Machine-Learning-Based Ensemble Prediction of the Snow Water Equivalent in the Upper Yalong River Basin
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Meteorological Data
2.2.2. Remote Sensing Snow Water Equivalent Data
3. Methods
3.1. Machine Learning Algorithms
- (1)
- Linear Regression (LR)
- (2)
- Decision Trees (DT)
- (3)
- Random Forest (RF)
- (4)
- Support Vector Machine (SVM)
- (5)
- Artificial Neural Network (ANN)
- (6)
- AdaBoost
- (7)
- XGBoost
- (8)
- Gradient Boosting Decision Tree (GBDT)
- (9)
- CatBoost
3.2. Sensitivity Analysis with the SHAP Model
3.3. Model Construction
3.4. Ensemble Mean (EM) Model
3.5. Snow Water Equivalent Prediction Model
3.6. Evaluation Metrics
4. Results
4.1. Comparison of Machine Learning Model Performance During the Testing Period
4.2. Snow Sensitivity Analysis
5. Discussion
5.1. Model Accuracy Evaluation
5.2. Sensitivity Analysis
5.3. Advantages Compared to Other Snow Water Equivalent Models
5.4. Model Future Improvement
- (1)
- Introduce time series modeling methods (e.g., LSTM or transformer) [85] to better capture the temporal dynamics of snowmelt processes;
- (2)
- Combine multi-model ensemble techniques to integrate the advantages of linear and nonlinear models to enhance the prediction accuracy and robustness;
- (3)
- Further expand the input features, such as the initial snow conditions, surface evaporation, and soil moisture, to improve the model’s explanatory power for SWE variation mechanisms.
6. Conclusions
- (1)
- Nine machine learning models were selected for predicting the future 30-day SWE: linear regression, decision trees, random forest, SVR, ANN, AdaBoost, XGBoost, GBDT, and CatBoost. From the results of the single-day predictions, all nine models demonstrated average NSE values greater than 0.8, average RMSE values less than 8 mm, and average RE values less than 7% during the 1–10 day, 11–20 day, and 21–30 day lead times. Among these, the CatBoost, ANN, and GBDT models performed well across the three lead times (1–10 days, 11–20 days, 21–30 days) and three evaluation metrics (RMSE, NSE, RE), showing excellent trend capture ability and low error values.
- (2)
- The results showed that the ensemble mean model (a fusion of the CatBoost, ANN, and GBDT models) was able to capture the SWE trend effectively for each forecast start date, especially during key periods (such as the spring snowmelt season), demonstrating strong trend simulation capabilities. Compared to the individual models, the ensemble mean model significantly reduced the error impacts of individual models, producing more robust and accurate predictions. This fusion method is adept at handling the nonlinear characteristics of climate variations in high-altitude regions, providing stable predictions for continuous SWE data over the next 30 days.
