Andwari, A.; Pesiridis, A.; Rajoo, S.; Martinez-Botas, R.; Esfahanian, V. A Review of Battery Electric Vehicle Technology and Readiness Levels. Renew. Sustain. Energy Rev. 2017, 78, 414–430. [Google Scholar] [CrossRef]
- Sagbas, M.; Oktaysoy, O.; Topcuoglu, E.; Kaygin, E.; Erdogan, F.A. The Mediating Role of Innovative Behavior on the Effect of Digital Leadership on Intrapreneurship Intention and Job Performance. Behav. Sci. 2023, 13, 874. [Google Scholar] [CrossRef]
- Karamehmet, B.; Morgül, E. Tüketicilerin Elektrikli Araç Tercihleri: Literatür Taramasi ve Türkiye’de Tanitimina Yönelik Öneriler. Karadeniz|Black Sea|Yëphoe Mope 2018, 40, 246–260. [Google Scholar] [CrossRef]
- Acar, O.; Taşkın, Ç. Türkiye’de Elektrikli Otomobillerin Benimsenmesi Sürecinin Değerlendirilmesine Yönelik Nitel Bir Araştirma. Anadolu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2024, 25, 205–241. [Google Scholar] [CrossRef]
- Stajić, D.; Pfeifer, A.; Herc, L.; Logonder, M. Early Adoption of Battery Electric Vehicles and Owners’ Motivation. Clean. Eng. Technol. 2023, 15, 100658. [Google Scholar] [CrossRef]
- Jenn, A.; Lee, J.H.; Hardman, S.; Tal, G. An In-Depth Examination of Electric Vehicle Incentives: Consumer Heterogeneity and Changing Response over Time. Transp. Res. Part A Policy Pract. 2020, 132, 97–109. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Park, E.; Kim, H.; Ohm, J.Y. Understanding Driver Adoption of Car Navigation Systems Using the Extended Technology Acceptance Model. Behav. Inf. Technol. 2015, 34, 741–751. [Google Scholar] [CrossRef]
- Wu, J.-H.; Wu, C.-W.; Lee, C.-T.; Lee, H.-J. Green Purchase Intentions: An Exploratory Study of the Taiwanese Electric Motorcycle Market. J. Bus. Res. 2015, 68, 829–833. [Google Scholar] [CrossRef]
- Topcuoglu, E.; Oktaysoy, O.; Uygungil-Erdogan, S.; Kaygin, E.; Karafakıoglu, E. The Mediating Role of Job Security in The Impact of Digital Leadership on Job Satisfaction and Life Satisfaction. MMI 2023, 14, 122–132. [Google Scholar] [CrossRef]
- He, S.Y.; Sun, K.K.; Luo, S. Factors Affecting Electric Vehicle Adoption Intention: The Impact of Objective, Perceived, and Prospective Charger Accessibility. J. Transp. Land Use 2022, 15, 779–801. [Google Scholar] [CrossRef]
- Jia, Z.; Li, J.; Zhang, X.-P.; Zhang, R. Review on Optimization of Forecasting and Coordination Strategies for Electric Vehicle Charging. J. Mod. Power Syst. Clean Energy 2023, 11, 389–400. [Google Scholar] [CrossRef]
- Shetty, A.; Rizwana, M. Sustainable Mobility Perspectives: Exploring the Impact of UTAUT2 Model on Fostering Electric Vehicle Adoption in India. Manag. Environ. Qual. Int. J. 2024, 35, 1505–1523. [Google Scholar] [CrossRef]
- Demir, B.; Akdemir, M.A.; Kara, A.U.; Sagbas, M.; Sahin, Y.; Topcuoglu, E. The Mediating Role of Green Innovation and Environmental Performance in the Effect of Green Transformational Leadership on Sustainable Competitive Advantage. Sustainability 2025, 17, 1407. [Google Scholar] [CrossRef]
- Alvarez-Diazcomas, A.; Estévez-Bén, A.A.; Rodríguez-Reséndiz, J.; Carrillo-Serrano, R.V.; Álvarez-Alvarado, J.M. A High-Efficiency Capacitor-Based Battery Equalizer for Electric Vehicles. Sensors 2023, 23, 5009. [Google Scholar] [CrossRef]
- Diahovchenko, I.; Petrichenko, L.; Borzenkov, I.; Kolcun, M. Application of Photovoltaic Panels in Electric Vehicles to Enhance the Range. Heliyon 2022, 8, e12425. [Google Scholar] [CrossRef]
- Poullikkas, A. Sustainable Options for Electric Vehicle Technologies. Renew. Sustain. Energy Rev. 2015, 41, 1277–1287. [Google Scholar] [CrossRef]
