Reducing Carbon Emissions from Transport Sector: Experience and Policy Design Considerations
Abstract
:1. Introduction
2. Literature Review
3. Global Transport Emissions and Energy Consumption
4. Demand- and Supply-Side Policies
4.1. Demand-Side Policies
4.2. Supply-Side Policies
4.3. Integrative Approaches
5. Methodology
5.1. DOLS and FMOLS Estimators
5.2. Testing for the Stationarity
6. Results and Discussion
7. Conclusions and Suggestions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2 | Carbon dioxide emissions |
GHG | Greenhouse gas emissions |
GDP | Gross domestic product |
Btu | British Thermal Unit |
Mtoe | Million tonnes of oil equivalent |
EU | European Union |
OECD | The Organization for Economic Co-operation and Development |
FITs | Feed-in tariffs |
CGE | Computable General Equilibrium |
PJ | Petajoules |
TGC | Tradable Green Certificates |
ETS | Emissions Trading Scheme |
FMOLS | Fully Modified Ordinary Least Squares |
DOLS | Dynamic Ordinary Least Squares |
MMQR | Method of Moments Quantile Regression |
CCR | Canonical Cointegration Regression |
OLS | Ordinary Least Squares |
FP | Transport fuel price |
pGDP | Per capital GDP |
URBP | Urban population |
PPP | Purchasing Power Parity |
KPSS | Kwiatkowski–Phillips–Schmidt–Shin |
ADF | Augmented Dickey–Fuller |
DF-GLS | Dickey–Fuller Generalized Least Squares |
PP | Phillips–Perron |
Appendix A
Base Model (World) | Model 3 (World) | Base Model (NZ) | Model 3 (NZ) | |||||
---|---|---|---|---|---|---|---|---|
OLS | CCR | OLS | CCR | OLS | CCR | OLS | CCR | |
Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | |
C | 7.311 b [0.929] | 8.051 b [1.198] | 5.722 b [0.584] | 4.756 [0.846] | 4.454 [3.008] | 4.454 [3.687] | −11.864 b [4.956] | −11.864 c [5.482] |
PGDP | 0.267 d [0.157] | 0.208 [0.180] | 0.318 b [0.087] | 0.429 b [0.091] | 0.679 d [0.381] | 0.679 [0.467] | 0.418 [0.265] | 0.418 [0.293] |
ENINT | 0.374 b [0.069] | 0.509 b [0.167] | 0.286 b [0.045] | 0.114 [0.128] | 0.692 b [0.202] | 0.692 b [0.248] | 0.391 c [0.173] | 0.391 c [0.191] |
URBP | 0.393 b [0.093] | 0.314 c [0.121] | 0.491 b [0.052] | 0.578 b [0.078] | −0.756 c [0.355] | −0.756 d [0.435] | 0.581 [0.446] | 0.581 [0.493] |
FP | −0.003 [0.009] | −0.005 [0.009] | - | - | −0.067 [0.087] | −0.067 [0.107] | - | - |
DUMR | - | - | −0.022 b [0.003] | −0.027 b [0.004] | - | - | −0.021 b [0.006] | −0.021 b [0.007] |
FP × DUMP | - | - | −0.010 c [0.004] | −0.012 b [0.003] | - | - | −0.104 b [0.037] | −0.104 c [0.041] |
References
- Li, L.; Tan, Z.; Wang, J.; Xu, J.; Cai, C.; Hou, Y. Energy conservation and emission reduction policies for the electric power industry in China. Energy Policy 2011, 39, 3669–3679. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). Statistics: GHG Emissions from Fuel Combustion: Highlights, 2024th ed.; International Energy Agency: Paris, France, 2024. [Google Scholar]
- Li, A.; Dan, P.; Daoping, W.; Xin, Y. Comparing regional effects of climate policies promoting non-fossil fuels in China. Energy. 2017, 141, 1998–2012. [Google Scholar] [CrossRef]
- Solaymani, S.; Yusma, N.; Yavari, A. The Role of Government Climate Policy in an Oil Price Shock: A CGE Simulation. In Proceedings of the 2015 International Conference on Modeling, Simulation and Applied Mathematics, Phuket, Thailand, 23–24 August 2015; Atlantis Press: Cambridge, MA, USA, 2015; pp. 1951–6851. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). World Energy Balance: Highlights; OECD/IEA: Paris, France, 2024. [Google Scholar]
- EU Commission. European Climate Law; EU Commission: Brussels, Belgium, 2021; Available online: https://climate.ec.europa.eu/eu-action/european-climate-law_en (accessed on 14 February 2025).