- (3)
- The sensitivity analysis revealed that the variation in the SWE is highly sensitive to meteorological factors. Among these, Tm, Tmin, and Tmax are the most significant drivers of the SWE, with a negative impact on the SWE. On the other hand, Rhu has a positive regulating effect on the SWE; high humidity reduces snow evaporation losses, thereby increasing SWE. Furthermore, Ssd and Win have lower sensitivity, although under specific conditions (such as high-radiation or low-temperature environments) they may still influence SWE. The interactions among these factors were well reflected in the model predictions, providing important insights into the mechanisms driving SWE variation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, L.; Ma, G.; Zhang, Y.; Wang, J.; Tian, W.; Kan, X. Accelerated Decline of Snow Cover in China from 1979 to 2018 Observed from Space. Sci. Total Environ. 2022, 814, 152491. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hu, X.; Wang, G.; Wang, K.; Chen, X. Machine Grid Search Cross-Validation Learning Estimation of Snow Depth in 2021 Texas Statewide Winter Storm Using SAR Imagery. Geophys. Res. Lett. 2022, 49, e2022GL099119. [Google Scholar] [CrossRef]
- Yang, J.; Chen, Y.; Wilson, J.P.; Chun, Y.; Chen, Y.; Su, H. A Zero-Inflated Spatiotemporal Analysis for Snowpack Variations and Influence of Environmental Factors in the Northern Hemisphere. J. Hydrol. 2023, 616, 128760. [Google Scholar] [CrossRef]
- Brown, R.D.; Brasnett, B.; Robinson, D. Gridded North American Monthly Snow Depth and Snow Water Equivalent for GCM Evaluation. Atmos. Ocean 2003, 41, 1–14. [Google Scholar] [CrossRef]
- Fontrodona-Bach, A.; Schaefli, B.; Woods, R.; Teuling, A.J.; Larsen, J.R. NH-SWE: Northern Hemisphere Snow Water Equivalent Dataset Based on In-Situ Snow Depth Time Series. Earth Syst. Sci. Data Discuss. 2023, 15, 2577–2599. [Google Scholar] [CrossRef]
- Wu, X.J.; Zhu, R.; Long, Y.P.; Zhang, W. Spatial Trend and Impact of Snowmelt Rate in Spring across China’s Three Main Stable Snow Cover Regions over the Past 40 Years Based on Remote Sensing. Remote Sens. 2022, 14, 4176. [Google Scholar] [CrossRef]
- Liu, Z.; Cuo, L.; Sun, N. Tracking Snowmelt During Hydrological Surface Processes Using a Distributed Hydrological Model in a Mesoscale Basin on the Tibetan Plateau. J. Hydrol. 2023, 616, 128796. [Google Scholar] [CrossRef]
- Abudu, S.; Cui, C.; Muattar, S.; King, J. Application of Snowmelt Runoff Model (SRM) in Mountainous Watersheds: A Review. Water Sci. Eng. 2012, 5, 123–136. [Google Scholar] [CrossRef]
- Tian, F.; Lin, Z.; Zhang, H.; Yang, G.C. Interannual Variation of Spring Streamflow and Its Relationship with Snowpack in the Three-River Headwater Region, China. Clim. Environ. Res. 2024, 29, 588–604. [Google Scholar] [CrossRef]
- Zhao, Q.; Tan, X.; Zeng, Q.; Hang, Z.; Wu, J.W. Combined Effects of Temperature and Precipitation on the Spring Runoff Generation Process in a Seasonal Freezing Agricultural Watershed. Environ. Earth Sci. 2021, 80, 490. [Google Scholar] [CrossRef]
- Steele, H.; Small, E.E.; Raleigh, M.S. Demonstrating a Hybrid Machine Learning Approach for Snow Characteristic Estimation Throughout the Western United States. Water Resour. Res. 2024, 60, e2023WR035805. [Google Scholar] [CrossRef]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote Sensing of Snow–A Review of Available Methods. Int. J. Remote Sens. 2011, 33, 4094–4134. [Google Scholar] [CrossRef]