- Remme, D.; Jackson, J. Green Mission Creep: The Unintended Consequences of Circular Economy Strategies for Electric Vehicles. J. Clean. Prod. 2023, 394, 136346. [Google Scholar] [CrossRef]
- Moons, I.; De Pelsmacker, P. An Extended Decomposed Theory of Planned Behaviour to Predict the Usage Intention of the Electric Car: A Multi-Group Comparison. Sustainability 2015, 7, 6212–6245. [Google Scholar] [CrossRef]
- Schmalfuß, F.; Mühl, K.; Krems, J.F. Direct Experience with Battery Electric Vehicles (BEVs) Matters When Evaluating Vehicle Attributes, Attitude and Purchase Intention. Transp. Res. Part F Traffic Psychol. Behav. 2017, 46, 47–69. [Google Scholar] [CrossRef]
- Noel, L.; Zarazua de Rubens, G.; Kester, J.; Sovacool, B.K. Understanding the Socio-Technical Nexus of Nordic Electric Vehicle (EV) Barriers: A Qualitative Discussion of Range, Price, Charging and Knowledge. Energy Policy 2020, 138, 111292. [Google Scholar] [CrossRef]
- Adhikari, M.; Ghimire, L.P.; Kim, Y.; Aryal, P.; Khadka, S.B. Identification and Analysis of Barriers against Electric Vehicle Use. Sustainability 2020, 12, 4850. [Google Scholar] [CrossRef]
- Dwipayana, A.D.; Pradana, A.; Sulistyo, A.B. Barriers to Electric Car Acceptance: Analysis of Consumer Perceptions Regarding Safety and Security. Astonjadro 2023, 12, 469–479. [Google Scholar] [CrossRef]
- Patt, A.; Aplyn, D.; Weyrich, P.; van Vliet, O. Availability of Private Charging Infrastructure Influences Readiness to Buy Electric Cars. Transp. Res. Part A Policy Pract. 2019, 125, 1–7. [Google Scholar] [CrossRef]
- Gnann, T.; Funke, S.; Jakobsson, N.; Plötz, P.; Sprei, F.; Bennehag, A. Fast Charging Infrastructure for Electric Vehicles: Today’s Situation and Future Needs. Transp. Res. Part D Transp. Environ. 2018, 62, 314–329. [Google Scholar] [CrossRef]
- Krishna, G. Understanding and Identifying Barriers to Electric Vehicle Adoption through Thematic Analysis. Transp. Res. Interdiscip. Perspect. 2021, 10, 100364. [Google Scholar] [CrossRef]
- Giansoldati, M.; Danielis, R.; Rotaris, L.; Scorrano, M. The Role of Driving Range in Consumers’ Purchasing Decision for Electric Cars in Italy. Energy 2018, 165, 267–274. [Google Scholar] [CrossRef]
- Vasile, I.; Tudor, E.; Sburlan, I.-C.; Matache, M.-G.; Cristea, M. Optimization of the Electronic Control Unit of Electric-Powered Agricultural Vehicles. World Electr. Veh. J. 2023, 14, 267. [Google Scholar] [CrossRef]
- Carey, J. The Other Benefit of Electric Vehicles. Proc. Natl. Acad. Sci. USA 2023, 120, e2220923120. [Google Scholar] [CrossRef] [PubMed]
- Ruggieri, R.; Ruggeri, M.; Vinci, G.; Poponi, S. Electric Mobility in a Smart City: European Overview. Energies 2021, 14, 315. [Google Scholar] [CrossRef]
- Pollák, F.; Vodák, J.; Soviar, J.; Markovič, P.; Lentini, G.; Mazzeschi, V.; Luè, A. Promotion of Electric Mobility in the European Union—Overview of Project PROMETEUS from the Perspective of Cohesion through Synergistic Cooperation on the Example of the Catching-Up Region. Sustainability 2021, 13, 1545. [Google Scholar] [CrossRef]
- Ghosh, A. Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the Transport Sector: A Review. Energies 2020, 13, 2602. [Google Scholar] [CrossRef]
- Topcuoglu, E.; Oktaysoy, O.; Kaygin, E.; Kosa, G.; Uygungil-Erdogan, S.; Kobanoglu, M.S.; Turan-Torun, B. The Potential of the Society 5.0 Strategy to Be a Solution to the Political and Structural Problems of Countries: The Case of Türkiye. Sustainability 2024, 16, 9825. [Google Scholar] [CrossRef]
- Webtekno Türkiye’de En Çok Satılan Otomobiller [Güncel]. Available online: https://www.webtekno.com/en-cok-satilan-otomobiller-h126446.html (accessed on 20 February 2025).