- EU Commission. Biofuels; EU Commission: Brussels, Belgium, 2023. [Google Scholar]
- Ng, E.; Re, C. China’s adaptation to climate & urban climatic changes: A critical review. Urban Clim. 2017, 23, 352–372. [Google Scholar] [CrossRef] [PubMed]
- Bye, B.; Taran, F.; Orvika, R. Residential energy efficiency policies: Costs, emissions and rebound effects. Energy 2017, 143, 191–201. [Google Scholar] [CrossRef]
- Solaymani, S. Impacts of energy subsidy reform on poverty and income inequality in Malaysia. Qual. Quant. 2016, 50, 2707–2723. [Google Scholar] [CrossRef]
- Solaymani, S. Energy security and its determinants in New Zealand. Environ. Sci. Pollut. Res. 2024, 31, 51521–51539. [Google Scholar] [CrossRef]
- Tongsopit, S.; Noah, K.; Youngho, C.; Apinya, A.; Weerin, W. Energy security in ASEAN: A quantitative approach for sustainable energy policy. Energy Policy 2016, 90, 60–72. [Google Scholar] [CrossRef]
- Dornan, M.; Shah, K. Energy policy, aid, and the development of renewable energy resources in Small Island Developing States. Energy Policy 2016, 98, 759–767. [Google Scholar] [CrossRef]
- Ministry of Business, Innovation and Employment (MBIE). Energy Balances; MBIE: Wellington, New Zealand, 2024.
- Zhi, Q.; Sun, H.; Li, Y.; Xu, Y.; Su, J. China’s solar photovoltaic policy: An analysis based on policy instruments. Appl. Energy 2014, 129, 308–319. [Google Scholar] [CrossRef]
- Zheng, C.Y.; Wu, J.Y.; Zhai, X.Q.; Wang, R.Z. Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones. Appl. Energy 2016, 175, 168–179. [Google Scholar] [CrossRef]
- Meng, J.; Xu, W. Quantitative Evaluation of Carbon Reduction Policy Based on the Background of Global Climate Change. Sustainability 2022, 15, 14581. [Google Scholar] [CrossRef]
- Inman, M.; Mastrandrea, M.D.; Cullenward, D. An open-source model of the Western Climate Initiative cap-and-trade programme with supply-demand scenarios to 2030. Clim. Policy 2020, 20, 626–640. [Google Scholar] [CrossRef]
- Wang, S.; Liang, W.; Tieshan, L.; Biao, L.; Chengyuan, W. Exploring the effect of cap-and-trade mechanism on firm’s production planning and emission reduction strategy. J. Clean. Prod. 2018, 172, 591–601. [Google Scholar] [CrossRef]
- Arnette, A.N. Renewable energy and carbon capture and sequestration for a reduced carbon energy plan: An optimization model. Renew. Sustain. Energy Rev. 2017, 70, 254–265. [Google Scholar] [CrossRef]
- Al-Noaimi, F.; Al-Ansari, T.; Bicer, Y. Decarbonization pathways for Qatar: A sectoral approach for energy transition. Energy Rep. 2025, 13, 1178–1199. [Google Scholar] [CrossRef]
- Mousavi, B.; Neil Stephen, A.L.; Jose, B.; Manuel, B.; Anthony, S.F.C.; Markus, B. Driving forces of Iran’s CO2 emissions from energy consumption: An LMDI decomposition approach. Appl. Energy 2017, 206, 804–814. [Google Scholar] [CrossRef]
- Tiwari, H.; Ghosh, A.; Banerjee, S.; Mazumdar, D.; Sain, C.; Ahmad, F.; Ustun, T.S. Design of a triple port integrated topology for grid-integrated EV charging stations for three-way power flow. Front. Energy Res. 2024, 12, 1440258. [Google Scholar] [CrossRef]
- Hafis, M.; Balaji, K.; Tamilarasan, N.; Senthilkumar, D.; Sakthivel, R. A review on alternative fuels: Spray characteristics, engine performance and emissions effect. Sustain. Futures 2025, 9, 100456. [Google Scholar] [CrossRef]
- Ganhammar, K. The effect of regulatory uncertainty in green certificate markets: Evidence from the Swedish-Norwegian market. Energy Policy 2021, 158, 112583. [Google Scholar] [CrossRef]
- Nie, P.-y.; Chen, Y.-h.; Yang, Y.-c.; Henry, X.W. Subsidies in carbon finance for promoting renewable energy development. J. Clean. Prod. 2016, 139, 677–684. [Google Scholar] [CrossRef]
- Bernini, C.; Galli, F. Economic and Environmental Efficiency, Subsidies and Spatio-Temporal Effects in Agriculture. Ecol. Econ. 2024, 218, 108120. [Google Scholar] [CrossRef]
- Lin, B.; Zhang, A. Government subsidies, market competition and the TFP of new energy enterprises. Renew. Energy 2023, 216, 119090. [Google Scholar] [CrossRef]
- Yamamoto, Y. Feed-in tariffs combined with capital subsidies for promoting the adoption of residential photovoltaic systems. Energy Policy 2017, 111, 312–320. [Google Scholar] [CrossRef]
- Jeon, W.; Mo, J.Y. The true economic value of supply-side energy storage in the smart grid environment—The case of Korea. Energy Policy 2018, 121, 101–111. [Google Scholar] [CrossRef]
- Lin, B.; Xie, Y. How feed-in-tariff subsidies affect renewable energy investments in China? New evidence from firm-level data. Energy 2024, 294, 130853. [Google Scholar] [CrossRef]
- Huang, R.; Wang, P.; Zhang, S. Power System Planning for Mega-Cities Under Carbon Neutrality Targets: A Case Study of Beijing Municipality. SSRN Working Paper. 2025. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5077718 (accessed on 20 April 2025).
