Research on the Coupling and Coordination Between New-Quality Productivity and Digital Transformation in China’s Provinces
Abstract
:1. Introduction
2. Literature Review
2.1. Research on the Connotation of New-Quality Productivity and the Measurement of Its Development Level
2.2. Research on Drivers and Impacts of Digital Transformation
2.3. Research on Coupling Coordination Mechanisms
3. Materials and Methods
3.1. Construction of the Index System
3.1.1. Evaluation Index System of New-Quality Productivity
3.1.2. Evaluation Index System for Digital Transformation
3.2. Method
3.2.1. Entropy Method
- (1)
- Standardized processing of the original data:
- (2)
- Use the standardized data to calculate the proportion of the jth indicator in the ith year:
- (3)
- Calculate the information entropy of the indicator:
- (4)
- Calculate the indicator weight:
- (5)
- Calculate the comprehensive score:
3.2.2. Coupling Coordination Degree Model
3.2.3. Dagum Gini Coefficient Method
- (1)
- The overall Gini coefficient, regional Gini coefficients, and the contributions of intra-regional disparities are calculated:
- (2)
- The inter-regional Gini coefficient, contribution of inter-regional net disparities, and contribution of transvariational density are calculated:
3.2.4. Influence Degree Model
3.2.5. Addressing Potential Biases
3.3. Data Source
4. Results
4.1. Analysis of the Measurement Results of New-Quality Productivity and Digital Transformation
4.1.1. New-Quality Productivity
4.1.2. Digital Transformation
4.2. Spatiotemporal Evolution Characteristics of the Coupling and Coordination Between New-Quality Productivity and Digital Transformation
4.2.1. Characteristics of Temporal Sequence Evolution
4.2.2. Spatial Evolution Trend
4.3. Empirical Analysis
4.3.1. Analysis of the Differences in the Coupling Coordination Degree Between New-Quality Productivity and Digital Transformation
- (1)
- Overall and Intra-Regional Disparities
- (2)
- Inter-Regional Disparities
- (3)
- Sources of Disparities and Contributions
4.3.2. Analysis of the Factors Influencing the Coupling Coordination Degree Between New-Quality Productivity and Digital Transformation
4.4. Robustness Checks
4.4.1. Robustness Test Considering the Influence of Macroeconomic Factors
4.4.2. Test of Sample Interval Change
4.4.3. Test of Key Variable Substitution
4.5. Endogeneity Test
5. Discussion
5.1. Theoretical Contributions: Expanding the Theoretical Boundaries of New-Quality Productivity
5.2. Practical Implications: Decoding the Policy Logic of Regional Coordinated Development
5.3. Methodological Innovation: Validating the Revised Coupling Model
5.4. Research Limitations
5.4.1. Consideration of Macroeconomic and Political Developments
5.4.2. Impact of the COVID-19 Pandemic
5.4.3. Limitations of the Method
6. Conclusions
6.1. Conclusions
6.2. Implications
7. Guidelines for International Application
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, F.; Hu, Y.; Liu, F. Research on regional carbon emission policy and breakthrough green technology innovation pathways: Based on the perspective of new quality productivity. Glob. Nest J. 2024, 26, 06248. [Google Scholar]
- Shi, J.; Xu, L. Research on the Great Strategic Significance and Realization Path of Accelerating the Formation of New-Quality Productivity. Res. Financ. Econ. Issues 2024, 1, 3–12. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, G.H.; Zhang, M.Y.; Zhou, W.B. Research on the Impact of the Digital Economy on Enterprises’ New-Quality Productivity. West Forum 2024, 34, 17–30. (In Chinese) [Google Scholar]
- Zheng, M.; Yan, S.; Xu, S. Digital Economy, Industry–Academia–Research Collaborative Innovation, and the Development of New-Quality Productive Forces. Sustainability 2025, 17, 318. [Google Scholar] [CrossRef]
- Wang, J.; Qiao, L.; Zhu, G.; Di, K.; Zhang, X. Research on the driving factors and impact mechanisms of green new quality productive forces in high-tech retail enterprises under China’s Dual Carbon Goals. J. Retail. Consum. Serv. 2025, 82, 104092. [Google Scholar] [CrossRef]
- Ling, X.X.; Xie, H.; Tuo, L.; Jin, Z. The Three Dimensions of New Quality Productivity: Temporal-Spatial, Structural and Technological Dimensions. J. Xinjiang Norm. Univ. 2024, 45, 67–76. (In Chinese) [Google Scholar]
