Challenges and Opportunities for New Frontiers and Technologies to Guarantee Food Production
Abstract
:1. Introduction
2. New Agricultural Frontiers
2.1. Urban Farming Technologies
2.2. Agroforestry and Regenerative Agriculture
2.3. Agriculture in the Desert
2.4. Deep-Space Food Technologies
3. Technology and Innovation in Producing Food
3.1. Plant Engineering for Food Production
3.2. Synthetic Biology in Food Production
3.3. Nanotechnology for Food Production
3.4. Enriched Foods
4. Innovation in Agricultural Management
4.1. Bioinputs to Benefit Food Production
4.2. Artificial Intelligence in the Food Production
4.3. Water Management and Food Security
4.4. Economic Challenges: Adapting Solutions to an Unequal World
5. Public Policy, Food Regulation, and Community Participation
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Long, S.P.; Marshall-Colon, A.; Zhu, X.-G. Meeting the Global Food Demand of the Future by Engineering Crop Photosynthesis and Yield Potential. Cell 2015, 161, 56–66. [Google Scholar] [CrossRef]
- Mittler, R.; Blumwald, E. Genetic Engineering for Modern Agriculture: Challenges and Perspectives. Annu. Rev. Plant Biol. 2010, 61, 443–462. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing Yield Gaps through Nutrient and Water Management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Kaushal, M.; Atieno, M.; Odjo, S.; Baijukya, F.; Gebrehawaryat, Y.; Fadda, C. Nature-Positive Agriculture—A Way Forward Towards Resilient Agrifood Systems. Sustainability 2025, 17, 1151. [Google Scholar] [CrossRef]
- Voigt, C.A. Synthetic Biology 2020–2030: Six Commercially-Available Products That Are Changing Our World. Nat. Commun. 2020, 11, 6379. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.; Dan, S.; Shahzad, K. Guest Editorial: Bridging the Chasm between “What Could Be” and “What Is”: The Impact of Blockchain Technologies on Public Service Management. Int. J. Public Sect. Manag. 2025, 38, 1–11. [Google Scholar] [CrossRef]
- Levis, C.; Flores, B.M.; Campos-Silva, J.V.; Peroni, N.; Staal, A.; Padgurschi, M.C.G.; Dorshow, W.; Moraes, B.; Schmidt, M.; Kuikuro, T.W.; et al. Contributions of Human Cultures to Biodiversity and Ecosystem Conservation. Nat. Ecol. Evol. 2024, 8, 866–879. [Google Scholar] [CrossRef]
- Zeng, Z.; Gower, D.B.; Wood, E.F. Accelerating Forest Loss in Southeast Asian Massif in the 21st Century: A Case Study in Nan Province, Thailand. Glob. Change Biol. 2018, 24, 4682–4695. [Google Scholar] [CrossRef]
- Rabeschini, G.; Persson, U.M.; West, C.; Kastner, T. Choosing Fit-for-Purpose Biodiversity Impact Indicators for Agriculture in the Brazilian Cerrado Ecoregion. Nat. Commun. 2025, 16, 1799. [Google Scholar] [CrossRef]
- Silcock, R.B.J. Call of the Reed Warbler. A New Agriculture, A New Earth. Rangel. J. 2018, 40, 297. [Google Scholar] [CrossRef]
- Project Drawdown. Regenerative Annual Cropping. 2021. Available online: https://drawdown.org/solutions/regenerative-annual-cropping (accessed on 18 March 2025).
- Nair, C.S.; Manoharan, R.; Nishanth, D.; Subramanian, R.; Neumann, E.; Jaleel, A. Recent Advancements in Aquaponics with Special Emphasis on Its Sustainability. J. World Aquac. Soc. 2025, 56, e13116. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Jianmin, G.; Syed, T.N.; Chandio, F.A.; Buttar, N.A.; Qureshi, W.A. Monitoring and Control Systems in Agriculture Using Intelligent Sensor Techniques: A Review of the Aeroponic System. J. Sens. 2018, 2018, 8672769. [Google Scholar] [CrossRef]
- Jeyabharath, R.; Tamilvani, P.; Karthikeyan, G.; Vijayakumar, P.; Rohini, J.; Mohammadha Hussaini, M.; Kavin Kumar, K. Smart Aeroponic Farms with IoT-Enabled Efficient Automation and Monitoring. In Proceedings of the 2024 2nd International Conference on Artificial Intelligence and Machine Learning Applications Theme: Healthcare and Internet of Things (AIMLA), Namakkal, India, 15–16 March 2024; IEEE: Namakkal, India, 2024; pp. 1–7. [Google Scholar] [CrossRef]
- Ferreira, A.J.D.; Guilherme, R.I.M.M.; Ferreira, C.S.S.; Oliveira, M.d.F.M.L.d. Urban Agriculture, a Tool towards More Resilient Urban Communities? Curr. Opin. Environ. Sci. Health 2018, 5, 93–97. [Google Scholar] [CrossRef]
- Poulsen, M.N.; McNab, P.R.; Clayton, M.L.; Neff, R.A. A Systematic Review of Urban Agriculture and Food Security Impacts in Low-Income Countries. Food Policy 2015, 55, 131–146. [Google Scholar] [CrossRef]
- Galanakis, C.M. The Future of Food. Foods 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Lu, C. Vertical Farming—Smart Urban Agriculture for Enhancing Resilience and Sustainability in Food Security. J. Hortic. Sci. Biotechnol. 2023, 98, 133–140. [Google Scholar] [CrossRef]
- Zheng, Z.; Nguyen, H.L.; Hanikel, N.; Li, K.K.-Y.; Zhou, Z.; Ma, T.; Yaghi, O.M. High-Yield, Green and Scalable Methods for Producing MOF-303 for Water Harvesting from Desert Air. Nat. Protoc. 2023, 18, 136–156. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Chandio, F.A.; Buttar, N.A. Modern Plant Cultivation Technologies in Agriculture under Controlled Environment: A Review on Aeroponics. J. Plant Interact. 2018, 13, 338–352. [Google Scholar] [CrossRef]
- Al Shrouf, A. Hydroponics, Aeroponic and Aquaponic as Compared with Conventional Farming. Am. Sci. Res. J. Eng. Technol. Sci. 2017, 27, 247–255. [Google Scholar]
- Ferentinos, K.P. Deep Learning Models for Plant Disease Detection and Diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Roberts, S.; Jacquet, J.; Majluf, P.; Hayek, M.N. Feeding Global Aquaculture. Sci. Adv. 2024, 10, eadn9698. [Google Scholar] [CrossRef] [PubMed]
- European Parliament. Directorate General for Parliamentary Research Services. In Aquaculture: Overview for the EU: In Depth Analysis; Publications Office: Luxembourg, 2017. [Google Scholar]
- FAO; Edwards, P.; Demaine, H. Agricultural and Aquatic Systems Program; School of Environment, Resources and Development; Asian Institute of Technology: Bangkok, Thailand. Regional Office for Asia and the Pacific; Food and Agriculture Organization of the United Nations: Bangkok, Thailand, 1998; Available online: https://www.fao.org/4/x6941e/x6941e00.htm (accessed on 18 March 2025).