- Hu, W.; Zhang, X.; Lou, J. Coupling environmental policy with supply-side or demand-side interventions: Impacts on green innovation, environmental, and economic performance. SSRN Working Paper. 2024. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Qian, X.; Sai, C.; Nie, R. Macroeconomic effect of energy transition to carbon neutrality: Evidence from China’s coal capacity cut policy. Energy Policy 2021, 155, 112374. [Google Scholar] [CrossRef]
- Yao, X.; Wang, H.; Shao, S.; Li, X.; Guo, Z. “Booster” or “obstacle”: Can coal capacity cut policies moderate the resource curse effect? Evidence from Shanxi (China). Resour. Policy 2022, 75, 102437. [Google Scholar] [CrossRef]
- U.S. Department of Energy. Transportation System Efficiency. U.S. Department of Energy. Alternative Fuels Data Center: Transportation System Efficiency. Available online: https://afdc.energy.gov/conserve/system-efficiency (accessed on 13 April 2025).
- U.S. Energy Information Administration. Energy Data and Review; U.S. Energy Information Administration (EIA): Washington, DC, USA, 2025.
- Eurostat. Database: Environment and Energy, Final Energy Consumption by Sector; European Commission: Brussels, Belgium; Eurostat: Luxembourg, 2023. [Google Scholar]
- Lebrouhi, B.E.; Schall, E.; Lamrani, B.; Chaibi, Y.; Kousksou, T. Energy Transition in France. Sustainability 2021, 14, 5818. [Google Scholar] [CrossRef]
- Chai, J.; Quan-Ying, L.; Shou-Yang, W.; Kin, K.L. Analysis of road transportation energy consumption demand in China. Transp. Res. Part D Transp. Environ. 2016, 48, 112–124. [Google Scholar] [CrossRef]
- Wang, Y.F.; Li, K.P.; Xu, X.M.; Zhang, Y.R. Transport energy consumption and saving in China. Renew. Sustain. Energy Rev. 2014, 29, 641–655. [Google Scholar] [CrossRef]
- Wang, W.W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Gambhir, A.; Lawrence, K.C.T.; Danlu, T.; Ricardo, M.-B. Reducing China’s road transport sector CO2 emissions to 2050: Technologies, costs and decomposition analysis. Appl. Energy 2015, 157, 905–917. [Google Scholar] [CrossRef]
- Kharbach, M.; Chfadi, T. CO2 emissions in Moroccan road transport sector: Divisia, Cointegration, and EKC analyses. Sustain. Cities Soc. 2017, 35, 396–401. [Google Scholar] [CrossRef]
- Song, H.; Xunmin, O.; Jiehui, Y.; Mingxu, Y.; Cheng, W. Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis. Energy 2017, 140, 966–978. [Google Scholar] [CrossRef]
- Kelly, J.; Wolfgang, H.P.; Williams, W. A Behavioral Assessment of Tourism Transportation Options for Reducing Energy Consumption and Greenhouse Gases. J. Travel Res. 2007, 45, 297–309. [Google Scholar] [CrossRef]
- Hao, H.; Yong, G.; Weiqi, L.; Bin, G. Energy consumption and GHG emissions from China’s freight transport sector: Scenarios through 2050. Energy Policy 2015, 85, 94–101. [Google Scholar] [CrossRef]
- Wang, H.; Xunmin, O.; Xiliang, Z. Mode, technology, energy consumption, and resulting CO2 emissions in China’s transport sector up to 2050. Energy Policy 2017, 109, 719–733. [Google Scholar] [CrossRef]
- Mraïhi, R.; Harizi, R. Road Freight Transport and Carbon Dioxide Emissions: Policy Options for Tunisia. Energy Environ. 2014, 25, 79–92. [Google Scholar] [CrossRef]
- Ramanathan, R. Indian Transport Sector: Energy and Environmental Implications. Energy Sources 1996, 18, 791–805. [Google Scholar] [CrossRef]
- Mazzai, A. Electrifying Road Transports in Italy; Foresight: London, UK, 2024. [Google Scholar]
- Ministry of Environment: Chapter 10: Transport. In Aotearoa New Zealand’s First Emissions Reduction Plan; Ministry of Environment: Wellington, New Zealand, 2022. Available online: http://environment.govt.nz (accessed on 10 October 2023).
