Towards Digitalization for Air Pollution Detection: Forecasting Information System of the Environmental Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Processing Stages for Air Pollution Detection Digitalization
2.2. Method of Exceeding Maximum Permissible Concentrations Analysis
- MPCs are set for each pollutant in accordance with current regulations. Let be the MPC value for pollutant. The input measurement data are presented in the form of a tabular array:
- 2.
- Counting the number of exceeding concentration cases of permissible substances.
- 3.
- Calculation of sequences of exceedances of the polluting substances MPC.
- Initialize the counters , .
- Iterate over all values , checking:
- 3.
- If reaches the given threshold , increase and reset .
- 4.
- Results visualization.
- 5.
- Data aggregation.
2.3. Methods for Forecasting Changes in Concentrations of Air Pollutants
2.4. Method of Data Correlation Analysis
- Building a correlation matrix.
- 2.
- Selecting the most significant correlations.
- 3.
- Visualization of dependencies. For each of the defined pairs of variables, graphs are built to evaluate their relationship. For a better interpretation of the data, the correlations are visualized as heat maps. The results of correlation analysis can be used to predict the behavior of one variable based on another, identify relationships between environmental parameters, such as pollutant concentrations, and optimize data collection methods, for example, by reducing the number of measurements for highly correlated variables.
2.5. Mathematical Model of the Spatial Distribution of Air Pollution
2.6. Description of the Retrospective Municipal Monitoring Data of the Kremenchuk Agglomeration Used in the Information System
3. Results
3.1. Modeling of the Environmental Monitoring Forecasting Information System
3.2. Air Pollution Data Analysis Using an Information System
3.3. Analysis of Air Pollution MPC Exceedance Data
3.4. Spatial Forecasting of Air Pollutant Concentration Values Using the Interpolation Method
3.5. Forecasting Time Series of Air Pollutant Concentrations and Creating Spatial Interpolation
- -
- If the formaldehyde concentrations at Post No. 1 are relatively constant and without a clear trend or strong seasonality in the period leading up to 2024, the forecasting model would likely project this stability into the future.
- -
- The specific parameters chosen for the ARIMA or BATS model for Post No. 1 might have led to a forecast that emphasizes the recent average level over any potential trend or seasonal components. For instance, if the autoregressive and moving average components are not significant, and the trend and seasonality parameters are estimated to be close to zero, the forecast would converge to a constant value.
- -
- While less likely, it is possible that the data for Post No. 1 in the recent period are less variable or have missing values that could influence the model’s ability to detect trends and seasonality.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Directive (EU) 2024/2881 of the European Parliament and of the Council of 11 April 2024 on Ambient Air Quality and Cleaner Air for Europe (Recast). EUR-Lex, 2025. Available online: https://eur-lex.europa.eu/eli/dir/2024/2881/oj (accessed on 19 March 2025).
- Infinity Laboratories. Top 10 Reasons Environmental Monitoring Programs Go Wrong. Infinity Laboratories, 2024. Available online: https://infinitylaboratories.com/top-10-reasons-environmental-monitoring-programs-go-wrong/ (accessed on 19 March 2025).
- Premier Science. Predicting Tomorrow: A Review of Machine Learning’s Role in Shaping Environmental Forecasts. premierscience.com, 2024. Available online: https://premierscience.com/wp-content/uploads/2024/10/pjs-24-261-3.pdf (accessed on 19 April 2025).
- Saiwa. AI in Environmental Monitoring|Keeping Our Planet Healthy. saiwa.ai, 2025. Available online: https://saiwa.ai/sairone/blog/ai-in-environmental-monitoring/ (accessed on 19 March 2025).