- FAO. Small-Scale Aquaponic Food Production: Integrate Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; FAO: Rome, Italy, 2014; p. 262. [Google Scholar]
- Yanes, A.R.; Martinez, P.; Ahmad, R. Towards Automated Aquaponics: A Review on Monitoring, IoT, and Smart Systems. J. Clean. Prod. 2020, 263, 121571. [Google Scholar] [CrossRef]
- Devi, A.; Verma, M.; Saratale, G.D.; Saratale, R.G.; Ferreira, L.F.R.; Mulla, S.I.; Bharagava, R.N. Microalgae: A Green Eco-Friendly Agents for Bioremediation of Tannery Wastewater with Simultaneous Production of Value-Added Products. Chemosphere 2023, 336, 139192. [Google Scholar] [CrossRef] [PubMed]
- Palm, H.W.; Knaus, U.; Appelbaum, S.; Goddek, S.; Strauch, S.M.; Vermeulen, T.; Haїssam Jijakli, M.; Kotzen, B. Towards Commercial Aquaponics: A Review of Systems, Designs, Scales and Nomenclature. Aquacult. Int. 2018, 26, 813–842. [Google Scholar] [CrossRef]
- Bhujel, R.C. Tilapia Farming Systems. In Tilapia; Thompson, K., Shoemaker, C.A., Little, D.C., Eds.; CABI: Wallingford, UK; Boston, MA, USA, 2025; pp. 127–175. [Google Scholar] [CrossRef]
- Roy, M.; Salam, M.A.; Hossain, M.B.; Shamsuddin, M. Feasibility Study of Aquaponics in Polyculture Pond. World Appl. Sci. J. 2013, 23, 588–592. [Google Scholar]
- Vickers, N.J. Animal Communication: When I’m Calling You, Will You Answer Too? Curr. Biol. 2017, 27, R713–R715. [Google Scholar] [CrossRef]
- Kotzen, B.; Appelbaum, S. An Investigation of Aquaponics Using Brackish Water Resources in the Negev Desert. J. Appl. Aquac. 2010, 22, 297–320. [Google Scholar] [CrossRef]
- Lauguico, S.C.; Concepcion, R.S., II; Alejandrino, J.D.; Tobias, R.R.; Macasaet, D.D.; Dadios, E.P. A Comparative Analysis of Machine Learning Algorithms Modeled from Machine Vision-Based Lettuce Growth Stage Classification in Smart Aquaponics. Int. J. Environ. Sci. Dev. 2020, 11, 442–449. [Google Scholar] [CrossRef]
- Manju, M.; Karthik, V.; Hariharan, S.; Sreekar, B. Real Time Monitoring of the Environmental Parameters of an Aquaponic System Based on Internet of Things. In Proceedings of the 2017 Third International Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, India, 23–24 March 2017; IEEE: Chennai, India, 2017; pp. 943–948. [Google Scholar] [CrossRef]
- Abraham, S.; Shahbazian, A.; Dao, K.; Tran, H.; Thompson, P. An Internet of Things (IoT)-Based Aquaponics Facility. In Proceedings of the 2017 IEEE Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 19–22 October 2017; IEEE: San Jose, CA, USA, 2017; p. 1. [Google Scholar] [CrossRef]
- Jiménez-Alfaro, B.; Frischie, S.; Stolz, J.; Gálvez-Ramírez, C. Native Plants for Greening Mediterranean Agroecosystems. Nat. Plants 2020, 6, 209–214. [Google Scholar] [CrossRef]
- Harris, B.N.; Sadras, V.O.; Tester, M. A Water-Centred Framework to Assess the Effects of Salinity on the Growth and Yield of Wheat and Barley. Plant Soil 2010, 336, 377–389. [Google Scholar] [CrossRef]
- FAO; Silva, J. Why Bees Matter: The Improtance of Bees and Other Pollinators for Food and Agriculture; Food and Agriculture Organization of the United Nations. 2018. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/0f47dba8-ab04-4968-a2bc-8a9c06218653/content (accessed on 18 March 2025).
- Gosnell, H.; Gill, N.; Voyer, M. Transformational Adaptation on the Farm: Processes of Change and Persistence in Transitions to ‘Climate-Smart’ Regenerative Agriculture. Glob. Environ. Change 2019, 59, 101965. [Google Scholar] [CrossRef]
- Lipper, L.; Thornton, P.; Campbell, B.M.; Baedeker, T.; Braimoh, A.; Bwalya, M.; Caron, P.; Cattaneo, A.; Garrity, D.; Henry, K.; et al. Climate-Smart Agriculture for Food Security. Nat. Clim Change 2014, 4, 1068–1072. [Google Scholar] [CrossRef]
- Cross, R.; Ampt, P. Exploring Agroecological Sustainability: Unearthing Innovators and Documenting a Community of Practice in Southeast Australia. Soc. Nat. Resour. 2017, 30, 585–600. [Google Scholar] [CrossRef]
- Pearson, C.J. Regenerative, Semiclosed Systems: A Priority for Twenty-First-Century Agriculture. BioScience 2007, 57, 409–418. [Google Scholar] [CrossRef]
- Nichols, J.D.; Lee, S.M.; Reid, R.; Grant, J.C. Ecosystem Services from Agroforestry Systems in Australia. In Agroforestry and Ecosystem Services; Udawatta, R.P., Jose, S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 431–449. [Google Scholar] [CrossRef]
- LaCanne, C.E.; Lundgren, J.G. Regenerative Agriculture: Merging Farming and Natural Resource Conservation Profitably. PeerJ 2018, 6, e4428. [Google Scholar] [CrossRef]
- Andrade, D.; Pasini, F.; Scarano, F.R. Syntropy and Innovation in Agriculture. Curr. Opin. Environ. Sustain. 2020, 45, 20–24. [Google Scholar] [CrossRef]
- Palm, C.A.; Smukler, S.M.; Sullivan, C.C.; Mutuo, P.K.; Nyadzi, G.I.; Walsh, M.G. Identifying Potential Synergies and Trade-Offs for Meeting Food Security and Climate Change Objectives in Sub-Saharan Africa. Proc. Natl. Acad. Sci. USA 2010, 107, 19661–19666. [Google Scholar] [CrossRef]
- Sanchez, P.; Palm, C.; Sachs, J.; Denning, G.; Flor, R.; Harawa, R.; Jama, B.; Kiflemariam, T.; Konecky, B.; Kozar, R.; et al. The African Millennium Villages. Proc. Natl. Acad. Sci. USA 2007, 104, 16775–16780. [Google Scholar] [CrossRef]
- Bertolami, O.; Francisco, F. A Physical Framework for the Earth System in the Anthropocene: Towards an Accountancy System. arXiv 2019. [Google Scholar] [CrossRef]
- Orou Sannou, R.; Guenther, E. Exploring the Resource Nexus between Forest-Based Land Restoration and Food Security: The Case of the African Great Green Wall Initiative Countries. Land Use Policy 2025, 151, 107499. [Google Scholar] [CrossRef]
- Licata, F.; Thiaw, M.; Ndiaye, P.I.; Andreone, F.; Ficetola, G.F. Negative Responses of Two Dry-adapted Amphibians to Tree Planting Density in the Great Green Wall in Senegal. Restor. Ecol. 2025, e14389. [Google Scholar] [CrossRef]
- Stanturf, J.A.; Mansourian, S. Forest Landscape Restoration: State of Play. R. Soc. Open Sci. 2020, 7, 201218. [Google Scholar] [CrossRef] [PubMed]
- Liiv, J.; Mefti, M.; Poolakese, M.; Rikmann, E.; Shanskiy, M. Innovative Reforestation Strategies to Combat Desertification in Algeria: Insights from the Djelfa Region. Sustainability 2025, 17, 715. [Google Scholar] [CrossRef]
- Adili, B.; El Aouni, M.H.; Balandier, P. Unravelling the Influence of Light, Litter and Understorey Vegetation on Pinus Pinea Natural Regeneration. Forestry 2013, 86, 297–304. [Google Scholar] [CrossRef]
- Saddoud Debbabi, O.; Rahmani Mnasri, S.; Ben Amar, F.; Ben Naceur, M.; Montemurro, C.; Miazzi, M.M. Applications of Microsatellite Markers for the Characterization of Olive Genetic Resources of Tunisia. Genes 2021, 12, 286. [Google Scholar] [CrossRef]
- This, D.; Comstock, J.; Courtois, B.; Xu, Y.; Ahmadi, N.; Vonhof, W.M.; Fleet, C.; Setter, T.; McCouch, S. Genetic Analysis of Water Use Efficiency in Rice (Oryza sativa L.) at the Leaf Level. Rice 2010, 3, 72–86. [Google Scholar] [CrossRef]
- Barbieri, G.; Vallone, S.; Orsini, F.; Paradiso, R.; De Pascale, S.; Negre-Zakharov, F.; Maggio, A. Stomatal Density and Metabolic Determinants Mediate Salt Stress Adaptation and Water Use Efficiency in Basil (Ocimum basilicum L.). J. Plant Physiol. 2012, 169, 1737–1746. [Google Scholar] [CrossRef]
- Yamada, M.; Kasami, K.; Urushigaki, R.; Murillo-Amador, B.; Yamada, S. Mechanisms of Halophilic and Salt Tolerance in Suaeda Edulis Flores Olv. & Noguez. Soil Sci. Plant Nutr. 2025, 1–10. [Google Scholar] [CrossRef]