- NZ Legislation. Energy Efficiency and Conservation Act 2000. Wellington, New Zealand. Energy Efficiency and Conservation Act 2000 No 14 (as at 23 December 2023), Public Act Contents–New Zealand Legislation. 2000. Available online: https://www.legislation.govt.nz/act/public/2000/0014/latest/dlm54948.html (accessed on 1 April 2025).
- Energy Efficiency and Conservation Authority (EECA): Regulations: Product and Vehicle Fuel Economy Regulations in New Zealand. Regulations|EECA; 2022. Available online: https://www.eeca.govt.nz/regulations/ (accessed on 9 October 2023).
- Song, S.; Mi, D.; Chen-Chieh, F. Individual transport emissions and the built environment: A structural equation modelling approach. Transp. Res. Part A 2016, 92, 206–219. [Google Scholar] [CrossRef]
- Liu, X.; Ma, S.; Tian, J.; Jia, N.; Li, G. A system dynamics approach to scenario analysis for urban passenger transport energy consumption and CO2 emissions: A case study of Beijing. Energy Policy 2015, 85, 253–270. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, P.J. Energy consumption and emissions from the road transport in Spain: A conceptual approach. Transport 2012, 27, 383–396. [Google Scholar] [CrossRef]
- Jaworski, A.; Mądziel, M.; Lew, K.; Campisi, T.; Woś, P.; Kuszewski, H.; Wojewoda, P.; Ustrzycki, A.; Balawender, K.; Jakubowski, M. Evaluation of the effect of chassis dynamometer load setting on CO2 emissions and energy demand of a full hybrid vehicle. Energies 2021, 15, 122. [Google Scholar] [CrossRef]
- Mądziel, M.; Jaworski, A.; Kuszewski, H.; Woś, P.; Campisi, T.; Lew, K. The development of CO2 instantaneous emission model of full hybrid vehicle with the use of machine learning techniques. Energies 2021, 15, 142. [Google Scholar] [CrossRef]
- Kwilinski, A.; Lyulyov, O.; Pimonenko, T. Reducing transport sector CO2 emissions patterns: Environmental technologies and renewable energy. J. Open Innov. Technol. Mark. Complex. 2024, 10, 100217. [Google Scholar] [CrossRef]
- REN21. Renewables 2017 Global Status Report; REN21 Secretariat: Paris, Franace, 2017. [Google Scholar]
- Zhang, H.; Wenying, C.; Weilong, H. TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective. Appl. Energy 2016, 162, 1505–1514. [Google Scholar] [CrossRef]
- Farrell, N. What Factors Drive Inequalities in Carbon Tax Incidence? Decomposing Socioeconomic Inequalities in Carbon Tax Incidence in Ireland. Ecol. Econ. 2017, 142, 31–45. [Google Scholar] [CrossRef]
- Dong, H.; Hancheng, D.; Yong, G.; Tsuyoshi, F.; Zhe, L.; Yang, X.; Rui, W.; Minoru, F.; Toshihiko, M.; Liang, T. Exploring impact of carbon tax on China’s CO2 reductions and provincial Disparities. Renew. Sustain. Energy Rev. 2017, 77, 596–603. [Google Scholar] [CrossRef]
- Heinrichs, H.; Patrick, J.; Wolf, F. Including road transport in the EU ETS (European Emissions Trading System): A model-based analysis of the German electricity and transport sector. Energy 2014, 69, 708–720. [Google Scholar] [CrossRef]
- Pongthanaisawan, J.; Sorapipatana, C. Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options. Appl. Energy 2013, 101, 288–298. [Google Scholar] [CrossRef]
- Timilsina, G.R.; Shrestha, A. Factors affecting transport sector CO2 emissions growth in Latin American and Caribbean countries: An LMDI decomposition analysis. Int. J. Energy Res. 2009, 33, 396–414. [Google Scholar] [CrossRef]