- Ajzen, I. Perceived Behavioral Control, Self-Efficacy, Locus of Control, and the Theory of Planned Behavior. J. Appl. Soc. Psychol. 2002, 32, 665–683. [Google Scholar] [CrossRef]
- Ajzen, I. From Intentions to Actions: A Theory of Planned Behavior. In Action Control: From Cognition to Behavior; Kuhl, J., Beckmann, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 11–39. ISBN 978-3-642-69746-3. [Google Scholar]
- Ajzen, I. The Theory of Planned Behaviour. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar]
- Merhi, M.; Hone, K.; Tarhini, A. A Cross-Cultural Study of the Intention to Use Mobile Banking between Lebanese and British Consumers: Extending UTAUT2 with Security, Privacy and Trust. Technol. Soc. 2019, 59, 101151. [Google Scholar] [CrossRef]
- Serikkaliyeva, A.; Makarova, I.; Gabsalikhova, L. Prospects for the Development of Vehicle Assembly Plants of Chinese Automobile Brands in Kazakhstan: An Example of Multi-Sectoral Diversification of the Economy to Increase Its Sustainability. Sustainability 2024, 16, 2662. [Google Scholar] [CrossRef]
- Kaygın, E.; Topçuoğlu, E. The Effects of Covid19 Pandemic Upon Tourism: A Sample From The City of Kars. Mehmet Akif Ersoy Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2020, 7, 782–805. [Google Scholar] [CrossRef]
- Moons, I.; De Pelsmacker, P. Emotions as Determinants of Electric Car Usage Intention. J. Mark. Manag. 2012, 28, 195–237. [Google Scholar] [CrossRef]
- Qasim, A.; Abu-Shanab, E. Drivers of Mobile Payment Acceptance: The Impact of Network Externalities. Inf. Syst. Front. 2016, 18, 1021–1034. [Google Scholar] [CrossRef]
- Dhingra, S.; Gupta, S. Behavioural Intention to Use Mobile Banking: An Extension of UTAUT2 Model. Int. J. Mob. Hum. Comput. Interact. 2020, 12, 1–20. [Google Scholar] [CrossRef]
- Devolder, P.; Pynoo, B.; Sijnave, B.; Voet, T.; Duyck, P. Framework for User Acceptance: Clustering for Fine-Grained Results. Inf. Manag. 2012, 49, 233–239. [Google Scholar] [CrossRef]
- Yılmaz, M.B.; Kavanoz, S. Teknoloji Kabul ve Kullanım Birleştirilmiş Modeli-2 Ölçeğinin Türkçe Formunun Geçerlik ve Güvenirlik Çalışması. J. Turk. Stud. 2017, 12, 127–146. [Google Scholar] [CrossRef]
- Şahin, Y.; Demiral, B. Sürdürülebilirlik, İnovasyon ve Liderlik Kavramlarına Bibliyometrik Bakış [A Bibliometric View on Sustainability, Innovation and Leadership Concepts]. Giresun Üniversitesi İktisadi ve İdari Bilimler Dergisi 2023, 9, 146–160. [Google Scholar] [CrossRef]
- Gumasing, M.J.J.; Carrillo, G.Z.D.V.; De Guzman, M.A.A.; Suñga, C.A.R.; Tan, S.Y.B.; Mascariola, M.M.; Ong, A.K.S. Investigating User-Centric Factors Influencing Smartwatch Adoption and User Experience in the Philippines. Sustainability 2024, 16, 5401. [Google Scholar] [CrossRef]
- Lampo, A.; Silva, S.C.; Duarte, P. The Role of Environmental Concern and Technology Show-off on Electric Vehicles Adoption: The Case of Macau. Int. J. Emerg. Mark. 2023, 20, 561–583. [Google Scholar] [CrossRef]
- Tu, J.-C.; Yang, C. Key Factors Influencing Consumers’ Purchase of Electric Vehicles. Sustainability 2019, 11, 3863. [Google Scholar] [CrossRef]
- Tsai, Y.H.; Lin, C.-P.; Chiu, C.-K.; Joe, S.-W. Understanding Learning Behavior Using Location and Prior Performance as Moderators. Soc. Sci. J. 2009, 46, 787–799. [Google Scholar] [CrossRef]
- Pinhati, F.; Siqueira, S.W.M. Music Students’ Behavior on Using Learning Objects Closer to the Domain Characteristics and the Social Reality. Comput. Hum. Behav. 2014, 30, 760–770. [Google Scholar] [CrossRef]
- Poong, Y.S.; Yamaguchi, S.; Takada, J. Investigating the Drivers of Mobile Learning Acceptance among Young Adults in the World Heritage Town of Luang Prabang, Laos. Inf. Dev. 2017, 33, 57–71. [Google Scholar] [CrossRef]
- Fu, X. Understanding the Adoption Intention for Electric Vehicles: The Role of Hedonic-Utilitarian Values. Energy 2024, 301, 131703. [Google Scholar] [CrossRef]