- Giménez Luque, E.; Delgado Fernández, I.C.; Gómez Mercado, F. Effect of Salinity and Temperature on Seed Germination in Limonium Cossonianum. Botany 2013, 91, 12–16. [Google Scholar] [CrossRef]
- Winter, K.; Holtum, J.A.M. Facultative Crassulacean Acid Metabolism (CAM) Plants: Powerful Tools for Unravelling the Functional Elements of CAM Photosynthesis. J. Exp. Bot. 2014, 65, 3425–3441. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Y.; Yuan, G.; Weston, D.J.; Tuskan, G.A. Engineering Crassulacean Acid Metabolism in C3 and C4 Plants. Cold Spring Harb. Perspect. Biol. 2023, 16, a041674. [Google Scholar] [CrossRef]
- Yang, X.; Cushman, J.C.; Borland, A.M.; Edwards, E.J.; Wullschleger, S.D.; Tuskan, G.A.; Owen, N.A.; Griffiths, H.; Smith, J.A.C.; De Paoli, H.C.; et al. A Roadmap for Research on Crassulacean Acid Metabolism (CAM) to Enhance Sustainable Food and Bioenergy Production in a Hotter, Drier World. New Phytol. 2015, 207, 491–504. [Google Scholar] [CrossRef] [PubMed]
- DePaoli, H.C.; Borland, A.M.; Tuskan, G.A.; Cushman, J.C.; Yang, X. Synthetic Biology as It Relates to CAM Photosynthesis: Challenges and Opportunities. J. Exp. Bot. 2014, 65, 3381–3393. [Google Scholar] [CrossRef] [PubMed]
- Perron, N.; Kirst, M.; Chen, S. Bringing CAM Photosynthesis to the Table: Paving the Way for Resilient and Productive Agricultural Systems in a Changing Climate. Plant Commun. 2024, 5, 100772. [Google Scholar] [CrossRef]
- Rezzouk, F.Z.; Shahid, M.A.; Elouafi, I.A.; Zhou, B.; Araus, J.L.; Serret, M.D. Agronomical and Analytical Trait Data Assessed in a Set of Quinoa Genotypes Growing in the UAE under Different Irrigation Salinity Conditions. Data Brief 2020, 31, 105758. [Google Scholar] [CrossRef]
- Du, B.; Franzisky, B.L.; Muhammad, W.; Alfarraj, S.; Geilfus, C.; Rennenberg, H. How to Cope with Stress in the Desert—The Date Palm Approach. Plant Cell Environ. 2025, 48, 768–780. [Google Scholar] [CrossRef]
- Toderich, K.N.; Mamadrahimov, A.A.; Khaitov, B.B.; Karimov, A.A.; Soliev, A.A.; Nanduri, K.R.; Shuyskaya, E.V. Differential Impact of Salinity Stress on Seeds Minerals, Storage Proteins, Fatty Acids, and Squalene Composition of New Quinoa Genotype, Grown in Hyper-Arid Desert Environments. Front. Plant Sci. 2020, 11, 607102. [Google Scholar] [CrossRef]
- Dantas, B.F.; Ribeiro, R.C.; Matias, J.R.; Araújo, G.G.L. Germinative Metabolism of Caatinga Forest Species in Biosaline Agriculture. J. Seed Sci. 2014, 36, 194–203. [Google Scholar] [CrossRef]
- Leal, I.G.; Accioly, A.M.D.A.; Nascimento, C.W.A.D.; Freire, M.B.G.D.S.; Montenegro, A.A.D.A.; Ferreira, F.D.L. Fitorremediação de Solo Salino s Ódico Por Atriplex Nummularia e Gesso de Jazida. Rev. Bras. Ciênc. Solo 2008, 32, 1065–1072. [Google Scholar] [CrossRef]
- El Nahry, A.H.; Elewa, H.H.; Qaddah, A.A. Soil and Groundwater Capability of East Oweinat Area, Western Desert, Egypt Using GIS Spatial Modeling Techniques. Nat. Sci. 2010, 8, 8. [Google Scholar]
- Al-Omran, A.; Louki, I.; Alkhasha, A.; Abd El-Wahed, M.H.; Obadi, A. Water Saving and Yield of Potatoes under Partial Root-Zone Drying Drip Irrigation Technique: Field and Modelling Study Using SALTMED Model in Saudi Arabia. Agronomy 2020, 10, 1997. [Google Scholar] [CrossRef]
- Multsch, S.; Alquwaizany, A.S.; Alharbi, O.A.; Pahlow, M.; Frede, H.-G.; Breuer, L. Water-Saving Strategies for Irrigation Agriculture in Saudi Arabia. Int. J. Water Resour. Dev. 2017, 33, 292–309. [Google Scholar] [CrossRef]
- Valente, M.; Caviggioli, F.; Agostini, L. Space Economy and Sustainability: A Systematic Review. Sustain. Dev. 2025. [Google Scholar] [CrossRef]
- Rothschild, L.J. Synthetic Biology Meets Bioprinting: Enabling Technologies for Humans on Mars (and Earth). Biochem. Soc. Trans. 2016, 44, 1158–1164. [Google Scholar] [CrossRef]
- Massa, G.D.; Dufour, N.F.; Carver, J.A.; Hummerick, M.E.; Wheeler, R.M.; Morrow, R.C.; Smith, T.M. VEG-01: Veggie Hardware Validation Testing on the International Space Station. Open Agric. 2017, 2, 33–41. [Google Scholar] [CrossRef]
- Kok, R.; Van Huis, A. Insect Food in Space. J. Insects Food Feed. 2021, 7, 1–4. [Google Scholar] [CrossRef]
- Enfield, R.E.; Pandya, J.K.; Lu, J.; McClements, D.J.; Kinchla, A.J. The Future of 3D Food Printing: Opportunities for Space Applications. Crit. Rev. Food Sci. Nutr. 2023, 63, 10079–10092. [Google Scholar] [CrossRef]
- Khodadad, C.L.M.; Hummerick, M.E.; Spencer, L.E.; Dixit, A.R.; Richards, J.T.; Romeyn, M.W.; Smith, T.M.; Wheeler, R.M.; Massa, G.D. Microbiological and Nutritional Analysis of Lettuce Crops Grown on the International Space Station. Front. Plant Sci. 2020, 11, 199. [Google Scholar] [CrossRef]
- Hummerick, M.E.; Khodadad, C.L.M.; Dixit, A.R.; Spencer, L.E.; Maldonado-Vasquez, G.J.; Gooden, J.L.; Spern, C.J.; Fischer, J.A.; Dufour, N.; Wheeler, R.M.; et al. Spatial Characterization of Microbial Communities on Multi-Species Leafy Greens Grown Simultaneously in the Vegetable Production Systems on the International Space Station. Life 2021, 11, 1060. [Google Scholar] [CrossRef]
- Kobayashi, A.; Kim, H.; Tomita, Y.; Miyazawa, Y.; Fujii, N.; Yano, S.; Yamazaki, C.; Kamada, M.; Kasahara, H.; Miyabayashi, S.; et al. Circumnutational Movement in Rice Coleoptiles Involves the Gravitropic Response: Analysis of an Agravitropic Mutant and Space-grown Seedlings. Physiol. Plant. 2019, 165, 464–475. [Google Scholar] [CrossRef]
- Sugimoto, M.; Oono, Y.; Kawahara, Y.; Gusev, O.; Maekawa, M.; Matsumoto, T.; Levinskikh, M.; Sychev, V.; Novikova, N.; Grigoriev, A. Gene Expression of Rice Seeds Surviving 13- and 20-Month Exposure to Space Environment. Life Sci. Space Res. 2016, 11, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Levine, H.G.; Anderson, K.; Boody, A.; Cox, D.; Kuznetsov, O.A.; Hasenstein, K.H. Germination and Elongation of Flax in Microgravity. Adv. Space Res. 2003, 31, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Berkovich, Y.A. Evaluation of Planting Surfaces for Crop Production in Microgravity. Adv. Space Res. 2000, 26, 271–279. [Google Scholar] [CrossRef]
- Berkovich, Y.A.; Krivobok, N.M.; Sinyak, Y.Y.; Smolyanina, S.O.; Grigoriev, Y.I.; Romanov, S.Y.; Guissenberg, A.S. Developing a Vitamin Greenhouse for the Life Support System of the International Space Station and for Future Interplanetary Missions. Adv. Space Res. 2004, 34, 1552–1557. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, B.C.; Brown, C.S.; Levine, H.G.; Krikorian, A.D. Growth and Photosynthetic Responses of Wheat Plants Grown in Space. Plant Physiol. 1996, 110, 801–806. [Google Scholar] [CrossRef]
- Wheeler, R.M.; Fitzpatrick, A.H.; Tibbitts, T.W. Potatoes as a Crop for Space Life Support: Effect of CO2, Irradiance, and Photoperiod on Leaf Photosynthesis and Stomatal Conductance. Front. Plant Sci. 2019, 10, 1632. [Google Scholar] [CrossRef]
- Paul, A.-L.; Sng, N.J.; Zupanska, A.K.; Krishnamurthy, A.; Schultz, E.R.; Ferl, R.J. Genetic Dissection of the Arabidopsis Spaceflight Transcriptome: Are Some Responses Dispensable for the Physiological Adaptation of Plants to Spaceflight? PLoS ONE 2017, 12, e0180186. [Google Scholar] [CrossRef]
- Kruse, C.P.S.; Meyers, A.D.; Basu, P.; Hutchinson, S.; Luesse, D.R.; Wyatt, S.E. Spaceflight Induces Novel Regulatory Responses in Arabidopsis Seedling as Revealed by Combined Proteomic and Transcriptomic Analyses. BMC Plant Biol. 2020, 20, 237. [Google Scholar] [CrossRef]