- Li, G.Y. In-Depth Implementation of the Spirit of the 20th National Congress of the Communist Party of China and Solid Promotion of High-Quality Development of Water Resources in the New Era—Speech at the 2023 National Water Resources Work Conference. Water Resour. Dev. Res. 2023, 23, 1–11. [Google Scholar] [CrossRef]
- Li, G.Y. Providing Strong Water Security Guarantee for the Comprehensive Advancement of National Power Construction and the Great Cause of National Rejuvenation with Chinese-Style Modernization—Speech at the 2024 National Water Resources Work Conference. Water Resour. Dev. Res. 2024, 24, 1–10. [Google Scholar] [CrossRef]
- Zuo, Q.T.; Wang, Z.Y.; Ma, J.X. Research Hotspots and Development Prospects of Modern Water Management in China. Water Resour. Dev. Res. 2024, 24, 13–19. [Google Scholar] [CrossRef]
- Li, Z.Z.; Zhang, W.; Liu, L. Vigorously Developing New Productive Forces to Promote High-Quality Development of Water Resources—Understanding and Reflections on the Development of New Productive Forces in the Water Industry. Water Resour. Dev. Res. 2024, 24, 1–6. [Google Scholar] [CrossRef]
- Xue, X.S.; Zhang, Y.X. From Carbon Peaking to Water Peaking: Observations on China’s Water Strategy and Innovative Development. Water Resour. Dev. Res. 2024, 24, 17–23. [Google Scholar] [CrossRef]
- Yu, L.-x.; Zhang, S.-w.; Bu, K.; Yang, J.-c.; Yan, F.-q.; Chang, L.-p. A Review on Snow Data Sets. Sci. Geogr. Sin. 2013, 33, 878–883. [Google Scholar]
- Dai, L.Y.; Xiao, L.; Wang, J.; Che, T. China Snow Cover Ground Survey Dataset (2017–2020). China Sci. Data 2022, 7, 9–23. [Google Scholar]
- Xiao, L.; Che, T.; Dai, L. Evaluation of Remote Sensing and Reanalysis Snow Depth Datasets over the Northern Hemisphere During 1980–2016. Remote Sens. 2020, 12, 3253. [Google Scholar] [CrossRef]
- Yang, K.; Musselman, K.N.; Rittger, K.; Margulis, S.A.; Painter, T.H.; Molotch, N.P. Combining Ground-Based and Remotely Sensed Snow Data in a Linear Regression Model for Real-Time Estimation of Snow Water Equivalent. Adv. Water Resour. 2022, 160, 104075. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Accuracy Assessment of the MODIS Snow Products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Goa, Y.; Xie, H.J.; Lu, N.; Yao, T.D.; Liang, T.G. Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra-Aqua MODIS and Aqua AMSR-E measurements. J. Hydrol. 2010, 385, 23–35. [Google Scholar] [CrossRef]
- Fletcher, S.J.; Liston, G.E.; Hiemstra, C.A.; Miller, S.D. Assimilating MODIS and AMSR-E Snow Observations in a Snow Evolution Model. J. Hydrometeor. 2012, 13, 1475–1492. [Google Scholar] [CrossRef]
- Xu, G.; Liu, Q.; Chen, L.; Liu, L.Y. Remote Sensing and Sustainable Development in China: Opportunities and Challenges. J. Remote Sens. 2016, 20, 679–688. [Google Scholar]
- Shao, D.; Li, H.; Wang, J.; Hao, X.; Wang, R.; Ma, Y. Study on Snow Albedo Inversion Based on Multi-Source Remote Sensing Data. Remote Sens. Technol. Appl. 2017, 32, 71–77, 139. [Google Scholar]