- Schuitema, G.; Anable, J.; Skippon, S.; Kinnear, N. The Role of Instrumental, Hedonic and Symbolic Attributes in the Intention to Adopt Electric Vehicles. Transp. Res. Part A Policy Pract. 2013, 48, 39–49. [Google Scholar] [CrossRef]
- Raman, A.; Don, Y. Preservice Teachers’ Acceptance of Learning Management Software: An Application of the UTAUT2 Model. Int. Educ. Stud. 2013, 6, 157–164. [Google Scholar] [CrossRef]
- Chen, S.-C.; Yen, D.C.; Peng, S.-C. Assessing the Impact of Determinants in E-Magazines Acceptance: An Empirical Study. Comput. Stand. Interfaces 2018, 57, 49–58. [Google Scholar] [CrossRef]
- Limayem, M.; Hirt, S.G.; Cheung, C.M.K. How Habit Limits the Predictive Power of Intention: The Case of Information Systems Continuance. MIS Q. 2007, 31, 705–737. [Google Scholar] [CrossRef]
- Liao, C.; Palvia, P.; Lin, H.-N. The Roles of Habit and Web Site Quality in E-Commerce. Int. J. Inf. Manag. 2006, 26, 469–483. [Google Scholar] [CrossRef]
- Oktafani, D.; Sisilia, K. Analisis Penerapan Model Unified Theory Of Acceptance and Use Of Technology2 (Utaut2) Pada Adopsi Penggunaan Dompet Digital Ovo Dayeuh Kolot Bandung (Studi kasus pada Generasi Z sebagai pengguna OVO). J. Menara Ekon. Penelit. Dan Kaji. Ilm. Bid. Ekon. 2020, 6, 24–36). [Google Scholar]
- Ajao, Q.; Prio, M.H.; Sadeeq, L. Analysis of Factors Influencing Electric Vehicle Adoption in Sub-Saharan Africa Using a Modified UTAUT Framework. Discov Electron 2025, 2, 4. [Google Scholar] [CrossRef]
- Samarasinghe, D.; Kuruppu, G.N.; Dissanayake, T. Factors Influencing the Purchase Intention toward Electric Vehicles; a Nonuser Perspective. South Asian J. Mark. 2024, 5, 149–165. [Google Scholar] [CrossRef]
- Bougie, R.; Sekaran, U. Research Methods For Business: A Skill Building Approach; John Wiley & Sons: Hoboken, NJ, USA, 2019; ISBN 978-1-119-56122-4. [Google Scholar]
- Israel, G.D. Determining Sample Size. Available online: https://www.gjimt.ac.in/wp-content/uploads/2017/10/2_Glenn-D.-Israel_Determining-Sample-Size.pdf (accessed on 20 February 2025).
- Ahmad, S.; Chaveeesuk, S.; Chaiyasoonthorn, W. The Adoption of Electric Vehicle in Thailand with the Moderating Role of Charging Infrastructure: An Extension of a UTAUT. Int. J. Sustain. Energy 2024, 43, 2387908. [Google Scholar] [CrossRef]
- Hair, J.F.; Matthews, L.M.; Matthews, R.L.; Sarstedt, M. PLS-SEM or CB-SEM: Updated Guidelines on Which Method to Use. Int. J. Multivar. Data Anal. 2017, 1, 107–123. [Google Scholar] [CrossRef]
- Wang, S.; Shi, G.; Lu, M.; Lin, R.; Yang, J. Determinants of Active Online Learning in the Smart Learning Environment: An Empirical Study with PLS-SEM. Sustainability 2021, 13, 9923. [Google Scholar] [CrossRef]
- Chanda, R.C.; Vafaei-Zadeh, A.; Hanifah, H.; Ramayah, T. Modelling Eco-Friendly Smart Home Appliances’ Adoption Intention from the Perspective of Residents: A Comparative Analysis of PLS-SEM and fsQCA. Open House Int. 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Chen, S.; Ye, J. Understanding Consumers’ Intentions to Purchase Smart Clothing Using PLS-SEM and fsQCA. PLoS ONE 2023, 18, e0291870. [Google Scholar] [CrossRef]
- Shami, M.R.; Rad, V.B.; Moinifar, M. The Structural Model of Indicators for Evaluating the Quality of Urban Smart Living. Technol. Forecast. Soc. Change 2022, 176, 121427. [Google Scholar] [CrossRef]
- Ghansah, F.A.; Owusu-Manu, D.-G.; Edwards, D.J.; Thwala, W.D.; Yamoah Agyemang, D.; Ababio, B.K. A Framework for Smart Building Technologies Implementation in the Ghanaian Construction Industry: A PLS-SEM Approach. Build. Res. Inf. 2024, 52, 148–163. [Google Scholar] [CrossRef]
- Hair, J.F.; Risher, J.J.; Sarstedt, M.; Ringle, C.M. When to Use and How to Report the Results of PLS-SEM. Eur. Bus. Rev. 2019, 31, 2–24. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Dijkstra, T.K.; Henseler, J. Consistent Partial Least Squares Path Modeling. MIS Q. 2015, 39, 297–316. [Google Scholar] [CrossRef]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: New York, NY, USA, 2016; ISBN 978-1-315-75742-1. [Google Scholar]