- Barker, R.; Kruse, C.P.S.; Johnson, C.; Saravia-Butler, A.; Fogle, H.; Chang, H.-S.; Trane, R.M.; Kinscherf, N.; Villacampa, A.; Manzano, A.; et al. Meta-Analysis of the Space Flight and Microgravity Response of the Arabidopsis Plant Transcriptome. npj Microgravity 2023, 9, 21. [Google Scholar] [CrossRef]
- Ferl, R.J.; Koh, J.; Denison, F.; Paul, A.-L. Spaceflight Induces Specific Alterations in the Proteomes of Arabidopsis. Astrobiology 2015, 15, 32–56. [Google Scholar] [CrossRef]
- Xu, P.; Chen, H.; Jin, J.; Cai, W. Single-Base Resolution Methylome Analysis Shows Epigenetic Changes in Arabidopsis Seedlings Exposed to Microgravity Spaceflight Conditions on Board the SJ-10 Recoverable Satellite. npj Microgravity 2018, 4, 12. [Google Scholar] [CrossRef]
- Majeed, A.; Muhammad, Z.; Rehmanullah; Siyar, S. The Role of Ionizing Radiation-Induced Mutations in the Development of Rice Cultivars. In New Frontiers in Stress Management for Durable Agriculture; Rakshit, A., Singh, H.B., Singh, A.K., Singh, U.S., Fraceto, L., Eds.; Springer: Singapore, 2020; pp. 129–144. [Google Scholar] [CrossRef]
- Clamp, M.; Fry, B.; Kamal, M.; Xie, X.; Cuff, J.; Lin, M.F.; Kellis, M.; Lindblad-Toh, K.; Lander, E.S. Distinguishing Protein-Coding and Noncoding Genes in the Human Genome. Proc. Natl. Acad. Sci. USA 2007, 104, 19428–19433. [Google Scholar] [CrossRef] [PubMed]
- Stamm, S.; Ben-Ari, S.; Rafalska, I.; Tang, Y.; Zhang, Z.; Toiber, D.; Thanaraj, T.A.; Soreq, H. Function of Alternative Splicing. Gene 2005, 344, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M. The Origins of Eukaryotic Gene Structure. Mol. Biol. Evol. 2006, 23, 450–468. [Google Scholar] [CrossRef]
- Barash, Y.; Calarco, J.A.; Gao, W.; Pan, Q.; Wang, X.; Shai, O.; Blencowe, B.J.; Frey, B.J. Deciphering the Splicing Code. Nature 2010, 465, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Xu, J.; He, Y.; Yang, K.-Y.; Mordorski, B.; Liu, Y.; Zhang, S. Phosphorylation of an ERF Transcription Factor by Arabidopsis MPK3/MPK6 Regulates Plant Defense Gene Induction and Fungal Resistance. Plant Cell 2013, 25, 1126–1142. [Google Scholar] [CrossRef]
- Butt, H.; Rao, G.S.; Sedeek, K.; Aman, R.; Kamel, R.; Mahfouz, M. Engineering Herbicide Resistance via Prime Editing in Rice. Plant Biotechnol. J. 2020, 18, 2370–2372. [Google Scholar] [CrossRef]
- Ali, N.; Singh, S.; Garg, R. Unlocking Crops’ Genetic Potential: Advances in Genome and Epigenome Editing of Regulatory Regions. Curr. Opin. Plant Biol. 2025, 83, 102669. [Google Scholar] [CrossRef]
- Rothstein, R.J. One-Step Gene Disruption in Yeast. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1983; Volume 101, pp. 202–211. [Google Scholar] [CrossRef]
- Borphukan, B.; Khatun, M.; Fartyal, D.; James, D.; Reddy, M.K. A Gemini Virus-Derived Autonomously Replicating System for HDR-Mediated Genome Editing of the EPSP Synthase Gene in Indica Rice. Plants 2025, 14, 477. [Google Scholar] [CrossRef]
- Curtin, S.J.; Zhang, F.; Sander, J.D.; Haun, W.J.; Starker, C.; Baltes, N.J.; Reyon, D.; Dahlborg, E.J.; Goodwin, M.J.; Coffman, A.P.; et al. Targeted Mutagenesis of Duplicated Genes in Soybean with Zinc-Finger Nucleases. Plant Physiol. 2011, 156, 466–473. [Google Scholar] [CrossRef]
- Peer, R.; Rivlin, G.; Golobovitch, S.; Lapidot, M.; Gal-On, A.; Vainstein, A.; Tzfira, T.; Flaishman, M.A. Targeted Mutagenesis Using Zinc-Finger Nucleases in Perennial Fruit Trees. Planta 2015, 241, 941–951. [Google Scholar] [CrossRef] [PubMed]
- Mukhtiar, A.; Mahmood, A.; Khan, M.A.; Ameen, M.; Al-Khayri, J.M.; Qari, S.H. Transforming Field Crops with CRISPR/Cas: A New Era in Genome Editing. Rend. Fis. Acc. Lincei 2025, 36, 195–208. [Google Scholar] [CrossRef]
- Pattanayak, V.; Ramirez, C.L.; Joung, J.K.; Liu, D.R. Revealing Off-Target Cleavage Specificities of Zinc-Finger Nucleases by in Vitro Selection. Nat. Methods 2011, 8, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Bogdanove, A.J.; Voytas, D.F. TAL Effectors: Customizable Proteins for DNA Targeting. Science 2011, 333, 1843–1846. [Google Scholar] [CrossRef]
- Han, J.; Xia, Z.; Liu, P.; Li, C.; Wang, Y.; Guo, L.; Jiang, G.; Zhai, W. TALEN-Based Editing of TFIIAy5 Changes Rice Response to Xanthomonas Oryzae Pv. Oryzae. Sci. Rep. 2020, 10, 2036. [Google Scholar] [CrossRef]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Lander, E.S. The Heroes of CRISPR. Cell 2016, 164, 18–28. [Google Scholar] [CrossRef]
- Ran, F.A.; Hsu, P.D.; Wright, J.; Agarwala, V.; Scott, D.A.; Zhang, F. Genome Engineering Using the CRISPR-Cas9 System. Nat. Protoc. 2013, 8, 2281–2308. [Google Scholar] [CrossRef]
- Li, A.; Jia, S.; Yobi, A.; Ge, Z.; Sato, S.J.; Zhang, C.; Angelovici, R.; Clemente, T.E.; Holding, D.R. Editing of an Alpha-Kafirin Gene Family Increases, Digestibility and Protein Quality in Sorghum. Plant Physiol. 2018, 177, 1425–1438. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, D.; Zhang, D.; Zhao, X.; Cao, X.; Dong, L.; Liu, J.; Chen, K.; Zhang, H.; Gao, C.; et al. Analysis of the Functions of Ta GW 2 Homoeologs in Wheat Grain Weight and Protein Content Traits. Plant J. 2018, 94, 857–866. [Google Scholar] [CrossRef]
- Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 Editing of Endogenous Banana Streak Virus in the B Genome of Musa spp. Overcomes a Major Challenge in Banana Breeding. Commun. Biol. 2019, 2, 46. [Google Scholar] [CrossRef] [PubMed]
- Ortigosa, A.; Gimenez-Ibanez, S.; Leonhardt, N.; Solano, R. Design of a Bacterial Speck Resistant Tomato by CRISPR/Cas9-mediated Editing of Sl JAZ 2. Plant Biotechnol. J. 2019, 17, 665–673. [Google Scholar] [CrossRef]
- Gerstein, M.B.; Bruce, C.; Rozowsky, J.S.; Zheng, D.; Du, J.; Korbel, J.O.; Emanuelsson, O.; Zhang, Z.D.; Weissman, S.; Snyder, M. What Is a Gene, Post-ENCODE? History and Updated Definition. Genome Res. 2007, 17, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Kong, C.; Yang, Y.; Qi, T.; Zhang, S. Predictive Genetic Circuit Design for Phenotype Reprogramming in Plants. Nat. Commun. 2025, 16, 715. [Google Scholar] [CrossRef] [PubMed]
- Wurtzel, E.T.; Vickers, C.E.; Hanson, A.D.; Millar, A.H.; Cooper, M.; Voss-Fels, K.P.; Nikel, P.I.; Erb, T.J. Revolutionizing Agriculture with Synthetic Biology. Nat. Plants 2019, 5, 1207–1210. [Google Scholar] [CrossRef]
- Brophy, J.A.N.; Voigt, C.A. Principles of Genetic Circuit Design. Nat. Methods 2014, 11, 508–520. [Google Scholar] [CrossRef]
- Roell, M.-S.; Zurbriggen, M.D. The Impact of Synthetic Biology for Future Agriculture and Nutrition. Curr. Opin. Biotechnol. 2020, 61, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Borland, A.M.; Yang, X. Informing the Improvement and Biodesign of Crassulacean Acid Metabolism via System Dynamics Modelling. New Phytol. 2013, 200, 946–949. [Google Scholar] [CrossRef]
- Batista-Silva, W.; Da Fonseca-Pereira, P.; Martins, A.O.; Zsögön, A.; Nunes-Nesi, A.; Araújo, W.L. Engineering Improved Photosynthesis in the Era of Synthetic Biology. Plant Commun. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Maurino, V.G.; Weber, A.P.M. Engineering Photosynthesis in Plants and Synthetic Microorganisms. J. Exp. Bot. 2013, 64, 743–751. [Google Scholar] [CrossRef]
- Palacios, S.; Collins, J.J.; Del Vecchio, D. Machine Learning for Synthetic Gene Circuit Engineering. Curr. Opin. Biotechnol. 2025, 92, 103263. [Google Scholar] [CrossRef]
- Solomatin, S. CA (US) (72) Inventors: Ranjani Varadan, Fremont, CA (US). Available online: https://patentimages.storage.googleapis.com/da/9b/f0/b07e4bb4a0765b/US11819041.pdf (accessed on 18 March 2025).