- Dai, Z.; Ravichandran, P.; Fazelnia, G.; Carterette, B.; Lalmas-Roelleke, M. Model Selection for Production System via Automated Online Experiments. Adv. Neural Inf. Process. Syst. 2020, 33, 1–12. [Google Scholar] [CrossRef]
- Khurana, U.; Samulowitz, H. Autonomous Predictive Modeling via Reinforcement Learning. In Proceedings of the CIKM ‘20: The 29th ACM International Conference on Information and Knowledge Management, Online, 19–23 October 2020. [Google Scholar]
- Laredo, D.; Qin, Y.; Schütze, O.; Sun, J.-Q. Automatic Model Selection for Neural Networks. arXiv 2019, arXiv:1905.06010. [Google Scholar] [CrossRef]
- Clark, J.S.; Carpenter, S.R.; Barber, M.; Collins, S.; Dobson, A.; Foley, J.A.; Lodge, D.M.; Pascual, M.; Pielke, R.; Pizer, W.; et al. Ecological Forecasts: An Emerging Imperative. Science 2001, 293, 657–660. [Google Scholar] [CrossRef]
- Grimm, V.; Railsback, S.F. Individual-Based Modeling and Ecology; Series: Princeton Series in Theoretical and Computational Biology; Princeton University Press: Princeton, NJ, USA, 2005; ISBN 978-069-109-666-7. [Google Scholar]
- Urban, D.L.; Keitt, T.H. Landscape connectivity: A graph-theoretic perspective. Ecology 2001, 82, 1205–1218. [Google Scholar] [CrossRef]
- Cosme, M.; Thomas, C.; Gaucherel, C. On the History of Ecosystem Dynamical Modeling: The Rise and Promises of Qualitative Models. Entropy 2023, 25, 1526. [Google Scholar] [CrossRef]
- Bayatvarkeshi, M.; Zhang, B.; Fasihi, R.; Adnan, R.M.; Kisi, O.; Yuan, X. Investigation into the Effects of Climate Change on Reference Evapotranspiration Using the HadCM3 and LARS-WG. Water 2020, 12, 666. [Google Scholar] [CrossRef]
- Provenzale, A. Climate models. Rend. Lincei 2013, 25, 49–58. [Google Scholar] [CrossRef]
- Jia, K.; Ruan, Y.; Yang, Y.; Zhang, C. Assessing the Performance of CMIP5 Global Climate Models for Simulating Future Precipitation Change in the Tibetan Plateau. Water 2019, 11, 1771. [Google Scholar] [CrossRef]
- Zhao, T.B.; Dai, A.G. CMIP6 Model−Projected Hydroclimatic and Drought Changes and Their Causes in the Twenty−First Century. J. Clim. 2022, 35, 897–921. [Google Scholar] [CrossRef]
- Johns, T.C.; Gregory, J.M.; Ingram, W.J.; Johnson, C.E.; Jones, A.; Lowe, J.A.; Mitchell, J.F.B.; Roberts, D.L.; Sexton, D.M.H.; Stevenson, D.S.; et al. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim. Dyn. 2003, 20, 583–612. [Google Scholar] [CrossRef]
- Turner, J.; Connolley, W.M.; Lachlan-Cope, T.A.; Marshall, G.J. The performance of the Hadley Centre Climate Model (HadCM3) in high southern latitudes. Int. J. Climatol. 2006, 26, 91–112. [Google Scholar] [CrossRef]
- Rajar, R.; Četina, M. Hydrodynamic models as a basis for water quality modelling: A review. Trans. Ecol. Environ. 1995, 7, 199–211. [Google Scholar]
- Iglesias, I.; Bio, A.; Melo, W.; Avilez-Valente, P.; Pinho, J.; Cruz, M.; Gomes, A.; Vieira, J.; Bastos, L.; Veloso-Gomes, F. Hydrodynamic Model Ensembles for Climate Change Projections in Estuarine Regions. Water 2022, 14, 1966. [Google Scholar] [CrossRef]
- Nandalal, K.D.W. Use of a hydrodynamic model to forecast floods of Kalu River in Sri Lanka. J. Flood Risk Manag. 2009, 2, 151–158. [Google Scholar] [CrossRef]
- Idzelytė, R.; Čerkasova, N.; Mėžinė, J.; Dabulevičienė, T.; Razinkovas-Baziukas, A.; Ertürk, A.S.; Umgiesser, G. Coupled hydrological and hydrodynamic modelling application for climate change impact assessment in the Nemunas river watershed–Curonian Lagoon–southeastern Baltic Sea continuum. Ocean Sci. 2023, 19, 1047–1066. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. Am. J. Water Resour. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- MIKE 21 Flow Model: Hydrodynamic and Transport Module—Scientific Documentation. Available online: https://www.dhigroup.com/upload/dhisoftwarearchive/shortdescriptions/marine/HydrodynamicModuleHD.pdf (accessed on 15 March 2025).