- Song, H.; Zhang, X. Digital Transformation Empowering New-Quality Productivity: Mechanism, Challenges and Path Selection. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2024, 26, 41–51+73. (In Chinese) [Google Scholar]
- Shao, C.; Dong, H.; Gao, Y. New Quality Productivity and Industrial Structure in China: The Moderating Effect of Environmental Regulation. Sustainability 2024, 16, 6796. [Google Scholar] [CrossRef]
- Li, L.; Liu, Z. Sustainable Evolution of China’s Provincial New Quality Productivity Based on Three Dimensions of Multi-Period Development and Combination Weights. Sustainability 2024, 16, 11259. [Google Scholar] [CrossRef]
- Yao, L.; Li, A.; Yan, E. Research on digital infrastructure construction empowering new quality productivity. Sci. Rep. 2025, 15, 6645. [Google Scholar] [CrossRef]
- Gang, W.; Hongrui, Z. Research on the impact of cost of equity capital on firm new quality productive forces in China. Total Qual. Manag. Bus. Excell. 2025, 1–23. [Google Scholar] [CrossRef]
- Li, J.; Noorliza, K.; Zhang, X. Enhancing Environmental, Social, and Governance Performance through New Quality Productivity and Green Innovation. Sustainability 2024, 16, 4843. [Google Scholar] [CrossRef]
- Criveanu, M.M. Investigating Digital Intensity and E-Commerce as Drivers for Sustainability and Economic Growth in the EU Countries. Electronics 2023, 12, 2318. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, X.Y. Impact of digital government construction on the intelligent transformation of enterprises: Evidence from China. Technol. Forecast. Soc. Change 2025, 210, 123787. [Google Scholar] [CrossRef]
- Safa, M.; Sharma, N.; Weeks, K.; Slaydon, J. Next normal for business post pandemics: COVID-19. Int. J. Technol. Manag. Sustain. Dev. 2023, 22, 21–34. [Google Scholar] [CrossRef]
- Li, C.; Long, G.; Li, S. Research on measurement and disequilibrium of manufacturing digital transformation: Based on the text mining data of A-share listed companies. Data Sci. Financ. Econ. 2023, 3, 30–54. [Google Scholar] [CrossRef]
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Dong, J.Q.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Matt, C.; Hess, T.; Benlian, A. Digital transformation strategies. Bus. Inf. Syst. Eng. 2015, 57, 339–343. [Google Scholar] [CrossRef]
- Daradkeh, F.M.; Hassan, T.H.; Palei, T.; Helal, M.Y.; Mabrouk, S.; Saleh, M.I.; Salem, A.E.; Elshawarbi, N.N. Enhancing Digital Presence for Maximizing Customer Value in Fast-Food Restaurants. Sustainability 2023, 15, 5690. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Y.; Du, Z. Valuing Financial Data: The Case of Analyst Forecasts. Financ. Res. Lett. 2025, 75, 106847. [Google Scholar] [CrossRef]
- Li, R.; Rao, J.; Wan, L. The digital economy, enterprise digital transformation, and enterprise innovation. Manag. Decis. Econ. 2022, 43, 2875–2886. [Google Scholar] [CrossRef]
- Li, Z.; Guo, F.; Du, Z. Learning from Peers: How Peer Effects Reshape the Digital Value Chain in China? J. Theor. Appl. Electron. Commer. Res. 2025, 20, 41. [Google Scholar] [CrossRef]
- Mosterd, L.; Sobota, V.C.; van de Kaa, G.; Ding, A.Y.; de Reuver, M. Context dependent trade-offs around platform-to-platform openness: The case of the Internet of Things. Technovation 2021, 108, 102331. [Google Scholar] [CrossRef]
- Dong, Q.; Zhong, K.; Liao, Y.; Xiong, R.; Wang, F.; Pang, M. Coupling coordination degree of environment, energy, and economic growth in resource-based provinces of China. Resour. Policy 2023, 81, 103308. [Google Scholar] [CrossRef]
- Chang, Q.; Sha, Y.; Chen, Y. The Coupling Coordination and Influencing Factors of Urbanization and Ecological Resilience in the Yangtze River Delta Urban Agglomeration, China. Land 2024, 13, 111. [Google Scholar] [CrossRef]
- Wu, H.; Deng, H.; Gao, X. Corporate coupling coordination between ESG and financial performance: Evidence from China’s listed companies. Environ. Impact Assess. Rev. 2024, 107, 107546. [Google Scholar] [CrossRef]