- Holkenbrink, C.; Ding, B.-J.; Wang, H.-L.; Dam, M.I.; Petkevicius, K.; Kildegaard, K.R.; Wenning, L.; Sinkwitz, C.; Lorántfy, B.; Koutsoumpeli, E.; et al. Production of Moth Sex Pheromones for Pest Control by Yeast Fermentation. Metab. Eng. 2020, 62, 312–321. [Google Scholar] [CrossRef]
- Ke, J.; Wang, B.; Yoshikuni, Y. Microbiome Engineering: Synthetic Biology of Plant-Associated Microbiomes in Sustainable Agriculture. Trends Biotechnol. 2021, 39, 244–261. [Google Scholar] [CrossRef]
- Liu, D.; Liberton, M.; Hendry, J.I.; Aminian-Dehkordi, J.; Maranas, C.D.; Pakrasi, H.B. Engineering Biology Approaches for Food and Nutrient Production by Cyanobacteria. Curr. Opin. Biotechnol. 2021, 67, 1–6. [Google Scholar] [CrossRef]
- Silva, J.C.F.; Teixeira, R.M.; Silva, F.F.; Brommonschenkel, S.H.; Fontes, E.P.B. Machine Learning Approaches and Their Current Application in Plant Molecular Biology: A Systematic Review. Plant Sci. 2019, 284, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Milshteyn, A.; Colosimo, D.A.; Brady, S.F. Accessing Bioactive Natural Products from the Human Microbiome. Cell Host Microbe 2018, 23, 725–736. [Google Scholar] [CrossRef] [PubMed]
- Kautsar, S.A.; Suarez Duran, H.G.; Blin, K.; Osbourn, A.; Medema, M.H. plantiSMASH: Automated Identification, Annotation and Expression Analysis of Plant Biosynthetic Gene Clusters. Nucleic Acids Res. 2017, 45, W55–W63. [Google Scholar] [CrossRef] [PubMed]
- Nesbeth, D.N.; Zaikin, A.; Saka, Y.; Romano, M.C.; Giuraniuc, C.V.; Kanakov, O.; Laptyeva, T. Synthetic Biology Routes to Bio-Artificial Intelligence. Essays Biochem. 2016, 60, 381–391. [Google Scholar] [CrossRef]
- Silva, J.C.F.; Ferreira, M.A.; Carvalho, T.F.M.; Silva, F.F.; De A. Silveira, S.; Brommonschenkel, S.H.; Fontes, E.P.B. RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Int. J. Mol. Sci. 2022, 23, 12176. [Google Scholar] [CrossRef]
- Shafi, A.; Qadir, J.; Sabir, S.; Zain Khan, M.; Rahman, M.M. Nanoagriculture: A Holistic Approach for Sustainable Development of Agriculture. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Kharissova, O.V., Martínez, L.M.T., Kharisov, B.I., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–16. [Google Scholar] [CrossRef]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules 2019, 25, 112. [Google Scholar] [CrossRef]
- Food Applications of Nanotechnology, 1st ed.; Molina, G., Inamuddin, Pelissari, F.M., Asiri, A.M., Eds.; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Navarro, M.; Ashraf, M.; Akram, N.A.; Munné-Bosch, S. Nanofertilizer Use for Sustainable Agriculture: Advantages and Limitations. Plant Sci. 2019, 289, 110270. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, F.; Liu, J.; Bashir, S.; Ma, S.; Cao, M.; Guo, J.; Gao, Z.; Xu, Q.; Liu, S.; et al. ZnO Nanofertilizer Reduced Organic Phosphorus Transformation and Altered Microbial Function in Soil for Sustainable Agriculture. ACS Nano 2025, 19, 6942–6954. [Google Scholar] [CrossRef] [PubMed]
- Chhipa, H. Nanofertilizers and Nanopesticides for Agriculture. Environ. Chem. Lett. 2017, 15, 15–22. [Google Scholar] [CrossRef]
- Savassa, S.M.; Duran, N.M.; Rodrigues, E.S.; De Almeida, E.; Van Gestel, C.A.M.; Bompadre, T.F.V.; De Carvalho, H.W.P. Effects of ZnO Nanoparticles on Phaseolus Vulgaris Germination and Seedling Development Determined by X-Ray Spectroscopy. ACS Appl. Nano Mater. 2018, 1, 6414–6426. [Google Scholar] [CrossRef]
- Leonardi, M.; Caruso, G.M.; Carroccio, S.C.; Boninelli, S.; Curcuruto, G.; Zimbone, M.; Allegra, M.; Torrisi, B.; Ferlitoe, F.; Miritello, M. Smart Nanocomposites of Chitosan/Alginate Nanoparticles Loaded with Copper Oxide as Alternative Nanofertilizers. Environ. Sci. Nano 2021, 8, 174–187. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A Critical Evaluation of Nanopesticides and Nanofertilizers against Their Conventional Analogues. Nat. Nanotechnol. 2018, 13, 677–684. [Google Scholar] [CrossRef]
- Kookana, R.S.; Boxall, A.B.A.; Reeves, P.T.; Ashauer, R.; Beulke, S.; Chaudhry, Q.; Cornelis, G.; Fernandes, T.F.; Gan, J.; Kah, M.; et al. Nanopesticides: Guiding Principles for Regulatory Evaluation of Environmental Risks. J. Agric. Food Chem. 2014, 62, 4227–4240. [Google Scholar] [CrossRef] [PubMed]
- Walker, G.W.; Kookana, R.S.; Smith, N.E.; Kah, M.; Doolette, C.L.; Reeves, P.T.; Lovell, W.; Anderson, D.J.; Turney, T.W.; Navarro, D.A. Ecological Risk Assessment of Nano-Enabled Pesticides: A Perspective on Problem Formulation. J. Agric. Food Chem. 2018, 66, 6480–6486. [Google Scholar] [CrossRef]
- Mannar, M.G.V.; Hurrel, R.F. Food Fortification in a Globalized World; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar] [CrossRef]
- Olson, R.; Gavin-Smith, B.; Ferraboschi, C.; Kraemer, K. Food Fortification: The Advantages, Disadvantages and Lessons from Sight and Life Programs. Nutrients 2021, 13, 1118. [Google Scholar] [CrossRef]
- Cormick, G.; Betrán, A.P.; Metz, F.; Palacios, C.; Beltrán-Velazquez, F.; García-Casal, M.D.L.N.; Peña-Rosas, J.P.; Hofmeyr, G.J.; Belizán, J.M. Regulatory and Policy-Related Aspects of Calcium Fortification of Foods. Implications for Implementing National Strategies of Calcium Fortification. Nutrients 2020, 12, 1022. [Google Scholar] [CrossRef]
- Nölle, N.; Argyropoulos, D.; Ambacher, S.; Müller, J.; Biesalski, H.K. Vitamin D2 Enrichment in Mushrooms by Natural or Artificial UV-Light during Drying. LWT—Food Sci. Technol. 2017, 85, 400–404. [Google Scholar] [CrossRef]
- Libenská, L.; Kharoshka, A.; Pulkrabová, J.; Schulzová, V.; Drábová, L. Influence of UV-B and Culinary Treatment on Vitamin D2 and Agaritine in Button Mushrooms. J. Food Compos. Anal. 2025, 137, 106879. [Google Scholar] [CrossRef]
- Song, X.; Pérez-Cueto, F.J.A.; Bølling Laugesen, S.M.; Van Der Zanden, L.D.T.; Giacalone, D. Older Consumers’ Attitudes towards Food Carriers for Protein-Enrichment. Appetite 2019, 135, 10–19. [Google Scholar] [CrossRef]
- Vandenkoornhuyse, P.; Quaiser, A.; Duhamel, M.; Le Van, A.; Dufresne, A. The Importance of the Microbiome of the Plant Holobiont. New Phytol. 2015, 206, 1196–1206. [Google Scholar] [CrossRef] [PubMed]
- Lignon, V.A.; Mas, F.; Jones, E.E.; Kaiser, C.; Dhami, M.K. The Floral Interface: A Playground for Interactions between Insect Pollinators, Microbes, and Plants. N. Z. J. Zool. 2025, 52, 218–237. [Google Scholar] [CrossRef]
- Ferrol, N.; Tamayo, E.; Vargas, P. The Heavy Metal Paradox in Arbuscular Mycorrhizas: From Mechanisms to Biotechnological Applications. J. Exp. Bot. 2016, 67, 6253–6265. [Google Scholar] [CrossRef]