- Ansari, H.U.H.; Khan, S.N. Linking Green Transformational Leadership and Employee Pro-Environmental Behavior: The Role of Intention and Work Environment. Sustain. Futures 2024, 8, 100336. [Google Scholar] [CrossRef]
- Nasreddin, D.; El Hafdaoui, H.; Jelti, F.; Boumelha, A.; Khallaayoun, A. Inhibitors of Battery Electric Vehicle Adoption in Morocco. World Electr. Veh. J. 2024, 15, 6. [Google Scholar] [CrossRef]
- Spears, N.; Singh, S. Measuring Attitude Toward the Brand and Purchase Intentions. J. Curr. Issues Res. Advert. 2004, 26, 53–66. [Google Scholar] [CrossRef]
- Dadwal, S.S. Handbook of Research on Innovations in Technology and Marketing for the Connected Consumer; IGI Global: Hershey, PA, USA, 2019; ISBN 978-1-7998-0131-3. [Google Scholar]
- Heilbroner, R.L.; Ajzen, I.; Fishbein, M.; Thurow, L.C. Understanding Attitudes and Predicting Social Behavior; Prentice-Hall: Englewood Cliffs, NJ, USA, 1980; ISBN 978-0-13-936435-8. [Google Scholar]
- Mathieson, K. Predicting User Intentions: Comparing the Technology Acceptance Model with the Theory of Planned Behavior. Inf. Syst. Res. 1991, 2, 173–191. [Google Scholar] [CrossRef]
- Lashari, Z.A.; Ko, J.; Jang, J. Consumers’ Intention to Purchase Electric Vehicles: Influences of User Attitude and Perception. Sustainability 2021, 13, 6778. [Google Scholar] [CrossRef]
- Vafaei-Zadeh, A.; Wong, T.-K.; Hanifah, H.; Teoh, A.P.; Nawaser, K. Modelling Electric Vehicle Purchase Intention among Generation Y Consumers in Malaysia. Res. Transp. Bus. Manag. 2022, 43, 100784. [Google Scholar] [CrossRef]
- Gunawan, I.; Redi, A.A.N.P.; Santosa, A.A.; Maghfiroh, M.F.N.; Pandyaswargo, A.H.; Kurniawan, A.C. Determinants of Customer Intentions to Use Electric Vehicle in Indonesia: An Integrated Model Analysis. Sustainability 2022, 14, 1972. [Google Scholar] [CrossRef]
- Singh, H.; Singh, V.; Singh, T.; Higueras-Castillo, E. Electric Vehicle Adoption Intention in the Himalayan Region Using UTAUT2—NAM Model. Case Stud. Transp. Policy 2023, 11, 100946. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–340. [Google Scholar] [CrossRef]
- Kumar, M.S.; Revankar, S.T. Development Scheme and Key Technology of an Electric Vehicle: An Overview. Renew. Sustain. Energy Rev. 2017, 70, 1266–1285. [Google Scholar] [CrossRef]
- Yaprak, Ü.; Kizir, E.; Yaşin, B. Tüketicilerin Elektrikli Otomobilleri Benimsemesinde Rolü Olan Faktörler: Birleştirilmiş Teknoloji Kabul Modeli Çerçevesinde Bir Araştırma. Gümüşhane Üniversitesi Sos. Bilim. Derg. 2024, 15, 117–136. [Google Scholar]
- Özdemir-Öztürk, N.; Barutçu, S. Comparing Technology Acceptance for Electric Vehicles—A Comparative Study in Turkey and Germany. Int. J. Contemp. Econ. Adm. Sci. 2022, 12, 898–917. [Google Scholar] [CrossRef]
- Efendioğlu, İ.H. Elektrikli Araç Satın Alma Niyetini Etkileyen Faktörler. İstanbul Gelişim Üniversitesi Sos. Bilim. Derg. 2024, 11, 106–122. [Google Scholar] [CrossRef]
- Kocagöz, E.; İğde, Ç.S. Elektrikli Araç Satın Alma Niyetini Hangi Faktörler Etkiler? Bir Tüketici Araştırması. Kahramanmaraş Sütçü İmam Üniversitesi Sos. Bilim. Derg. 2022, 19, 104–120. [Google Scholar] [CrossRef]
- Lee, S.S.; Kim, Y.; Roh, T. Pro-Environmental Behavior on Electric Vehicle Use Intention: Integrating Value-Belief-Norm Theory and Theory of Planned Behavior. J. Clean. Prod. 2023, 418, 138211. [Google Scholar] [CrossRef]
- Levina, O. Digital Platform for Electricity and Mobility: Unifying the Two Domains. In Proceedings of the 2016 International Conference on Informatics for Environmental Protection, Berlin, Germany, 14–16 September 2016; pp. 159–164. [Google Scholar]
- Wu, J.; Liao, H.; Wang, J.-W. Analysis of Consumer Attitudes towards Autonomous, Connected, and Electric Vehicles: A Survey in China. Res. Transp. Econ. 2020, 80, 100828. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Bao, H.; Zhang, S.; Xiang, Y. A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province. Sustainability 2019, 11, 3164. [Google Scholar] [CrossRef]