- Jiang, Y.; Chen, F.; Gao, Y.; He, C.; Barlage, M.; Huang, W. Assessment of Uncertainty Sources in Snow Cover Simulation in the Tibetan Plateau. J. Geophys. Res. Atmos. 2020, 125, e2020JD032674. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, V.D.; Joshi, P.K. Snow Cover Variation and Streamflow Simulation in a Snow-Fed River Basin of the Northwest Himalaya. J. Mt. Sci. 2012, 9, 853–868. [Google Scholar] [CrossRef]
- Kustas, W.P.; Rango, A.; Uijlenhoet, R. A simple energy budget algorithm for the snowmelt runoff model. Water Resour. Res. 1994, 30, 1515–1527. [Google Scholar] [CrossRef]
- Zhou, G.; Cui, M.; Wan, J.; Zhang, S. A Review on Snowmelt Models: Progress and Prospect. Sustainability 2021, 13, 11485. [Google Scholar] [CrossRef]
- Bi, Y.J.; Zhao, Y.; Zhou, Z.M.; Zhai, J.Q. Application of improved double-layer snow model in the upper Lancang River. China Rural. Water Hydropower 2011, 08, 49–52. [Google Scholar]
- Grusson, Y.; Sun, X.; Gascoin, S.; Sauvage, S.; Raghavan, S.; Anctil, F.; Sánchez-Pérez, J.-M. Assessing the Capability of the SWAT Model to Simulate Snow, Snow Melt, and Streamflow Dynamics over an Alpine Watershed. J. Hydrol. 2015, 531, 574–588. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Z.; Ye, B.; Qin, Y.; Wei, Z.; Fang, S. A Snowmelt Runoff Forecasting Model Coupling WRF and DHSVM. Hydrol. Earth Syst. Sci. 2009, 13, 1897–1906. [Google Scholar] [CrossRef]
- Mohammadi, B. A Review on the Applications of Machine Learning for Runoff Modeling. Sustain. Water Resour. Manag. 2021, 7, 98. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 Snow Depth Downscaling Algorithm Based on a Multifactor Approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Moradizadeh, M.; Alijanian, M.; Moeini, R. Spatial Downscaling of Snow Water Equivalent Using Machine Learning Methods over the Zayandehroud River Basin, Iran. PFG 2023, 91, 391–404. [Google Scholar] [CrossRef]
- Wang, G.; Hao, X.; Yao, X.; Wang, J.; Li, H.; Chen, R.; Liu, Z. Simulations of Snowmelt Runoff in a High-Altitude Mountainous Area Based on Big Data and Machine Learning Models: Taking the Xiying River Basin as an Example. Remote Sens. 2023, 15, 1118. [Google Scholar] [CrossRef]
- Zheng, L.K.; Wan, L.P.; Li, Z.Q. Linear Regression Analysis of the Impact of Study Pressure on Students’ Physical and Mental Health. Chin. Sch. Health 2001, 223, 2. [Google Scholar] [CrossRef]
- Yu, J.; Asche, C.V.; Fairchild, C.J. The Economic Burden of Dry Eye Disease in the United States: A Decision Tree Analysis. Cornea 2011, 30, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Ding, J.; Han, L.; Ge, X.; Wang, X.; Wang, J.; Wang, R.; Qin, S.; Zhang, Z.; Li, Y. Exploring PlanetScope Satellite Capabilities for Soil Salinity Estimation and Mapping in Arid Regions Oases. Remote Sens. 2023, 15, 1066. [Google Scholar] [CrossRef]
- Bo, W.; Zhao, K.; Cheng, G.; Wang, Y.; Zhang, J.; Cheng, M.; Yang, C.; Da, W. Study on Transportation Carbon Emissions in Tibet: Measurement, Prediction Model Development, and Analysis. Sustainability 2024, 16, 8419. [Google Scholar] [CrossRef]
- Morra, J.H.; Tu, Z.; Apostolova, L.G.; Green, A.E.; Thompson, P.M. Comparison of AdaBoost and Support Vector Machines for Detecting Alzheimer’s Disease Through Automated Hippocampal Segmentation. IEEE Trans. Med. Imaging 2009, 29, 30–43. [Google Scholar] [CrossRef]