- Kyriakarakos, G. Artificial Intelligence and the Energy Transition. Sustainability 2024, 17, 1140. [Google Scholar] [CrossRef]
- Qiu, Z.; Yong, Q.; Wang, J.; Liao, L.; Yu, B. A multi-objective optimization framework for performance-based building design considering the interplay between buildings and urban environments. Energy Convers. Manag. 2024, 315, 118793. [Google Scholar] [CrossRef]
- Darmani, A.; Annika, R.; Antonio, H.; Niklas, A. When outcomes are the reflection of the analysis criteria: A review of the tradable green certificate assessments. Renew. Sustain. Energy Rev. 2016, 62, 372–381. [Google Scholar] [CrossRef]
- Afshari, A.; Friedrich, L. A proposal to introduce tradable energy savings certificates in the emirate of Abu Dhabi. Renew. Sustain. Energy Rev. 2016, 55, 1342–1351. [Google Scholar] [CrossRef]
- Shrimali, G.; Tirumalachetty, S. Renewable energy certificate markets in India—A review. Renew. Sustain. Energy Rev. 2013, 26, 702–716. [Google Scholar] [CrossRef]
- Majdzadeh, T.S.; Ebrahim, H.; Hossein, M.; Mansour, Z. Economic, welfare and environmental impact of feed-in tariff policy: A case study in Iran. Energy Policy 2017, 102, 164–169. [Google Scholar]
- Grover, D.; Daniels, B. Social equity issues in the distribution of feed-in tariff policy benefits: A cross sectional analysis from England and Wales using spatial census and policy data. Energy Policy 2017, 106, 255–265. [Google Scholar] [CrossRef]
- Nicolini, M.; Tavoni, M. Are renewable energy subsidies effective? Evidence from Europe. Renew. Sustain. Energy Rev. 2017, 74, 412–423. [Google Scholar] [CrossRef]
- Wang, H.; Shilin, Z.; Yanhua, Z.; Kai, Z. Analysis of the policy effects of downstream Feed-In Tariff on China’s solar photovoltaic industry. Energy Policy 2016, 95, 479–488. [Google Scholar] [CrossRef]
- Pablo-Romero, M.d.P.; Antonio, S.-B.; Jesús, S.-P.; Natalia, S.-L. An overview of feed-in tariffs, premiums and tenders to promote electricity from biogas in the EU-28. Renew. Sustain. Energy Rev. 2017, 73, 1366–1379. [Google Scholar] [CrossRef]
- Martin, N.; Rice, J. Solar Feed-In Tariffs: Examining fair and reasonable retail rates using cost avoidance estimates. Energy Policy 2018, 112, 19–28. [Google Scholar] [CrossRef]
- Wong, S.L.; Norzita, N.; Tuan Amran, T.A.; Inuwa, I.M. Recent advances of feed-in tariff in Malaysia. Renew. Sustain. Energy Rev. 2015, 41, 42–52. [Google Scholar] [CrossRef]
- Khan, M.W.A.; Panigrahi, S.K.; Almuniri, K.S.N.; Soomro, M.I.; Mirjat, N.H.; Alqaydi, E.S. Investigating the Dynamic Impact of CO2 Emissions and Economic Growth on Renewable Energy Production: Evidence from FMOLS and DOLS Tests. Processes 2019, 7, 496. [Google Scholar] [CrossRef]
- Streimikiene, D.; Kasperowicz, R. Review of economic growth and energy consumption: A panel cointegration analysis for EU countries. Renew. Sustain. Energy Rev. 2016, 59, 1545–1549. [Google Scholar] [CrossRef]
- Fatima, N.; Xuhua, H.; Alnafisah, H.; Akhtar, M.R. Synergy for climate actions in G7 countries: Unraveling the role of environmental policy stringency between technological innovation and CO2 emission interplay with DOLS, FMOLS and MMQR approaches. Energy Rep. 2024, 12, 1344–1359. [Google Scholar] [CrossRef]