- Morton, C.; Anable, J.; Nelson, J.D. Exploring Consumer Preferences towards Electric Vehicles: The Influence of Consumer Innovativeness. Res. Transp. Bus. Manag. 2016, 18, 18–28. [Google Scholar] [CrossRef]
- Jiang, S. Purchase Intention for Electric Vehicles in China From a Customer-Value Perspective. Soc. Behav. Personal. Int. J. 2016, 44, 641–655. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Chen, L.; Wang, Z. Consumer Preferences for Battery Electric Vehicles: A Choice Experimental Survey in China. Transp. Res. Part D Transp. Environ. 2020, 78, 102185. [Google Scholar] [CrossRef]
- Shanmugavel, N.; Micheal, M. Exploring the Marketing Related Stimuli and Personal Innovativeness on the Purchase Intention of Electric Vehicles through Technology Acceptance Model. Clean. Logist. Supply Chain 2022, 3, 100029. [Google Scholar] [CrossRef]
- Mutambik, I. Culturally Informed Technology: Assessing Its Importance in the Transition to Smart Sustainable Cities. Sustainability 2024, 16, 4075. [Google Scholar] [CrossRef]
- Aggelidis, V.P.; Chatzoglou, P.D. Using a Modified Technology Acceptance Model in Hospitals. Int. J. Med. Inform. 2009, 78, 115–126. [Google Scholar] [CrossRef]
- Hofstede, G. Culture’s Consequences: Comparing Values, Behaviors, Institutions, and Organizations Across Nations; Sage: Thousand Oaks, CA, USA, 2001. [Google Scholar] [CrossRef]
- Hofstede, G. National Cultures in Four Dimensions: A Research-Based Theory of Cultural Differences among Nations. Int. Stud. Manag. Organ. 1983, 13, 46–74. [Google Scholar] [CrossRef]
- Nguyen, T.N.; Lobo, A.; Greenland, S. The Influence of Cultural Values on Green Purchase Behaviour. Mark. Intell. Plan. 2017, 35, 377–396. [Google Scholar] [CrossRef]
- Escandon-Barbosa, D.; Salas-Paramo, J.; Meneses-Franco, A.I.; Giraldo- Gonzalez, C. Adoption of New Technologies in Developing Countries: The Case of Autonomous Car between Vietnam and Colombia. Technol. Soc. 2021, 66, 101674. [Google Scholar] [CrossRef]
- Liu, R.; Ding, Z.; Wang, Y.; Jiang, X.; Jiang, X.; Sun, W.; Wang, D.; Mou, Y.; Liu, M. The Relationship between Symbolic Meanings and Adoption Intention of Electric Vehicles in China: The Moderating Effects of Consumer Self-Identity and Face Consciousness. J. Clean. Prod. 2021, 288, 125116. [Google Scholar] [CrossRef]
- Higueras-Castillo, E.; Molinillo, S.; Coca-Stefaniak, J.A.; Liébana-Cabanillas, F. Potential Early Adopters of Hybrid and Electric Vehicles in Spain—Towards a Customer Profile. Sustainability 2020, 12, 4345. [Google Scholar] [CrossRef]
- McCracken, G. Culture and Consumption: A Theoretical Account of the Structure and Movement of the Cultural Meaning of Consumer Goods. J. Consum. Res. 1986, 13, 71–84. [Google Scholar]
Motor Type | 2023 | 2024 | % Change |
---|---|---|---|
Gasoline | 644.047 | 588.914 | 8.56 |
Diesel | 132.707 | 95.985 | −27.67 |
LPG | 10.559 | 5.950 | −43.65 |
Hybrid | 107.809 | 187.177 | 73.62 |
Electric motor | 72.179 | 105.315 | 45.90 |
Variables | Groups | n | % | Variables | Groups | n | % |
---|---|---|---|---|---|---|---|
Cities | Tekirdağ | 223 | 55.6 | Education | High school and below | 49 | 12.2 |
Edirne | 41 | 10.2 | Associate degree | 84 | 20.9 | ||
Çanakkale | 61 | 15.2 | Bachelor’s degree | 181 | 45.1 | ||
Kirklareli | 76 | 19.0 | Master’s degree | 63 | 15.7 | ||
Gender | Female | 139 | 34.70 | Doctorate degree | 24 | 6.0 | |
Male | 262 | 65.30 | Average Monthly income | Between TRY 51,000–60,000 | 2 | 0.5 | |
Age | Between the ages of 0–20 | 2 | 0.5 | Between TRY 61,000–70,000 | 19 | 4.7 | |
Between the ages of 21–30 | 76 | 19.0 | Between TRY 71,000–80,000 | 143 | 35.7 | ||
Between the ages of 31–40 | 116 | 28.9 | Between TRY 81,000–90,000 | 87 | 21.7 | ||
Between the ages of 41–50 | 171 | 42.6 | Between TRY 91,000–100,000 | 66 | 16.5 | ||