- Muhammad, Z.; Faisal, H.M.; Muhammad, I.; Iqra, A.; Irfan, U.; Tufail, A.; He, Z.B. Factors Affecting Injury Severity in Motorcycle Crashes: Different Age Groups Analysis Using CatBoost and SHAP Techniques. Traffic Inj. Prev. 2024, 25, 472–481. [Google Scholar]
- Hou, J.; Huang, C.; Chen, W.; Zhang, Y. Improving Snow Estimates Through Assimilation of MODIS Fractional Snow Cover Data Using Machine Learning Algorithms and the Common Land Model. Water Resour. Res. 2021, 57, e2020WR029010. [Google Scholar] [CrossRef]
- Dong, N.P.; Wang, H.; Yang, M.X.; Zhang, J.J.; Xu, S.Q. New Xin’anjiang Model Considering Snowmelt and Soil Freezing/Thawing and Its Application—A Case Study of Runoff Simulation in the Upper Yalong River. Adv. Water Sci. 2024, 35, 530–542. [Google Scholar] [CrossRef]
- Ding, Y.J.; Zhang, S.Q.; Chen, R.S.; Qin, J.; Zhao, Q.; Liu, J.F.; Yang, Y.; He, X.B.; Chang, Y.P.; Shangguan, D.H.; et al. A Review on the Impact of Climate Change on the Cryospheric Hydrology. Adv. Clim. Change Res. 2025, 21, 1–21. [Google Scholar]
- Lv, S.; Tang, Y.; Tang, Q.; Li, H.; Xiao, H.; Xie, D. The Impact of Climate Change on Annual and Seasonal Runoff in the Lena River Basin, Arctic. Geogr. Res. 2024, 79, 2811–2829. [Google Scholar]
- Xu, Y.; Gao, X.J.; Shen, Y.; Xu, C.H.; Shi, Y.; Giorgi, F. A Daily Temperature Dataset Over China and Its Application in Validating a RCM Simulation. Adv. Atmos. Sci. 2009, 26, 763–772. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X.J. A Gridded Daily Observation Dataset Over China Region and Comparison with the Other Datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- James, G.M.; Wang, J.; Zhu, J. Functional Linear Regression That’s Interpretable. Ann. Stat. 2009, 37, 2083–2108. [Google Scholar] [CrossRef]
- Seber, G.A.F.; Lee, A.J. Linear Regression Analysis, 2nd ed.; Wiley: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Dietterich, T.G.; Kong, E.B. Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms; Technical Report; Department of Computer Science, Oregon State University: Corvallis, OR, USA, 1995. [Google Scholar]
- Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An Introduction to Decision Tree Modeling. J. Chemom. 2010, 18, 275–285. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Daliakopoulos, I.N.; Tsanis, I.K. Comparison of an Artificial Neural Network and a Conceptual Rainfall–Runoff Model in the Simulation of Ephemeral Streamflow. Hydrol. Sci. J. 2016, 61, 2763–2774. [Google Scholar] [CrossRef]
- Alkheder, S.; Alrukaibi, F.; Aiash, A. Support Vector Machine (SVM), Random Forest (RF), Artificial Neural Network (ANN), and Bayesian Network for Prediction and Analysis of GCC Traffic Accidents. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 7331–7339. [Google Scholar] [CrossRef]
- Gurung, S. Support Vector Machine (SVM). 2020. Available online: https://www.researchgate.net/publication/344747383_Support_Vector_Machine_SVM (accessed on 8 February 2025).
- Zemnazi, O.; El Filali, S.; Ouahabi, S. Weather Forecasting Using Artificial Neural Network (ANN): A Review. Procedia Comput. Sci. 2024, 241, 618–623. [Google Scholar] [CrossRef]
- Tan, Q.F.; Lei, X.H.; Wang, X.; Wang, H.; Wen, X.; Ji, Y.; Kang, A.Q. An Adaptive Middle and Long-Term Runoff Forecast Model Using EEMD-ANN Hybrid Approach. J. Hydrol. 2018, 567, 767–780. [Google Scholar] [CrossRef]