- Wei, L.; Ullah, S. International tourism, digital infrastructure, and CO2 emissions: Fresh evidence from panel quantile regression approach. Environ. Sci. Pollut. Res. 2022, 29, 36273–36280. [Google Scholar] [CrossRef]
- Dogan, E.; Seker, F. The influence of real output, renewable and non-renewable energy, trade and financial development on carbon emissions in the top renewable energy countries. Renew. Sustain. Energy Rev. 2016, 60, 1074–1085. [Google Scholar] [CrossRef]
- Pesaran, M.H. The role of economic theory in modelling the long run. Econ. J. 1997, 107, 178–191. [Google Scholar] [CrossRef]
- Raihan, A.; Tuspekova, A. Role of economic growth, renewable energy, and technological innovation to achieve environmental sustainability in Kazakhstan. Curr. Res. Environ. Sustain. 2022, 4, 100165. [Google Scholar] [CrossRef]
- Begum, R.A.; Raihan, A.; Said, M.N.M. Dynamic Impacts of Economic Growth and Forested Area on Carbon Dioxide Emissions in Malaysia. Sustainability 2020, 12, 9375. [Google Scholar] [CrossRef]
- Phillips, P.C.; Hansen, B.E. Statistical Inference in Instrumental Variables Regression with I(1) Processes. Rev. Econ. Stud. 1989, 57, 99–125. [Google Scholar] [CrossRef]
- Janic, M. Estimating the long-term effects of different passenger car technologies on energy/fuel consumption and emissions of greenhouse gases in Europe. Transp. Plan. Technol. 2014, 37, 409–429. [Google Scholar] [CrossRef]
- Yi, H.; Feiock, R.C. Policy Tool Interactions and the Adoption of State Renewable Portfolio Standards. Rev. Policy Res. 2012, 29, 193–206. [Google Scholar] [CrossRef]
- Solaymani, S. Energy subsidy reform evaluation research-reviews in Iran. Greenh. Gases Sci. Technol. 2021, 11, 520–538. [Google Scholar] [CrossRef]
Sector | 2015 | 2020 | 2022 | |||
---|---|---|---|---|---|---|
Total | Share (%) | Total | Share (%) | Total | Share (%) | |
World | 32,294.2 | 100.0 | 31,665.4 | 100 | 34,116.8 | 100 |
Electricity and heat production | 13,540.6 | 41.9 | 13,568.2 | 42.8 | 14,945.8 | 43.8 |
Other energy industry own use | 1654.8 | 5.1 | 1542.6 | 4.9 | 1663.2 | 4.9 |
Manuf. Industries and construction | 6066.1 | 18.8 | 6180.5 | 19.5 | 6261.1 | 18.3 |
Transport | 7737.8 | 24.0 | 7098.3 | 22.4 | 7941 | 23.3 |
Road | 5792 | 17.9 | 5475 | 17.3 | 6022.3 | 17.6 |
Other sectors | 3294.8 | 10.2 | 1935.9 | 6.1 | 2717.8 | 8.0 |
Residential | 1865.9 | 5.8 | 773.2 | 2.4 | 1938.7 | 5.7 |
Region/Country | Total | Transport | Road | Share of Total Emission (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Transport | Road | ||||||||||
2015 | 2024 | 2015 | 2024 | 2015 | 2024 | 2015 | 2024 | 2015 | 2024 | 2015 | 2024 | |
World | 32,294.2 | 34,116.8 | 7737.8 | 7941.0 | 5792.0 | 6022.3 | 100.0 | 100.0 | 24.0 | 23.3 | 17.9 | 17.7 |
North America | 5546.7 | 5130.9 | 1925.8 | 1863.4 | 1632.8 | 1549.6 | 17.2 | 15.0 | 34.7 | 36.3 | 29.4 | 30.2 |
Europe | 2641.3 | 2277.4 | 788.3 | 750.7 | 747.4 | 704.4 | 8.2 | 6.7 | 29.9 | 33.0 | 28.3 | 30.9 |
Asia Oceania | 1553.7 | 1357.1 | 316.9 | 290.3 | 279.6 | 255.3 | 4.8 | 4.0 | 20.4 | 21.4 | 18.0 | 18.8 |
China &Hong Kong | 9084.6 | 10,644.3 | 843.9 | 891.4 | 698.2 | 752.8 | 28.1 | 31.2 | 9.3 | 8.4 | 7.7 | 7.1 |