- Han, S.; Wang, B.; Ao, Y.; Bahmani, H.; Chai, B. The coupling and coordination degree of urban resilience system: A case study of the Chengdu-Chongqing urban agglomeration. Environ. Impact Assess. Rev. 2023, 101, 107145. [Google Scholar] [CrossRef]
- Wu, B.; Quan, Q.; Yang, S.; Dong, Y. A social-ecological coupling model for evaluating the human-water relationship in basins within the Budyko framework. J. Hydrol. 2023, 619, 129361. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R. New-Quality Productivity: Index Construction and Spatiotemporal Evolution. J. Xi’an Univ. Financ. Econ. 2024, 37, 31–47. (In Chinese) [Google Scholar]
- VIAL, G. Understanding digital transformation: A review and a research agenda. J. Strateg. Inf. Syst. 2019, 28, 118–144. [Google Scholar] [CrossRef]
- Zhuo, C.; Chen, J. Can digital transformation overcome the enterprise innovation dilemma: Effect, mechanism and effective boundary. Technol. Forecast. Soc. Change 2023, 190, 122378. [Google Scholar] [CrossRef]
- Cheng, W.; Li, C.; Zhao, T. The stages of enterprise digital transformation and its impact on internal control: Evidence from China. Int. Rev. Financ. Anal. 2024, 92, 103079. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y. Research on evaluation of Wuhan air pollution emission level based on entropy weight method. Sci. Rep. 2024, 14, 5012. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.N. Forms and Properties of the Coupling Degree Model and Its Misuses in Geography. Econ. Geogr. 2019, 39, 18–25. (In Chinese) [Google Scholar]
- Geng, Y.; Chen, L.; Li, J.; Iqbal, K. Higher education and digital Economy: Analysis of their coupling coordination with the Yangtze River economic Belt in China as the example. Ecol. Indic. 2023, 154, 110510. [Google Scholar] [CrossRef]
- Tu, D.; Cai, Y.; Liu, M. Coupling coordination analysis and spatiotemporal heterogeneity between ecosystem services and new-type urbanization: A case study of the Yangtze River Economic Belt in China. Ecol. Indic. 2023, 154, 110535. [Google Scholar] [CrossRef]
- Lu, J.; Zhou, H.M. An Empirical Analysis of the Coupling Relationship between Human Capital and Economic Growth in China’s Provinces. J. Quant. Tech. Econ. 2013, 30, 3–19+36. (In Chinese) [Google Scholar]
- Wang, S.J.; Kong, W.; Ren, L.; Zhi, D.D.; Dai, B.T. Misunderstandings and Corrections of the Coupling Coordination Degree Model in China. J. Nat. Resour. 2011, 36, 793–810. (In Chinese) [Google Scholar]
- Li, H.Y.; Xu, Y.C.; Chai, Z.M. Measurement of Modernization Development Level and Analysis of Coupling Coordination in the Yangtze River Economic Belt. Stat. Decis. 2023, 39, 74–79. (In Chinese) [Google Scholar]
- Fan, D.J.; Ke, H.; Cao, R.M. Correction and improvement of the coupling coordination degree model. Stat. Decis. 2024, 40, 41–46. (In Chinese) [Google Scholar]
- Zhong, Q.; Fu, H.; Yan, J.; Li, Z. How does energy utilization affect rural sustainability development in traditional villages? Re-examination from the coupling coordination degree of atmosphere-ecology-socioeconomics system. Build. Environ. 2024, 257, 111541. [Google Scholar] [CrossRef]
- Lu, X.; Kuang, B.; Li, J. Regional difference decomposition and policy implications of China’s urban land use efficiency under the environmental restriction. Habitat. Int. 2018, 77, 32–39. [Google Scholar] [CrossRef]
- Liu, T.; Xu, Z.Y. Coupling coordination and spatiotemporal characteristics of green finance and low-carbon economy in China. Stat. Decis. 2024, 40, 144–149. (In Chinese) [Google Scholar]
- Tian, Y.; Lu, S.; Jin, L. Methods, Data and the Differences in the Measurement of Total Factor Productivity. J. Quant. Tech. Econ. 2017, 34, 22–40. (In Chinese) [Google Scholar]
- Li, H.; Du, J. New-type Productivity Empowering the Upgrading of Industrial Structure: Influence Mechanism and Spatial Spillover Effect. J. Shanxi Univ. Financ. Econ. 2025, 47, 71–83. [Google Scholar]
- Cortes, G.S.; Gao, G.P.; Silva, F.B.; Song, Z. Unconventional Monetary Policy and Disaster Risk: Evidence from the Subprime and COVID–19 Crises. J. Int. Money Financ. 2022, 122, 102543. [Google Scholar] [CrossRef]
- Dantas, M. Are ESG Funds More Transparent? Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3269939 (accessed on 20 August 2024).