- Collins, M.; Schapire, R.E.; Singer, Y. Logistic Regression, AdaBoost, and Bregman Distances. Mach. Learn. 2002, 48, 253–285. [Google Scholar] [CrossRef]
- Wang, W.; Shan, D.; Li, D.; Liu, S.; Song, M.; Xiao, S.; Zhang, H. A Random Feature Mapping Method Based on the AdaBoost Algorithm and Results Fusion for Enhancing Classification Performance. Expert Syst. Appl. 2024, 256, 124902. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Decision-Theoretic Generalization of Online Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55, 119–139. [Google Scholar] [CrossRef]
- Kumar, V.R.; Rahul, M.B.; Srinivasa, R.K. Machine Learning Algorithms for Streamflow Forecasting of Lower Godavari Basin. H2Open J. 2022, 5, 670–685. [Google Scholar] [CrossRef]
- Robert, S. Daily Streamflow Forecasting in Mountainous Catchment Using XGBoost, LightGBM, and CatBoost. Hydrology 2022, 9, 226. [Google Scholar] [CrossRef]
- Li, Z.; Lu, T.; Yu, K.; Wang, J. Interpolation of GNSS Position Time Series Using GBDT, XGBoost, and RF Machine Learning Algorithms and Models Error Analysis. Remote Sens. 2023, 15, 4374. [Google Scholar] [CrossRef]
- Liao, Z.; Huang, Y.; Yue, X.; Lu, H.; Ju, Y. In Silico Prediction of Gamma-Aminobutyric Acid Type-A Receptors Using Novel Machine-Learning-Based SVM and GBDT Approaches. BioMed Res. Int. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased Boosting with Categorical Features. arXiv 2017, arXiv:1706.09516. [Google Scholar] [CrossRef]
- Zhang, L.; Janosik, D. Enhanced Short-Term Load Forecasting with Hybrid Machine Learning Models: CatBoost and XGBoost Approaches. Expert Syst. Appl. 2024, 241, 122. [Google Scholar] [CrossRef]
- Xu, Y.; Lin, K.; Hu, C.; Wang, S.; Wu, Q.; Zhang, J.; Xiao, M.; Luo, Y. Interpretable Machine Learning on Large Samples for Supporting Runoff Estimation in Ungauged Basins. J. Hydrol. 2024, 639, 131598. [Google Scholar] [CrossRef]
- Bai, T.; Wang, X.-S.; Han, P.-F. Controls of Groundwater-Dependent Vegetation Coverage in the Yellow River Basin, China: Insights from Interpretable Machine Learning. J. Hydrol. 2024, 631, 130747. [Google Scholar] [CrossRef]
- Zaherpour, J.; Mount, N.; Gosling, S.N.; Dankers, R.; Eisner, S.; Gerten, D. Exploring the Value of Machine Learning for Weighted Multi-Model Combination of an Ensemble of Global Hydrological Models. Environ. Model. Softw. 2019, 114, 112–128. [Google Scholar] [CrossRef]
- Tharwat, A.; Gabel, T. Parameters Optimization of Support Vector Machines for Imbalanced Data Using Social Ski Driver Algorithm. Neural Comput. Appl. 2020, 32, 6925–6938. [Google Scholar] [CrossRef]
- Dong, N.; Wei, J.; Yang, M.; Yan, D.; Yang, C.; Gao, H.; Arnault, J.; Laux, P.; Zhang, X.; Liu, Y.; et al. Model estimates of China’s terrestrial water storage variation due to reservoir operation. Water Resour. Res. 2022, 58, e2021WR031787. [Google Scholar] [CrossRef]
- Dong, N.; Yang, M.; Wei, J.; Arnault, J.; Laux, P.; Xu, S.; Wang, H.; Yu, Z.; Kunstmann, H. Toward improved parameterizations of reservoir operation in ungauged basins: A synergistic framework coupling satellite remote sensing, hydrologic modeling, and conceptual operation schemes. Water Resour. Res. 2023, 59, e2022WR033026. [Google Scholar] [CrossRef]