- Elango, D.; Devi, K.D.; Jeyabalakrishnan, H.K.; Rajendran, K.; Thoomatti Haridass, V.K.; Dharmaraj, D.; Charuchandran, C.V.; Wang, W.; Fakude, M.; Mishra, R.; et al. Agronomic, Breeding, and Biotechnological Interventions to Mitigate Heavy Metal Toxicity Problems in Agriculture. J. Agric. Food Res. 2022, 10, 100374. [Google Scholar] [CrossRef]
- Veliz, E.A.; Martínez-Hidalgo, P.; Hirsch, A.M. Chitinase-Producing Bacteria and Their Role in Biocontrol. AIMS Microbiol. 2017, 3, 689–705. [Google Scholar] [CrossRef]
- Amaresan, N.; Jayakumar, V.; Kumar, K.; Thajuddin, N. Biocontrol and Plant Growth-Promoting Ability of Plant-Associated Bacteria from Tomato (Lycopersicum Esculentum) under Field Condition. Microb. Pathog. 2019, 136, 103713. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.; Cheon, W.; Park, J.; Kwon, H.-T.; Balaraju, K.; Kim, J.; Yoon, Y.J.; Jeon, Y. Characterization of Bacillus Velezensis AK-0 as a Biocontrol Agent against Apple Bitter Rot Caused by Colletotrichum Gloeosporioides. Sci. Rep. 2021, 11, 626. [Google Scholar] [CrossRef]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma–Plant–Pathogen Interactions for Better Development of Biocontrol Applications. J. Fungi 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Camaréna, S. Artificial Intelligence in the Design of the Transitions to Sustainable Food Systems. J. Clean. Prod. 2020, 271, 122574. [Google Scholar] [CrossRef]
- Marvin, H.J.P.; Bouzembrak, Y.; Van Der Fels-Klerx, H.J.; Kempenaar, C.; Veerkamp, R.; Chauhan, A.; Stroosnijder, S.; Top, J.; Simsek-Senel, G.; Vrolijk, H.; et al. Digitalisation and Artificial Intelligence for Sustainable Food Systems. Trends Food Sci. Technol. 2022, 120, 344–348. [Google Scholar] [CrossRef]
- Santana, T.E.Z.; Silva, J.C.F.; Silva, L.O.C.D.; Alvarenga, A.B.; Menezes, G.R.D.O.; Torres, R.A.A.; Duarte, M.D.S.; Silva, F.F.E. Genome-Enabled Classification of Stayability in Nellore Cattle under a Machine Learning Framework. Livest. Sci. 2022, 260, 104935. [Google Scholar] [CrossRef]
- Onishi, Y.; Yoshida, T.; Kurita, H.; Fukao, T.; Arihara, H.; Iwai, A. An Automated Fruit Harvesting Robot by Using Deep Learning. Robomech J. 2019, 6, 13. [Google Scholar] [CrossRef]
- Park, E. CRNet: A Multimodal Deep Convolutional Neural Network for Customer Revisit Prediction. J. Big Data 2023, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.C.F.; Carvalho, T.F.M.; Basso, M.F.; Deguchi, M.; Pereira, W.A.; Sobrinho, R.R.; Vidigal, P.M.P.; Brustolini, O.J.B.; Silva, F.F.; Dal-Bianco, M.; et al. Geminivirus Data Warehouse: A Database Enriched with Machine Learning Approaches. BMC Bioinform. 2017, 18, 240. [Google Scholar] [CrossRef]
- Silva, J.C.F.; Carvalho, T.F.M.; Fontes, E.P.B.; Cerqueira, F.R. Fangorn Forest (F2): A Machine Learning Approach to Classify Genes and Genera in the Family Geminiviridae. BMC Bioinform. 2017, 18, 431. [Google Scholar] [CrossRef]
- Ansah, F.A.; Amodio, M.L.; Colelli, G. Quality of Fresh-cut Products as Affected by Harvest and Postharvest Operations. J. Sci. Food Agric. 2018, 98, 3614–3626. [Google Scholar] [CrossRef]
- Yang, X. Application of Artificial Intelligence in Quality Test of Vibrating Fruit Harvesting Mechanical Operation. IOP Conf. Ser. Mater. Sci. Eng. 2020, 740, 012205. [Google Scholar] [CrossRef]
- Miao, Z.; Yu, X.; Li, N.; Zhang, Z.; He, C.; Li, Z.; Deng, C.; Sun, T. Efficient Tomato Harvesting Robot Based on Image Processing and Deep Learning. Precis. Agric. 2023, 24, 254–287. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A Comprehensive Review on Automation in Agriculture Using Artificial Intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Thao, L.Q.; Thien, N.D.; Bach, N.C.; Cuong, D.D.; Anh, L.D.; Khanh, D.G.; Hieu, N.H.M.; Minh, N.T.H. PesViT: A Deep Learning Approach for Detecting Misuse of Pesticides on Farm. J. Supercomput. 2023, 79, 15790–15813. [Google Scholar] [CrossRef]
- Yang, R.; Yan, Y.; Wei, Z.; Wang, F.; Yang, G. Pesti-DGI-Net: A Multi-Modal Deep Learning Architecture Based on Dual Interpretability for Pesticide-Likeness Prediction. Comput. Electron. Agric. 2024, 217, 108660. [Google Scholar] [CrossRef]
- Bhat, M.A.; Rather, M.Y.; Singh, P.; Hassan, S.; Hussain, N. Advances in Smart Food Authentication for Enhanced Safety and Quality. Trends Food Sci. Technol. 2025, 155, 104800. [Google Scholar] [CrossRef]
- Ahmad, R.W.; Ko, K.-M.; Rashid, A.; Rodrigues, J.J.P.C. Blockchain for Food Industry: Opportunities, Requirements, Case Studies, and Research Challenges. IEEE Access 2024, 12, 117363–117378. [Google Scholar] [CrossRef]
- Queiroz, L.P.; Nogueira, I.B.R.; Ribeiro, A.M. Flavor Engineering: A Comprehensive Review of Biological Foundations, AI Integration, Industrial Development, and Socio-Cultural Dynamics. Food Res. Int. 2024, 196, 115100. [Google Scholar] [CrossRef]
- Silva, J.C.F.; Schuster, L.; Sexson, N.; Kirst, M. InteracTor: A New Integrative Feature Extraction Toolkit for Improved Characterization of Protein Structural Properties. bioRxiv 2024, Online. [Google Scholar] [CrossRef]
- Gricourt, G.; Meyer, P.; Duigou, T.; Faulon, J.-L. Artificial Intelligence Methods and Models for Retro-Biosynthesis: A Scoping Review. ACS Synth. Biol. 2024, 13, 2276–2294. [Google Scholar] [CrossRef]
- Van Oel, P.R.; Hoekstra, A.Y. Towards Quantification of the Water Footprint of Paper: A First Estimate of Its Consumptive Component. Water Resour Manag. 2012, 26, 733–749. [Google Scholar] [CrossRef]
- Zhang, G.P.; Hoekstra, A.Y.; Mathews, R.E. Water Footprint Assessment (WFA) for Better Water Governance and Sustainable Development. Water Resour. Ind. 2013, 1–2, 1–6. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bacenetti, J.; Fiala, M. Water Footprint of Crop Productions: A Review. Sci. Total Environ. 2016, 548–549, 236–251. [Google Scholar] [CrossRef]
- Xiang, X.; Li, Q.; Khan, S.; Khalaf, O.I. Urban Water Resource Management for Sustainable Environment Planning Using Artificial Intelligence Techniques. Environ. Impact Assess. Rev. 2021, 86, 106515. [Google Scholar] [CrossRef]
- Moreno-Pizani, M.A. Water Management in Agricultural Production, the Economy, and Venezuelan Society. Front. Sustain. Food Syst. 2021, 4, 624066. [Google Scholar] [CrossRef]
- Vågsholm, I.; Arzoomand, N.S.; Boqvist, S. Food Security, Safety, and Sustainability—Getting the Trade-Offs Right. Front. Sustain. Food Syst. 2020, 4, 16. [Google Scholar] [CrossRef]
- Steduto, P.; Faurès, J.-M.; Hoogeveen, J.; Winpenny, J.T.; Burke, J.J. Coping with Water Scarcity: An Action Framework for Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; Available online: https://library.wur.nl/WebQuery/titel/2014237 (accessed on 18 March 2025).