United States | 4997.5 | 4607.6 | 1752.0 | 1699.4 | 1492.8 | 1413.5 | 15.5 | 13.5 | 35.1 | 36.9 | 29.9 | 30.7 |
India | 2066.0 | 2517.0 | 254.4 | 323.8 | 236.5 | 298.2 | 6.4 | 7.4 | 12.3 | 12.9 | 11.5 | 11.9 |
Russian Federation | 1469.0 | 1623.2 | 240.6 | 267.1 | 150.4 | 167.0 | 4.6 | 4.8 | 16.4 | 16.5 | 10.2 | 10.3 |
Japan | 1141.6 | 973.7 | 207.8 | 186.5 | 187.0 | 166.3 | 3.5 | 2.9 | 18.2 | 19.2 | 16.4 | 17.1 |
Germany | 729.8 | 612.0 | 157.5 | 141.0 | 152.4 | 136.8 | 2.3 | 1.8 | 21.6 | 23.0 | 20.9 | 22.4 |
South Korea | 586.0 | 549.3 | 97.1 | 105.9 | 92.3 | 100.0 | 1.8 | 1.6 | 16.6 | 19.3 | 15.8 | 18.2 |
Iran | 552.4 | 696.4 | 136.6 | 142.2 | 121.4 | 140.1 | 1.7 | 2.0 | 24.7 | 20.4 | 22.0 | 20.1 |
Canada | 549.2 | 523.3 | 173.8 | 164.0 | 140.0 | 136.2 | 1.7 | 1.5 | 31.6 | 31.3 | 25.5 | 26.0 |
Saudi Arabia | 531.5 | 532.9 | 142.1 | 137.8 | 139.3 | 135.3 | 1.7 | 1.6 | 26.7 | 25.9 | 26.2 | 25.4 |
Brazil | 450.8 | 413.9 | 197.3 | 212.6 | 178.5 | 194.6 | 1.4 | 1.2 | 43.8 | 51.4 | 39.6 | 47.0 |
Mexico | 442.3 | 379.7 | 150.5 | 129.8 | 145.9 | 126.2 | 1.4 | 1.1 | 34.0 | 34.2 | 33.0 | 33.2 |
United Kingdom | 389.8 | 309.4 | 118.1 | 107.1 | 111.7 | 100.9 | 1.2 | 0.9 | 30.3 | 34.6 | 28.7 | 32.6 |
Australia | 380.9 | 354.8 | 94.7 | 89.2 | 79.7 | 75.5 | 1.2 | 1.0 | 0.2 | 0.3 | 0.2 | 0.2 |
Italy | 330.7 | 310.3 | 103.0 | 103.8 | 97.4 | 98.9 | 1.0 | 0.9 | 0.3 | 0.3 | 0.3 | 0.3 |
France | 290.5 | 283.0 | 122.4 | 123.3 | 118.0 | 116.7 | 0.9 | 0.8 | 0.4 | 0.4 | 0.4 | 0.4 |
Spain | 247.0 | 217.1 | 85.5 | 92.8 | 78.3 | 81.6 | 0.8 | 0.6 | 0.3 | 0.4 | 0.3 | 0.4 |
New Zealand | 31.2 | 28.7 | 14.4 | 14.6 | 13.0 | 13.6 | 0.1 | 0.1 | 46.2 | 51.0 | 41.7 | 47.3 |
World | New Zealand | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
GHG | FFC | pGDP | URBP | FP | GHG | FFC | pGDP | URBP | FP | |
Mean | 22.58 | 11.38 | 9.04 | 21.87 | 0.64 | 3.36 | 10.60 | 5.15 | 15.07 | 5.14 |
Median | 22.60 | 11.40 | 9.04 | 21.87 | 0.60 | 3.43 | 10.64 | 5.23 | 15.08 | 5.12 |
Maximum | 22.86 | 11.66 | 9.30 | 22.18 | 1.33 | 3.54 | 10.85 | 5.39 | 15.28 | 5.43 |
Minimum | 22.28 | 11.08 | 8.82 | 21.55 | 0.04 | 3.04 | 10.34 | 4.78 | 14.85 | 4.82 |
Std. Dev. | 0.19 | 0.19 | 0.16 | 0.20 | 0.47 | 0.15 | 0.16 | 0.18 | 0.11 | 0.19 |
Skewness | −0.11 | −0.10 | 0.05 | −0.01 | 0.11 | −0.78 | −0.27 | −0.75 | 0.03 | 0.03 |
Kurtosis | 1.72 | 1.74 | 1.65 | 1.75 | 1.41 | 2.24 | 1.77 | 2.51 | 2.10 | 1.67 |
Jarque-Bera | 2.02 | 1.96 | 2.21 | 1.88 | 3.09 | 3.63 | 2.18 | 3.03 | 0.97 | 2.13 |
Probability | 0.36 | 0.38 | 0.33 | 0.39 | 0.21 | 0.16 | 0.34 | 0.22 | 0.61 | 0.35 |
ADF | DF-GLS | PP | KPSS | ||
---|---|---|---|---|---|
World | GHG | −1.765 | −0.526 | −1.463 | 0.72 c |
ΔGHG | −4.181 b | −3.695 b | −4.181 b | 0.270 | |
pGDP | −0.612 | −0.869 | −0.612 | 0.719 c | |
ΔpGDP | −3.378 b | −2.674 b | −2.739 b | 0.147 | |
URBP | −0.964 | −0.669 | −1.440 | 0.733 c | |
ΔURBP | −1.666 d | −1.861 | −2.641 c | 0.652 c | |
FFC | −1.730 | 0.333 | −0.458 | 0.699 c | |
ΔFFC | −3.604 c | −3.620 b | −3.544 c | 0.07 | |
FP | −1.086 | −0.913 | −1.085 | 0.596 c | |
ΔPF | −4.732 b | −4.096 b | −4.688 b | 0.175 | |
New Zealand | GHG | −2.023 | −0.733 | −2.235 | 0.644 c |
ΔGHG | −7.527 b | −7.224 b | −7.311 b | 0.204 | |
GDP | 0.207 | −0.694 | 0.207 | 0.726 b | |
ΔGDP | −3.874 b | −2.909 b | −3.790 b | 0.114 | |
URBP | −0.941 | 0.346 | −3.406 c | 0.631 | |