- Campello, M.; Cortes, G.S.; d’Almeida, F.; Kankanhalli, G. Exporting Uncertainty: The Impact of Brexit on Corporate America. J. Financ. Quant. Anal. 2022, 57, 3178–3222. [Google Scholar] [CrossRef]
- ISO 14064; Specification with Guidance at the Organization Level for Quantification and Reporting of Greenhouse Gases. International Organization for Standardization: Geneva, Switzerland, 2018.
1st-Level Index | 2nd-Level Index | 3rd-Level Index | Measurement Method |
---|---|---|---|
Laborers | Economic Output | A1: Per Capita GDP | GDP/Total Population |
Economic Income | A2: Per Capita Wage | Average Wage of Employees on Duty | |
Employment Structure | A3: Proportion of Employment in Tertiary Industry | Number of Employees in Tertiary Industry/Total Number of Employees | |
Educational Attainment | A4: Proportion of People with Higher Education | Average Years of Education per Capita | |
Cultivation Expenditure | A5: Intensity of Education Expenditure | Education Expenditure/Total Fiscal Expenditure | |
Innovation Spirit | A6: Innovation Human Input | Full-time Equivalent of R&D in Industrial Enterprises above Designated Size | |
Entrepreneurship Spirit | A7: Entrepreneurship Activity | Number of Innovative Enterprises per 100 People | |
Labor Object | Informatization Level | A8: Enterprise Informatization Level | Number of Enterprises Engaged in E-commerce Transactions/Total Number of Enterprises |
Green Ecology | A9: Effort in Environmental Protection | Environmental Protection Expenditure/General Fiscal Expenditure | |
Green Production | A10: Pollution Prevention Quality | Chemical Oxygen Demand Emission/GDP | |
A11: Pollution Prevention Quality | Sulfur Dioxide Emission/GDP | ||
A12: Green Invention Achievements | Number of Green Patent Applications/Number of Patent Applications | ||
Means of Labor | Infrastructure | A13: Traditional Infrastructure | Highway Mileage |
A14: Traditional Infrastructure | Railway Mileage | ||
A15: Digital Infrastructure | Length of Optical Cable Lines | ||
A16: Digital Infrastructure | Number of Internet Access Ports per Capita | ||
Energy Utilization Potential | A17: Pollution Prevention Ability | Treatment Capacity of Waste Gas Treatment Facilities | |
Technological Innovation Level | A18: Number of Patents per Capita | Number of Authorized Patents/Total Population | |
A19: Economic Input in New Products | New Product Development Expenditure/GDP | ||
Digitalization Level | A20: Digital Economy | Digital Economy Index |
1st-Level Index | 2nd-Level Index | 3rd-Level Index | Measurement Method |
---|---|---|---|
Digital Transformation | Digital Infrastructure | B1: Internet Broadband Access Rate | Number of Internet Broadband Access Ports/Permanent Resident Population in the Region |
B2: Internet Broadband Penetration Rate | Number of Internet Broadband Access Users/Permanent Resident Population in the Region | ||
B3: Mobile Phone Facility Scale | Mobile Phone Switching Capacity | ||
B4: Length of Long-distance Optical Cable Lines | Length of Long-distance Optical Cable Lines | ||
B5: Number of Webpages | Number of Webpages | ||
Digital Industrialization | B6: Mobile Phone Penetration Rate | Mobile Phone Penetration Rate | |