- Su, Y.; Gao, W.; Guan, D.; Zuo, T. Achieving Urban Water Security: A Review of Water Management Approach from Technology Perspective. Water Resour. Manag. 2020, 34, 4163–4179. [Google Scholar] [CrossRef]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater Depletion Embedded in International Food Trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef]
- Abdelkader, A.; Elshorbagy, A. ACPAR: A Framework for Linking National Water and Food Security Management with Global Conditions. Adv. Water Resour. 2021, 147, 103809. [Google Scholar] [CrossRef]
- Ganeson, K.; Mouriya, G.K.; Bhubalan, K.; Razifah, M.R.; Jasmine, R.; Sowmiya, S.; Amirul, A.-A.A.; Vigneswari, S.; Ramakrishna, S. Smart Packaging − A Pragmatic Solution to Approach Sustainable Food Waste Management. Food Packag. Shelf Life 2023, 36, 101044. [Google Scholar] [CrossRef]
- Xie, B.; Zhu, G.; Liu, B.; Su, Q.; Deng, S.; Yang, L.; Liu, G.; Dong, C.; Wang, M.; Liu, H. The Water Treatment and Recycling in 105-Day Bioregenerative Life Support Experiment in the Lunar Palace 1. Acta Astronaut. 2017, 140, 420–426. [Google Scholar] [CrossRef]
- Meyer, C.; Schneider, W. NASA Advanced Explorations Systems: 2018 Advancements in Life Support Systems. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 17–19 September 2018; American Institute of Aeronautics and Astronautics: Orlando, FL, USA, 2018. [Google Scholar] [CrossRef]
- Arai, T.; Fricker, J. Electro-Oxidation of Urine and Constituent Analysis of Resulting Wastewater and Generated Gases for Water Recovery in Space. Acta Astronaut. 2021, 179, 415–424. [Google Scholar] [CrossRef]
- Xiao, A.; Xu, Z.; Skare, M.; Qin, Y.; Wang, X. Bridging the Digital Divide: The Impact of Technological Innovation on Income Inequality and Human Interactions. Humanit. Soc Sci. Commun. 2024, 11, 809. [Google Scholar] [CrossRef]
- Dahdal, A.M.; Abdel Ghafar, A. The Digital Silk Road: “Tech-Diplomacy” as a Paradigm for Understanding Technological Adoption and Emerging Digital Regulations in MENA. Asian J. Law Soc. 2025, 1–26. [Google Scholar] [CrossRef]
- Mihret, Y.C.; Takele, M.M.; Mintesinot, S.M. Advancements in Agriculture 4.0 and the Needs for Introduction and Adoption in Ethiopia: A Review. Adv. Agric. 2025, 2025, 8828400. [Google Scholar] [CrossRef]
- Sharma, V.K.; Monteleone, G.; Braccio, G.; Anyanwu, C.N.; Aneke, N.N. A Comprehensive Review of Green Energy Technologies: Towards Sustainable Clean Energy Transition and Global Net-Zero Carbon Emissions. Processes 2024, 13, 69. [Google Scholar] [CrossRef]
- Cho, H.; Ackom, E. Artificial Intelligence (AI)-Driven Approach to Climate Action and Sustainable Development. Nat. Commun. 2025, 16, 1228. [Google Scholar] [CrossRef]
- Katenova, M.; Turmaganbetova, K. Economic Consequences of Artificial Intelligence. In Advances in Finance, Accounting, and Economics; Günar, A., Ed.; IGI Global: Hershey, PA, USA, 2025; pp. 21–44. [Google Scholar] [CrossRef]
- Kraak, V.I.; Aschemann-Witzel, J. The Future of Plant-Based Diets: Aligning Healthy Marketplace Choices with Equitable, Resilient, and Sustainable Food Systems. Annu. Rev. Public Health 2024, 45, 253–275. [Google Scholar] [CrossRef] [PubMed]
- Gostin, A.-I.; McNamara, P. Cross-Cultural Perspectives on Nutrition and Health Claims. In Nutrition Science, Marketing Nutrition, Health Claims, and Public Policy; Elsevier: Amsterdam, The Netherlands, 2023; pp. 245–258. [Google Scholar] [CrossRef]
- Faccio, E.; Guiotto Nai Fovino, L. Food Neophobia or Distrust of Novelties? Exploring Consumers’ Attitudes toward GMOs, Insects and Cultured Meat. Appl. Sci. 2019, 9, 4440. [Google Scholar] [CrossRef]
- Wang, K.-H.; Lu, W.-C. AI-Induced Job Impact: Complementary or Substitution? Empirical Insights and Sustainable Technology Considerations. Sustain. Technol. Entrep. 2025, 4, 100085. [Google Scholar] [CrossRef]
- Nature Editorial. End the Glaring Inequity in International Science Collaborations. Nature 2023, 624, 473. [Google Scholar] [CrossRef]
- Barichello, R. The Challenge of Achieving Food Security. In Current Issues in Global Agricultural and Trade Policy; WORLD SCIENTIFIC (EUROPE): London, UK, 2021; pp. 111–133. [Google Scholar] [CrossRef]
- Buckley Biggs, N.; Hafner, J.; Mashiri, F.E.; Huntsinger, L.; Lambin, E.F. Payments for Ecosystem Services within the Hybrid Governance Model: Evaluating Policy Alignment and Complementarity on California Rangelands. Ecol. Soc. 2021, 26, art19. [Google Scholar] [CrossRef]
- Sani, D.; Picone, S.; Bianchini, A.; Fava, F.; Guarnieri, P.; Rossi, J. An Overview of the Transition to a Circular Economy in Emilia-Romagna Region, Italy Considering Technological, Legal–Regulatory and Financial Points of View: A Case Study. Sustainability 2021, 13, 596. [Google Scholar] [CrossRef]
- Ending Hunger: Science Must Stop Neglecting Smallholder Farmers. Nature 2020, 586, 336. [CrossRef] [PubMed]
- Feast and Famine in Agricultural Research. Nat. Plants 2020, 6, 1195. [CrossRef] [PubMed]
- Pateman, R.M.; De Bruin, A.; Piirsalu, E.; Reynolds, C.; Stokeld, E.; West, S.E. Citizen Science for Quantifying and Reducing Food Loss and Food Waste. Front. Sustain. Food Syst. 2020, 4, 589089. [Google Scholar] [CrossRef]
- Fritz, S.; See, L.; Carlson, T.; Haklay, M.; Oliver, J.L.; Fraisl, D.; Mondardini, R.; Brocklehurst, M.; Shanley, L.A.; Schade, S.; et al. Citizen Science and the United Nations Sustainable Development Goals. Nat. Sustain. 2019, 2, 922–930. [Google Scholar] [CrossRef]
- Ryan, S.F.; Adamson, N.L.; Aktipis, A.; Andersen, L.K.; Austin, R.; Barnes, L.; Beasley, M.R.; Bedell, K.D.; Briggs, S.; Chapman, B.; et al. The Role of Citizen Science in Addressing Grand Challenges in Food and Agriculture Research. Proc. R. Soc. B 2018, 285, 20181977. [Google Scholar] [CrossRef]
- Rosegrant, M.W.; Cline, S.A. Global Food Security: Challenges and Policies. Science 2003, 302, 1917–1919. [Google Scholar] [CrossRef]