ΔURBP | −5.275 | −4.501 | −5.275 | 0.285 b | |
FFC | −2.965 c | −1.891 d | −3.351 c | 0.663 c | |
ΔFFC | −2.409 | −1.523 | −1.668 | 0.516 | |
FP | −1.266 | −1.288 | −1.263 | 0.516c | |
ΔPF | −5.177 b | −4.826 b | −5.168 b | 0.150 |
Base Model | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
FMOLS | DOLS | FMOLS | DOLS | FMOLS | DOLS | FMOLS | DOLS | |
Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | |
pGDP | 0.298 [0.203] | 0.073 [0.144] | 0.793 b [0.221] | 0.664 c [0.279] | 0.275 [0.109] | 0.261 c [0.105] | 0.349 b [0.069] | 0.318 b [0.070] |
FFC | 0.387 b [0.082] | 0.328 [0.266] | 0.250 b [0.075] | 0.275 b [0.095] | 0.324 b [0.052] | 0.328 b [0.052] | 0.271 b [0.031] | 0.286 b [0.036] |
URBP | 0.361 b [0.116] | 14.075 d [8.173] | 0.209 c [0.102] | 0.272 c [0.124] | 0.473 b 0.066] | 0.481 b [0.064] | 0.481 b [0.041] | 0.491 b [0.042] |
FP | −0.007 [0.009] | 0.071 [0.094] | −0.044 b [0.015] | −0.036 d [0.021] | - | - | - | - |
DUMR | - | - | −0.030 b [0.011] | −0.027 d [0.015] | - | - | −0.022 b [0.002] | −0.022 b [0.003] |
FP × DUMP | - | - | - | - | −0.021 b [0.003] | −0.021 b [0.004] | −0.011 c [0.002] | −0.010 b [0.003] |
C | 7.592 b [1.220] | −63.072 d [34.934] | 8.031 b [0.966] | 7.517 b [1.067] | 6.065 b [0.754] | 5.975 b [0.713] | 5.825 b [0.478] | 5.722 b [0.470] |
Base Model | Model 1 | Model 2 | Model 3 | |||||
---|---|---|---|---|---|---|---|---|
FMOLS | DOLS | FMOLS | DOLS | FMOLS | DOLS | FMOLS | DOLS | |
Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | Coeff. [Std. Err.] | |
pGDP | 1.075 d [0.564] | 0.679 [0.467] | 0.931 d [0.546] | 0.629 [0.496] | 1.020 c [0.408] | 0.593 d [0.324] | 0.683 [0.405] | 0.418 [0.293] |
FFC | 0.574 d [0.284] | 0.692 b [0.248] | 0.505 d [0.252] | 0.584 c [0.279] | 0.492 c [0.217] | 0.582 b [0.200] | 0.347 c [0.171] | 0.391 c [0.191] |
URBP | −2.231 c [1.019] | −0.756 d [0.435] | −0.680 [0.606] | −0.369 [0.569] | −0.766 [0.465] | −0.257 [0.416] | 0.270 [0.622] | 0.581 [0.493] |
FP | −0.113 [0.093] | −0.067 [0.107] | −0.157 d [0.084] | −0.100 [0.117] | - | - | - | - |
DUMR | - | - | −0.036 [0.046] | −0.066 [0.057] | - | - | −0.024 b [0.006] | −0.021 b [0.007] |
FP × DUMP | - | - | - | - | −0.016 b [0.006] | −0.015 c [0.007] | −0.087 c [0.041] | −0.104 c [0.041] |
C | 22.057 c [10.207] | 4.454 [3.687] | 2.060 [5.161] | −0.167 [5.582] | 1.726 [4.293] | −1.976 [4.366] | −9.719 [6.075] | −11.864 c [5.482] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solaymani, S.; Botero, J. Reducing Carbon Emissions from Transport Sector: Experience and Policy Design Considerations. Sustainability 2025, 17, 3762. https://doi.org/10.3390/su17093762
Solaymani S, Botero J. Reducing Carbon Emissions from Transport Sector: Experience and Policy Design Considerations. Sustainability. 2025; 17(9):3762. https://doi.org/10.3390/su17093762
Chicago/Turabian StyleSolaymani, Saeed, and Julio Botero. 2025. "Reducing Carbon Emissions from Transport Sector: Experience and Policy Design Considerations" Sustainability 17, no. 9: 3762. https://doi.org/10.3390/su17093762
APA StyleSolaymani, S., & Botero, J. (2025). Reducing Carbon Emissions from Transport Sector: Experience and Policy Design Considerations. Sustainability, 17(9), 3762. https://doi.org/10.3390/su17093762