B7: Number of Legal Entities in Information Transmission, Software, and IT Services | Number of Legal Entities in Information Transmission, Software, and IT Services | ||
B8: Proportion of Employees in Information Software Industry | Employees in Information Transmission, Software, and IT Services (Urban Units)/Urban Unit Employees | ||
B9: Domestic Patent Application Acceptance Quantity | Domestic Patent Application Acceptance Quantity | ||
Industrial Digitization | B10: Digital Inclusive Finance | Peking University Digital Inclusive Finance Index | |
B11: Proportion of Enterprises with E-commerce Transactions | Proportion of Enterprises with E-commerce Transactions | ||
B12: E-commerce Sales Amount | E-commerce Sales Amount | ||
B13: Number of Websites per 100 Enterprises | Number of Websites per 100 Enterprises | ||
B14: Added Value of Secondary and Tertiary Industries | Added Value of Secondary Industry + Added Value of Tertiary Industry | ||
B15: Investment in Technological Innovation | R&D Expenditure of Industrial Enterprises above Designated Size | ||
B16: Express Delivery Volume | Express Delivery Volume | ||
B17: Digital Economy Index | Digital Economy Index |
Level | CCD Range (%) | Stage Division | The Development Stage |
---|---|---|---|
1 | [0.9, 1) | High-quality Coordination | High-level Development Stage |
2 | [0.8, 0.9) | Good Coordination | |
3 | [0.8, 0.7) | Intermediate Coordination | Development Stage |
4 | [0.7, 0.6) | Primary Coordination | |
5 | [0.6, 0.5) | Barely Coordinated | Transition Stage |
6 | [0.5, 0.4) | On the Verge of Disharmony | |
7 | [0.4, 0.3) | Mild Disharmony | Acceptable Disharmony Stage |
8 | [0.3, 0.2) | Moderate Disharmony | |
9 | [0.2, 0.1) | Severe Disharmony | Decline Stage |
10 | [0.1, 0] | Extreme Disharmony |
Level | Perc. Range of CCD Qty. | Stage Division | The Development Stage |
---|---|---|---|
1 | [100, 90) | A: High-quality Coordination | High-level Development Stage |
2 | [90, 80) | B: Good Coordination | |
3 | [80, 70) | C: Intermediate Coordination | Development Stage |
4 | [70, 60) | D: Primary Coordination | |
5 | [60, 50) | E: Barely Coordinated | Transition Stage |
6 | [50, 40) | F: On the Verge of Disharmony | |
7 | [40, 30) | G: Mild Disharmony | Acceptable Disharmony Stage |
8 | [30, 20) | H: Moderate Disharmony | |
9 | [20, 10) | I: Severe Disharmony | Decline Stage |
10 | [10, 0] | J: Extreme Disharmony |
Level | CCD Range (%) | Stage Division | The Development Stage |
---|---|---|---|
1 | [0.631, 1] | A: High-quality Coordination | High-level Development Stage |
2 | [0.534, 0.631) | B: Good Coordination | |
3 | [0.470, 0.534) | C: Intermediate Coordination | Development Stage |
4 | [0.420, 0.470) | D: Primary Coordination | |
5 | [0.382, 0.420) | E: Barely Coordinated | Transition Stage |
6 | [0.349, 0.382) | F: On the Verge of Disharmony | |
7 | [0.317, 0.349) | G: Mild Disharmony | Acceptable Disharmony Stage |
8 | [0.281, 0.317) | H: Moderate Disharmony | |
9 | [0.232, 0.281) | I: Severe Disharmony | Decline Stage |
10 | [0.001, 0.232) | J: Extreme Disharmony |
Province | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | Mean Value | Level |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Guangdong | 0.462 | 0.513 | 0.559 | 0.593 | 0.627 | 0.686 | 0.744 | 0.831 | 0.869 | 0.906 | 0.951 | 0.973 | 1.000 | 0.747 | A |