Aged 51 and over | 36 | 9.0 | TRY 101,000 and above | 84 | 20.9 |
Items | Fac. Load. | Mean | S.D. | Kurtosis | Skewness |
---|---|---|---|---|---|
Performance Expectancy Scale | Cronbach’s α = 0.889, CR = 0.923, AVE = 0.750 | ||||
Performance1—I think that driving an electric car will allow me to save time. | 0.903 | 2.958 | 1.411 | −1.248 | −0.048 |
Performance2—I believe that electric cars will cause fewer problems compared to gasoline-powered vehicles. | 0.894 | 2.848 | 1.449 | −1.348 | 0.070 |
Performance3—I expect that owning an electric car would make my commute to work more comfortable. | 0.822 | 2.564 | 1.425 | −1.225 | 0.359 |
Performance4—I anticipate that driving an electric vehicle will enhance my driving experience. | 0.842 | 2.656 | 1.415 | −1.215 | 0.301 |
Effort Expectancy Scale | Cronbach’s α = 0.859, CR = 0.904, AVE = 0.702 | ||||
Effort1—I find electric cars to be practical. | 0.799 | 2.808 | 1.406 | −1.212 | 0.150 |
Effort2—I believe that driving an electric car requires minimal effort. | 0.881 | 3.152 | 1.283 | −0.997 | −0.137 |
Effort3—I do not anticipate needing additional information (regarding operation, driving instruction, vehicle introduction, etc.) when driving an electric car. | 0.815 | 3.032 | 1.337 | −1.135 | −0.053 |
Effort4—I do not foresee any difficulties in using an electric car should I use one in the future. | 0.855 | 3.212 | 1.280 | −0.966 | −0.216 |
Social Influence Scale | Cronbach’s α = 0.893, CR = 0.934, AVE = 0.825 | ||||
Social1—I would be pleased if those whose opinions I value were to drive electric vehicles. | 0.894 | 3.299 | 1.229 | −0.763 | −0.287 |
Social2—I am interested in hearing about the experiences of those in my social circle with electric cars. | 0.936 | 3.214 | 1.267 | −0.908 | −0.180 |
Social3—I am more likely to use an electric car if it is recommended by people whose opinions I trust. | 0.894 | 3.289 | 1.256 | −0.832 | −0.301 |
Facilitating Conditions Scale | Cronbach’s α = 0.733, CR = 0.834, AVE = 0.559 | ||||
Facilitating1—I find it quite easy to operate an electric vehicle. | 0.696 | 3.594 | 1.312 | −0.686 | −0.640 |
Facilitating2—I anticipate that using an electric car would be effortless for me should I decide to use one. | 0.646 | 3.436 | 1.383 | −0.951 | −0.527 |
Facilitating3—I expect that the use of electric vehicles will increase soon. | 0.792 | 3.633 | 1.260 | −0.747 | −0.558 |
Facilitating4—I am considering using an electric vehicle in the future, influenced by the electric cars recently acquired by those in my immediate circle. | 0.842 | 3.793 | 1.143 | −0.143 | −0.745 |
Hedonic Motivation Scale | Cronbach’s α = 0.874, CR = 0.922, AVE = 0.799 | ||||
Hedonic1—I believe that driving an electric car would bring me joy | 0.882 | 2.771 | 1.395 | −1.213 | 0.172 |
Hedonic2—I believe that owning an electric car would add excitement to my life. | 0.901 | 3.075 | 1.342 | −1.097 | −0.106 |
Hedonic3—Enthusiastic posts by celebrities/influencers about electric cars make me excited about the product. | 0.898 | 3.287 | 1.304 | −0.952 | −0.252 |
Habit Scale | Cronbach’s α = 0.841, CR = 0.901, AVE = 0.753 | ||||
Habit1—I anticipate that using an electric car would become a habit for me. | 0.852 | 3.668 | 1.286 | −0.907 | −0.514 |
Habit2—I would always opt for an electric vehicle when driving in traffic. | 0.899 | 3.798 | 1.234 | −0.393 | −0.761 |
Habit3—I consider electric cars to be a natural and familiar mode of transportation. | 0.851 | 3.786 | 1.235 | −0.596 | −0.671 |
Habit4—I am obliged to use an electric car for transportation * (Delete) | 0.498 | 2.986 | 1.123 | −0.802 | −0.265 |
Behavioral Intention Scale | Cronbach’s α = 0.861, CR = 0.915, AVE = 0.783 | ||||
Behavioral1—I am planning to use an electric vehicle soon. | 0.900 | 3.810 | 1.241 | −0.363 | −0.815 |
Behavioral2—I anticipate that the price of electric vehicles will be lower than that of internal combustion engine vehicles in the future. | 0.896 | 3.800 | 1.255 | −0.452 | −0.772 |