- Hao, H.; Dong, N.; Yang, M.; Wei, J.; Zhang, X.; Xu, S.; Yan, D.; Ren, L.; Leng, G.; Chen, L.; et al. The changing hydrology of an irrigated and dammed Yangtze River: Streamflow, extremes, and lake hydrodynamics. Water Resour. Res. 2024, 60, e2024WR037841. [Google Scholar] [CrossRef]
- Ibrahim, A.A.; Ridwan, R.L.; Muhammed, M.M.; Abdulaziz, R.O.; Saheed, G.A. Comparison of the CatBoost Classifier with Other Machine Learning Methods. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 11. [Google Scholar] [CrossRef]
- Lu, D.; Peng, Y.; Xu, W.; Zhou, H.C. Application of Meteorological Ensemble Forecasts in Hydrological Field: A Review. South–North Water Transf. Water Sci. Technol. 2014, 2, 116–119, 124. [Google Scholar] [CrossRef]
- Sun, N.; Yan, H.; Wigmosta, M.; Leung, L.; Skaggs, R.; Hou, Z. Regional Snow Parameters Estimation for Large-Domain Hydrological Applications in the Western United States. J. Geophys. Res. Atmos. 2019, 124, 5296–5313. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, W.; Bai, A.; Zhang, J.; Liu, X.; Ouyang, J. Analysis of Dynamic Snowmelt Process and Its Relationship with Temperature in the Tuotuo River Region of the Tibetan Plateau. Plateau Meteorol. 2017, 36, 24–32. [Google Scholar]
- Bair, E.H.; Calfa, A.A.; Rittger, K.; Dozier, J. Using Machine Learning for Real-Time Estimates of Snow Water Equivalent in the Watersheds of Afghanistan. Cryosphere 2017, 12, 1579–1594. [Google Scholar] [CrossRef]
- Vafakhah, M.; Mohseni, S.M.; Mahdavi, M.; Alavipanah, S.K. Snowmelt Runoff Prediction by Using Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System in Taleghan Watershed. Iranian J. Watershed Manag. Sci. Eng. 2011, 5, 23–35. [Google Scholar]
- Vafakhah, M.; Nasiri Khiavi, A.; Janizadeh, S.; Ganjkhanlo, H. Evaluating Different Machine Learning Algorithms for Snow Water Equivalent Prediction. Earth Sci. Inform. 2022, 15, 2431–2445. [Google Scholar] [CrossRef]
- Pan, Y.m.; Pan, Y.m.; Zhang, X.; Xue, P. A New Method of Rolling Prediction for Gas Emission Based on Wavelet Neural Network. Adv. Mater. Res. 2012, 433–440, 2288–2294. [Google Scholar] [CrossRef]
- Ugbah, P. Evaluation of European Centre for Medium-Range Weather Forecast; Scholars’ Press: London, UK, 2018. [Google Scholar]
- Song, Y.; Tsai, W.; Gluck, J.; Rhoades, A.; Zarzycki, C.; McCrary, R.; Lawson, K.; Shen, C. LSTM-Based Data Integration to Improve Snow Water Equivalent Prediction and Diagnose Error Sources. J. Hydrometeor. 2024, 25, 223–237. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Yang, M.; Dong, N.; Wang, Y. Machine-Learning-Based Ensemble Prediction of the Snow Water Equivalent in the Upper Yalong River Basin. Sustainability 2025, 17, 3779. https://doi.org/10.3390/su17093779
Zhang J, Yang M, Dong N, Wang Y. Machine-Learning-Based Ensemble Prediction of the Snow Water Equivalent in the Upper Yalong River Basin. Sustainability. 2025; 17(9):3779. https://doi.org/10.3390/su17093779
Chicago/Turabian StyleZhang, Jujia, Mingxiang Yang, Ningpeng Dong, and Yicheng Wang. 2025. "Machine-Learning-Based Ensemble Prediction of the Snow Water Equivalent in the Upper Yalong River Basin" Sustainability 17, no. 9: 3779. https://doi.org/10.3390/su17093779
APA StyleZhang, J., Yang, M., Dong, N., & Wang, Y. (2025). Machine-Learning-Based Ensemble Prediction of the Snow Water Equivalent in the Upper Yalong River Basin. Sustainability, 17(9), 3779. https://doi.org/10.3390/su17093779