- Seidenfaden, I.; Sonnenborg, T.; Refsgaard, J.; Trolle, D.; Børgesen, C.; Olesen, J.; Jeppesen, E.; Jensen, K. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. J. Hydrol. 2016, 535, 301–317. [Google Scholar] [CrossRef]
- Finizio, M.; Pontieri, F.; Bottaro, C.; Di Febbraro, M.; Innangi, M.; Sona, G.; Carranza, M.L. Remote Sensing for Urban Biodiversity: A Review and Meta-Analysis. Remote Sens. 2024, 16, 4483. [Google Scholar] [CrossRef]
- Rocchini, D.; Féret, J.-B.; Papuga, G. Coupling in situ and remote sensing data to assess α- and β-diversity over biogeographic gradients. arXiv 2024, arXiv:2404.18485. [Google Scholar] [CrossRef]
- González, A. GIS in Environmental Assessment: A Review of Current Issues and Future Needs. J. Environ. Assess. Policy Manag. 2012, 14, 250007. [Google Scholar] [CrossRef]
- Roudgarmi, P.; Monavari, S.; Feghhi, J.; Nouri, J.; Khorasani, N. Environmental impact prediction using remote sensing images. J. Zhejiang Univ. 2008, 9, 381–390. [Google Scholar] [CrossRef]
- Hernandez-Martinez, A.R. Remote sensing for environmental analysis: Basic concepts and setup. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Inamuddin, R.B., Abdullah, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 209–224. [Google Scholar] [CrossRef]
- Madhavi, M.; Kolikipogu, R.; Prabakar, S. Experimental Evaluation of Remote Sensing–Based Climate Change Prediction Using Enhanced Deep Learning Strategy. Remote Sens. Earth Syst. Sci. 2024, 7, 642–656. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, H.; Zhang, Y.; Weng, Q. Remote Sensing of Impervious Surfaces in Tropical and Subtropical Areas; CRC Press: Boca Raton, FL, USA, 2015; ISBN 978-042-915-933-6. [Google Scholar]
- Weng, Q.; Fu, P.; Gao, F. Generating daily land surface temperature at Landsat resolution by fusing Landsat and MODIS data. Remote Sens. Environ. 2014, 145, 55–67. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Combining top-down and bottom-up dynamics in land use modeling: Exploring the future of abandoned farmlands in Europe with the Dyna-CLUE model. Landsc. Ecol. 2009, 24, 1167–1181. [Google Scholar] [CrossRef]
- Calka, B.; Szostak, M. GIS-Based Environmental Monitoring and Analysis. Appl. Sci. 2025, 15, 3155. [Google Scholar] [CrossRef]
- Linh, N.H.K.; Pham, T.G.; Pham, T.H.; Tran, C.T.M.; Nguyen, T.Q.; Ha, N.T.; Ngoc, N.B. Land-Use and Land-Cover Changes and Urban Expansion in Central Vietnam: A Case Study in Hue City. Urban Sci. 2024, 8, 242. [Google Scholar] [CrossRef]
- Ennouri, K.; Smaoui, S.; Triki, M.A. Detection of Urban and Environmental Changes via Remote Sensing. Circ. Econ. Sustain. 2021, 1, 1423–1437. [Google Scholar] [CrossRef]
- Dutta, J.; Medhi, S.; Gogoi, M.; Borgohain, L.; Maboud, N.; Muhameed, H. Application of Remote Sensing and GIS in Environmental Monitoring and Management. In Remote Sensing and GIS Techniques in Hydrology, 1-34; Batchi, M., Moumane, A., Eds.; IGI Global Scientific Publishing: Hershey, PA, USA, 2025. [Google Scholar] [CrossRef]
- SAS Institute. Predictive Modelling, Analytics and Machine Learning. Available online: https://www.sas.com/en_gb/insights/articles/analytics/a-guide-to-predictive-analytics-and-machine-learning.html (accessed on 15 March 2025).
- Forbytes. Top 6 Machine Learning Techniques for Predictive Modeling and Data Analysis Explained. Available online: https://forbytes.com/blog/main-machine-learning-techniques/ (accessed on 15 March 2025).
- Stefanini. Machine Learning Models for Precise Predictive Analytics. Available online: https://stefanini.com/en/insights/news/machine-learning-models-for-precise-predictive-analytics (accessed on 15 March 2025).