Behavioral3—I expect that the maintenance and spare part costs for electric vehicles will be lower. | 0.858 | 3.776 | 1.134 | −0.242 | −0.683 |
Use Behavior Scale | Cronbach’s α = 0.654, CR = 0.810, AVE = 0.589 | ||||
UseBeh1—I perceive electric car owners as having a higher social standing. | 0.665 | 2.883 | 1.401 | −1.260 | 0.062 |
UseBeh2—I share the advantages of electric vehicles with those in my immediate environment. | 0.838 | 3.229 | 1.367 | −1.108 | −0.232 |
UseBeh3—I consider electric cars to be mechanically less complex. | 0.789 | 2.860 | 1.377 | −1.185 | 0.069 |
Fornell–Larcker Criterion (AVE-SV) | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Behavioral Intention | 0.885 | |||||||
Effort Expectancy | 0.585 | 0.838 | ||||||
Facilitating Conditions | 0.565 | 0.511 | 0.748 | |||||
Habit | 0.188 | −0.105 | 0.213 | 0.868 | ||||
Hedonic Motivation | 0.643 | 0.715 | 0.523 | −0.085 | 0.894 | |||
Performance Expectancy | 0.491 | 0.689 | 0.428 | −0.168 | 0.728 | 0.866 | ||
Social Influence | 0.689 | 0.691 | 0.536 | −0.035 | 0.777 | 0.732 | 0.908 | |
Use Behavior | 0.484 | 0.533 | 0.437 | −0.029 | 0.543 | 0.579 | 0.560 | 0.767 |
Heterotrait/Monotrait Ratio of Correlations | ||||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
Behavioral Intention | ||||||||
Effort Expectancy | 0.672 | |||||||
Facilitating Conditions | 0.705 | 0.640 | ||||||
Habit | 0.203 | 0.134 | 0.255 | |||||
Hedonic Motivation | 0.737 | 0.821 | 0.653 | 0.107 | ||||
Performance Expectancy | 0.548 | 0.786 | 0.524 | 0.202 | 0.820 | |||
Social Influence | 0.784 | 0.784 | 0.658 | 0.066 | 0.879 | 0.819 | ||
Use Behavior | 0.614 | 0.704 | 0.637 | 0.085 | 0.708 | 0.753 | 0.717 |
Model Fit | ||
---|---|---|
Saturated Model | Estimated Model | |
SRMR | 0.057 | 0.071 |
d_ULS | 1.207 | 1.931 |
d_G | 0.545 | 0.583 |
Chi-Square | 1.299.067 | 1.358.012 |
NFI | 0.818 | 0.809 |
Paths | Estimate | SD | t-Values | p | Hypothesis |
---|---|---|---|---|---|
Performance Expectancy → Behavioral Intention | −0.129 | 0.057 | 2.254 | 0.024 | H1 Accept |
Effort Expectancy → Behavioral Intention | 0.158 | 0.053 | 2.989 | 0.003 | H2 Accept |
Social Influence → Behavioral Intention | 0.412 | 0.065 | 6.364 | 0.000 | H3 Accept |
Facilitating Conditions → Behavioral Intention | 0.155 | 0.049 | 3.177 | 0.001 | H4 Accept |
Facilitating Conditions → Use Behavior | 0.265 | 0.057 | 4.669 | 0.000 | H5 Accept |
Hedonic Motivation → Behavioral Intention | 0.239 | 0.060 | 4.004 | 0.000 | H6 Accept |
Habit → Behavioral Intention | 0.184 | 0.037 | 5.029 | 0.000 | H7 Accept |
Habit → Use Behavior | −0.153 | 0.046 | 3.350 | 0.001 | H8 Accept |
Behavioral Intention → Use Behavior | 0.363 | 0.056 | 6.441 | 0.000 | H9 Accept |
Facilitating Conditions → Behavioral Intention → Use Behavior | 0.056 | 0.018 | 3.062 | 0.002 | H10 Accept |
Habit → Behavioral Intention → Use Behavior | 0.067 | 0.017 | 3.951 | 0.000 | H11 Accept |
Latent Variable | R2 | R2 Adj. | Q2 |
---|---|---|---|
Behavioral Intention | 0.588 | 0.582 | 0.452 |
Use Behavior | 0.296 | 0.290 | 0.167 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selvi, M.S.; Önem, Ş. Impact of Variables in the UTAUT 2 Model on the Intention to Use a Fully Electric Car. Sustainability 2025, 17, 3214. https://doi.org/10.3390/su17073214
Selvi MS, Önem Ş. Impact of Variables in the UTAUT 2 Model on the Intention to Use a Fully Electric Car. Sustainability. 2025; 17(7):3214. https://doi.org/10.3390/su17073214
Chicago/Turabian StyleSelvi, Murat Selim, and Şermin Önem. 2025. "Impact of Variables in the UTAUT 2 Model on the Intention to Use a Fully Electric Car" Sustainability 17, no. 7: 3214. https://doi.org/10.3390/su17073214
APA StyleSelvi, M. S., & Önem, Ş. (2025). Impact of Variables in the UTAUT 2 Model on the Intention to Use a Fully Electric Car. Sustainability, 17(7), 3214. https://doi.org/10.3390/su17073214