- Ahmad, A.; Ghouri, M.Z.; Munawar, N.; Ismail, M.; Ashraf, S.; Aftab, S.O. Regulatory, Ethical, and Social Aspects of CRISPR Crops. In CRISPR Crops; Ahmad, A., Khan, S.H., Khan, Z., Eds.; Springer: Singapore, 2021; pp. 261–287. [Google Scholar] [CrossRef]
- Šutković, J.; Mahmutovic, L.; Huseinbegovic, E.; Adilovic, M.; Sinanovic, F.; Akcesme, F.B. Ethical, Legal and Social Implications of Genetically Modified Organism in the Shadow of Advanced Genetic Tools. Period. Eng. Nat. Sci. (PEN) 2020, 8, 2118–2128. [Google Scholar]
- Peeters, A. Obesity and the Future of Food Policies That Promote Healthy Diets. Nat. Rev. Endocrinol. 2018, 14, 430–437. [Google Scholar] [CrossRef]
- McGuire, J.W. Democracy, Social Policy, and Mortality Decline in Brazil; Department of Government Wesleyan University Middletown: Middletown, CT, USA, 2001. [Google Scholar]
- Lee, N. Global ChanGe Leaders Case Study; Coady International Institute: Antigonish, NS, Canada, 2012. [Google Scholar]
- Micha, R.; Karageorgou, D.; Bakogianni, I.; Trichia, E.; Whitsel, L.P.; Story, M.; Peñalvo, J.L.; Mozaffarian, D. Effectiveness of School Food Environment Policies on Children’s Dietary Behaviors: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0194555. [Google Scholar] [CrossRef] [PubMed]
- Anastassiadou, M.; Devos, Y.; Dujardin, B.; Eskes, C.; Kouloura, E.; López-Gálvez, G.; Rizzi, V.; Gilsenan, M.B. Translating Data into Policy Informing Decisions: Current and Future Perspectives from the European Food Safety Authority (EFSA). Proc. Nutr. Soc. 2025, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lubieniechi, S.A.; Van Eenennaam, A.L.; Smyth, S.J. Regulation of Animal and Plant Agricultural Biotechnology. Trends Biotechnol. 2025, 43, 511–521. [Google Scholar] [CrossRef]
- Park, J.-E.; Jeong, Y.J.; Park, J.B.; Kim, H.Y.; Yoo, Y.H.; Lee, K.S.; Yang, W.T.; Kim, D.H.; Kim, J.-M. Dietary Exposure to Transgenic Rice Expressing the Spider Silk Protein Fibroin Reduces Blood Glucose Levels in Diabetic Mice: The Potential Role of Insulin Receptor Substrate-1 Phosphorylation in Adipocytes. Dev. Reprod. 2019, 23, 223–229. [Google Scholar] [CrossRef]
- Hindmarsh, R.; Du Plessis, R. GMO Regulation and Civic Participation at the “Edge of the World”: The Case of Australia and New Zealand. New Genet. Soc. 2008, 27, 181–199. [Google Scholar] [CrossRef]
- Vindman, C.; Trump, B.; Cummings, C.; Smith, M.; Titus, A.J.; Oye, K.; Prado, V.; Turmus, E.; Linkov, I. The Convergence of AI and Synthetic Biology: The Looming Deluge. arXiv 2024. [Google Scholar] [CrossRef]
- Padhiary, M.; Roy, D.; Dey, P. Mapping the Landscape of Biogenic Nanoparticles in Bioinformatics and Nanobiotechnology: AI-Driven Insights. In Advances in Chemical and Materials Engineering; Das, S., Khade, S.M., Roy, D.B., Trivedi, K., Eds.; IGI Global: Hershey, PA, USA, 2024; pp. 337–376. [Google Scholar] [CrossRef]
- Zelenka, N.R.; Di Cara, N.; Sharma, K.; Sarvaharman, S.; Ghataora, J.S.; Parmeggiani, F.; Nivala, J.; Abdallah, Z.S.; Marucci, L.; Gorochowski, T.E. Data Hazards in Synthetic Biology. Synth. Biol. 2024, 9, ysae010. [Google Scholar] [CrossRef]
- Syed, M.A. Microbiology in the Era of Artificial Intelligence: Nanotechnology, Quantum, and Next Generation Sequencing, 1st ed.; Taylor & Francis Group: Milton Keynes, UK, 2025. [Google Scholar]
- Nadathur, S.; Wanasundara, J.P.D.; Scanlin, L. Feeding the Globe Nutritious Food in 2050: Obligations and Ethical Choices. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2024; pp. 649–668. [Google Scholar] [CrossRef]
Country | Latitude | Longitude | Map View |
---|---|---|---|
Algeria | 27.290702 | −0.065070 | https://www.google.com/maps/place/27%C2%B017’47.6%22N+0%C2%B003’56.7%22W/, accessed on 18 March 2025 |
Libya | 26.410351 | 14.348167 | https://www.google.com/maps/place/26%C2%B022’36.3%22N+14%C2%B027’57.5%22E/, accessed on 18 March 2025 |
Egypt | 22.616099 | 28.543529 | https://www.google.com/maps/place/22%C2%B046’21.7%22N+28%C2%B032’56.4%22E, accessed on 18 March 2025 |
Saudi Arabia | 26.281304 | 43.504683 | https://www.google.com/maps/place/26%C2%B016’52.7%22N+43%C2%B030’16.9%22E/, accessed on 18 March 2025 |
Oman | 18.258288 | 53.828732 | https://www.google.com/maps/place/18%C2%B015’29.8%22N+53%C2%B049’43.4%22E/, accessed on 18 March 2025 |
United Arab Emirates | 24.4984106 | 55.349223 | https://www.google.com/maps/place/24%C2%B029’10.2%22N+55%C2%B032’47.6%22E/, accessed on 18 March 2025 |
California/Nevada | 26.281306 | 43.504694 | https://www.google.com/maps/place/26%C2%B016’52.7%22N+43%C2%B030’16.9%22E/@26.2813056,43.463501, accessed on 18 March 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.C.F.; Machado, K.L.d.G.; Silva, A.F.d.S.; Dias, R.; Bodnar, V.R.; Vieira, W.O.; Moreno-Pizani, M.A.; Ramos, J.D.; Pauli, I.; Costa, L.C.d. Challenges and Opportunities for New Frontiers and Technologies to Guarantee Food Production. Sustainability 2025, 17, 3792. https://doi.org/10.3390/su17093792
Silva JCF, Machado KLdG, Silva AFdS, Dias R, Bodnar VR, Vieira WO, Moreno-Pizani MA, Ramos JD, Pauli I, Costa LCd. Challenges and Opportunities for New Frontiers and Technologies to Guarantee Food Production. Sustainability. 2025; 17(9):3792. https://doi.org/10.3390/su17093792
Chicago/Turabian StyleSilva, José Cleydson Ferreira, Kleiton Lima de Godoy Machado, Anna Flavia de Souza Silva, Raquel Dias, Victor Ricardo Bodnar, Wallison Oliveira Vieira, Maria Alejandra Moreno-Pizani, Jenifer Dias Ramos, Ivani Pauli, and Lucas Cavalcante da Costa. 2025. "Challenges and Opportunities for New Frontiers and Technologies to Guarantee Food Production" Sustainability 17, no. 9: 3792. https://doi.org/10.3390/su17093792
APA StyleSilva, J. C. F., Machado, K. L. d. G., Silva, A. F. d. S., Dias, R., Bodnar, V. R., Vieira, W. O., Moreno-Pizani, M. A., Ramos, J. D., Pauli, I., & Costa, L. C. d. (2025). Challenges and Opportunities for New Frontiers and Technologies to Guarantee Food Production. Sustainability, 17(9), 3792. https://doi.org/10.3390/su17093792