- Marinov, E.; Petrova-Antonova, D.; Malinov, S. Time Series Forecasting of Air Quality: A Case Study of Sofia City. Atmosphere 2022, 13, 788. [Google Scholar] [CrossRef]
- Gocheva-Ilieva, S.; Ivanov, A.; Voynikova, D.; Boyadzhiev, D. Time series analysis and forecasting for air pollution in small urban area: An SARIMA and factor analysis approach. Stoch. Environ. Res. Risk Assess. 2014, 28, 1045–1060. [Google Scholar] [CrossRef]
- Liu, H.; Yan, G.; Duan, Z.; Chen, C. Intelligent modeling strategies for forecasting air quality time series: A review. Appl. Soft Comput. 2021, 102, 1045–1060. [Google Scholar] [CrossRef]
- Kaur, J.; Parmar, K.S.; Singh, S. Autoregressive models in environmental forecasting time series: A theoretical and application review. Environ. Sci. Pollut. Res. 2023, 30, 19617–19641. [Google Scholar] [CrossRef] [PubMed]
- Ray, M.; Sahoo, K.; Abotaleb, M.; Ray, S.; Sahu, P.; Mishra, P.; Al Khatib, A.; Khatib, A.; Das, S.S.; Vikas, J.; et al. Modeling and forecasting meteorological factors using BATS and TBATS models for the Keonjhar district of Orissa. Mausam 2022, 73, 555–564. [Google Scholar] [CrossRef]
- Vira, S.; Yuliia, P.; Sergii, T.; Yevhen, K.; Yaroslava, B. Modeling techniques of electricity consumption forecasting. AIP Conf. Proc. 2022, 2570, 030004. [Google Scholar] [CrossRef]
- Zavalieiev, A.; Vadurin, K.; Perekrest, A.; Bakharev, V. Information and analytical system for collecting, processing and analyzing data on air pollution. Autom. Technol. Bus. Process. 2024, 16, 72–82. [Google Scholar] [CrossRef]
- Vadurin, K.; Perekrest, A.; Bakharev, V.; Deriyenko, A.; Ivashchenko, A.; Shkarupa, S. An information system for collecting and storing air quality data from municipal level Vaisala stations. Infocommun. Comput. Technol. 2023, 2, 38–49. [Google Scholar] [CrossRef]
- Vadurin, K.; Perekrest, A.; Bakharev, V. Development of a method of automatic reporting on the number of exceedances of the established standards of atmospheric air markers. Infocommun. Comput. Technol. 2023, 2, 50–59. [Google Scholar] [CrossRef]
- Perekrest, A.; Mamchur, D.; Zavaleev, A.; Vadurin, K.; Malolitko, V.; Bakharev, V. Web-based technology of intellectual analysis of environmental data of an industrial enterprise. In Proceedings of the 2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES), Kremenchuk, Ukraine, 27–30 September 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Moussa, H.; Abboud, M. The Methodology of Applying Inverse Distance Weighting Interpolation Method in Determining Normal Heights. Resourceedings 2024, 4, 1–6. [Google Scholar] [CrossRef]
- Chao, C.; Min, B.-W. Correlation Analysis of Atmospheric Pollutants and Meteorological Factors Based on Environmental Big Data. Int. J. Contents 2022, 18, 17–26. [Google Scholar] [CrossRef]
- Chen, F.-W.; Liu, C.-W. Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy Water Environ. 2012, 3, 209–222. [Google Scholar] [CrossRef]
- Chodakowska, E.; Nazarko, J.; Nazarko, Ł. ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise. Energies 2021, 14, 7952. [Google Scholar] [CrossRef]
- Daugėla, I.; Sužiedelytė-Visockienė, J.; Skeivalas, J. Analysis of Air Pollution Parameters Using Covariance Function Theory. Ecol. Chem. Eng. 2020, 27, 555–565. [Google Scholar] [CrossRef]
- Choi, K.; Chong, K. Modified Inverse Distance Weighting Interpolation for Particulate Matter Estimation and Mapping. Atmosphere 2022, 13, 846. [Google Scholar] [CrossRef]
- de Mesnard, L. Pollution models and inverse distance weighting: Some critical remarks. Comput. Geosci. 2013, 52, 459–469. [Google Scholar] [CrossRef]
- Liu, Y.; Wen, L.; Lin, Z. Air quality historical correlation model based on time series. Sci. Rep. 2024, 14, 22791. [Google Scholar] [CrossRef]
- Shendryk, V.; Parfenenko, Y.; Nenja, V.; Vashchenko, S. Information System for Monitoring and Forecast of Building Heat Consumption. Commun. Comput. Inf. Sci. 2014, 465, 1–11. [Google Scholar] [CrossRef]
Library/Tool | Version | Purpose/Functionality |
---|---|---|
Pandas | 2.2.2 | Working with data tables: filtering, transformation, aggregation, and handling time series data (dates). |
NumPy | 1.26.4 | Performing fast mathematical calculations on data arrays, speeding up data preparation for analysis. |
Matplotlib | 3.9.2 | Basic data visualization for analyzing changes in pollutant concentrations through graphs. |
Seaborn | 0.13.2 | Advanced data visualization, simplifying the construction of complex statistical graphs for comparing data between different cities and time periods to identify trends and anomalies. |
Scikit-learn | 1.5.2 | Providing a wide range of machine learning tools, including model estimation methods (e.g., mean square error) for forecasting environmental parameters. |
Sktime | 0.35.0 | Specializing in time series analysis, allowing for predicting future changes in pollutant concentrations and enabling automatic selection of the best forecasting model. |
Geopandas | 1.0.1 | Processing geospatial data, including the coordinates of monitoring posts, building geometric shapes, and calculating distances between points. |
Shapely | 2.0.6 | Working with geometric shapes for geospatial analysis. |
Startinpy | 0.11.0 | Providing triangulation and spatial interpolation capabilities, used in conjunction with Geopandas and Shapely to create interactive pollution maps. |
Statsmodels | 0.14.4 | Building statistical models, such as ARIMA, suitable for forecasting changes in environmental indicators with high accuracy and ease of integration. |
IPython | 8.26.0 | Providing an interactive computing environment, particularly within Jupyter Notebooks. |
ipywidgets | 8.1.3 | Enabling the creation of dynamic interface elements (e.g., sliders) in Jupyter Notebooks for user interaction with data, such as selecting parameters or date ranges. |
Parameter | MSEBATS | MSEARIMA |
---|---|---|
Dust, | 2.418199 × 10−2 | 3.543434 × 10−2 |
Sulfur dioxide | 1.568705 × 10−3 | 1.229420 × 10−3 |
Carbon monoxide | 6.157435 × 10−3 | 1.255275 × 10−2 |
Nitrogen dioxide | 6.762210 × 10−3 | 1.347585 × 10−2 |
Nitric oxide | 1.111873 × 10−2 | 1.108849 × 10−2 |
Formaldehyde | 1.474393 | 7.798375 |
Ammonia | 1.600029 × 10−3 | 1.691275 × 10−3 |
Phenol | 1.357639 × 10−2 | 7.497768 × 10−3 |
Soot | 6.854720 × 10−4 | 4.431859 × 10−4 |
Benzene | 6.208337 × 10−4 | 2.733791 × 10−5 |
Toluene | 2.995573 × 10−44 | 6.584821 × 10−32 |
Ethylbenzene | 3.084536 × 10−17 | 1.338575 × 10−21 |
Sum of m,p-xylenes and o-xylene | 1.190219 × 10−14 | 9.798120 × 10−15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vadurin, K.; Perekrest, A.; Bakharev, V.; Shendryk, V.; Parfenenko, Y.; Shendryk, S. Towards Digitalization for Air Pollution Detection: Forecasting Information System of the Environmental Monitoring. Sustainability 2025, 17, 3760. https://doi.org/10.3390/su17093760
Vadurin K, Perekrest A, Bakharev V, Shendryk V, Parfenenko Y, Shendryk S. Towards Digitalization for Air Pollution Detection: Forecasting Information System of the Environmental Monitoring. Sustainability. 2025; 17(9):3760. https://doi.org/10.3390/su17093760
Chicago/Turabian StyleVadurin, Kyrylo, Andrii Perekrest, Volodymyr Bakharev, Vira Shendryk, Yuliia Parfenenko, and Sergii Shendryk. 2025. "Towards Digitalization for Air Pollution Detection: Forecasting Information System of the Environmental Monitoring" Sustainability 17, no. 9: 3760. https://doi.org/10.3390/su17093760
APA StyleVadurin, K., Perekrest, A., Bakharev, V., Shendryk, V., Parfenenko, Y., & Shendryk, S. (2025). Towards Digitalization for Air Pollution Detection: Forecasting Information System of the Environmental Monitoring. Sustainability, 17(9), 3760. https://doi.org/10.3390/su17093760