Jiangsu | 0.463 | 0.512 | 0.538 | 0.555 | 0.594 | 0.631 | 0.667 | 0.712 | 0.745 | 0.791 | 0.828 | 0.850 | 0.860 | 0.673 | A |
Shanghai | 0.342 | 0.390 | 0.419 | 0.467 | 0.489 | 0.522 | 0.544 | 0.578 | 0.595 | 0.636 | 0.672 | 0.700 | 0.732 | 0.545 | B |
Zhejiang | 0.418 | 0.466 | 0.506 | 0.534 | 0.590 | 0.653 | 0.672 | 0.709 | 0.758 | 0.808 | 0.844 | 0.864 | 0.885 | 0.670 | A |
Beijing | 0.439 | 0.479 | 0.519 | 0.568 | 0.626 | 0.636 | 0.672 | 0.716 | 0.739 | 0.770 | 0.799 | 0.817 | 0.841 | 0.663 | A |
Shandong | 0.356 | 0.391 | 0.424 | 0.451 | 0.487 | 0.532 | 0.568 | 0.598 | 0.613 | 0.664 | 0.707 | 0.741 | 0.763 | 0.561 | B |
Fujian | 0.287 | 0.324 | 0.337 | 0.364 | 0.411 | 0.442 | 0.470 | 0.509 | 0.529 | 0.567 | 0.596 | 0.612 | 0.624 | 0.467 | D |
Tianjin | 0.250 | 0.288 | 0.315 | 0.341 | 0.366 | 0.387 | 0.391 | 0.420 | 0.444 | 0.470 | 0.490 | 0.495 | 0.491 | 0.396 | E |
Hebei | 0.254 | 0.292 | 0.321 | 0.345 | 0.375 | 0.415 | 0.456 | 0.478 | 0.506 | 0.534 | 0.552 | 0.569 | 0.583 | 0.437 | D |
Liaoning | 0.269 | 0.296 | 0.316 | 0.337 | 0.377 | 0.383 | 0.400 | 0.418 | 0.430 | 0.451 | 0.463 | 0.477 | 0.497 | 0.393 | E |
Hainan | 0.081 | 0.159 | 0.195 | 0.234 | 0.275 | 0.299 | 0.309 | 0.325 | 0.338 | 0.353 | 0.382 | 0.382 | 0.394 | 0.287 | H |
Eastern Region | 0.329 | 0.374 | 0.405 | 0.435 | 0.474 | 0.508 | 0.536 | 0.572 | 0.597 | 0.632 | 0.662 | 0.680 | 0.697 | 0.531 | C |
Henan | 0.259 | 0.288 | 0.313 | 0.345 | 0.387 | 0.423 | 0.448 | 0.493 | 0.512 | 0.536 | 0.568 | 0.574 | 0.599 | 0.442 | D |
Hubei | 0.245 | 0.285 | 0.311 | 0.341 | 0.383 | 0.416 | 0.441 | 0.461 | 0.493 | 0.518 | 0.552 | 0.580 | 0.608 | 0.433 | D |
Anhui | 0.233 | 0.274 | 0.300 | 0.331 | 0.382 | 0.413 | 0.443 | 0.481 | 0.505 | 0.527 | 0.552 | 0.572 | 0.601 | 0.432 | D |
Hunan | 0.242 | 0.278 | 0.295 | 0.318 | 0.350 | 0.379 | 0.409 | 0.436 | 0.452 | 0.482 | 0.503 | 0.523 | 0.548 | 0.401 | E |
Shanxi | 0.203 | 0.235 | 0.266 | 0.287 | 0.305 | 0.329 | 0.360 | 0.376 | 0.393 | 0.416 | 0.434 | 0.444 | 0.455 | 0.346 | G |
Jiangxi | 0.174 | 0.211 | 0.234 | 0.265 | 0.314 | 0.332 | 0.372 | 0.395 | 0.429 | 0.457 | 0.484 | 0.490 | 0.513 | 0.359 | F |
Jilin | 0.187 | 0.216 | 0.235 | 0.254 | 0.281 | 0.303 | 0.320 | 0.337 | 0.347 | 0.356 | 0.369 | 0.368 | 0.378 | 0.304 | H |
Heilongjiang | 0.208 | 0.232 | 0.251 | 0.278 | 0.297 | 0.328 | 0.345 | 0.357 | 0.365 | 0.380 | 0.383 | 0.397 | 0.409 | 0.325 | G |
Central Region | 0.219 | 0.252 | 0.276 | 0.302 | 0.337 | 0.365 | 0.392 | 0.417 | 0.437 | 0.459 | 0.481 | 0.493 | 0.514 | 0.380 | F |
Sichuan | 0.264 | 0.307 | 0.329 | 0.357 | 0.405 | 0.436 | 0.471 | 0.499 | 0.536 | 0.558 | 0.580 | 0.602 | 0.619 | 0.459 | D |
Yunnan | 0.180 | 0.212 | 0.247 | 0.271 | 0.304 | 0.337 | 0.349 | 0.367 | 0.403 | 0.419 | 0.425 | 0.423 | 0.444 | 0.337 | G |
Gansu | 0.120 | 0.164 | 0.191 | 0.212 | 0.252 | 0.275 | 0.294 | 0.313 | 0.331 | 0.347 | 0.359 | 0.357 | 0.371 | 0.276 | I |
Shaanxi | 0.228 | 0.260 | 0.281 | 0.302 | 0.331 | 0.367 | 0.385 | 0.411 | 0.431 | 0.451 | 0.469 | 0.491 | 0.509 | 0.378 | F |
Chongqing | 0.183 | 0.226 | 0.253 | 0.291 | 0.337 | 0.368 | 0.386 | 0.424 | 0.439 | 0.466 | 0.488 | 0.515 | 0.519 | 0.377 | F |
Guizhou | 0.142 | 0.176 | 0.204 | 0.227 | 0.269 | 0.314 | 0.332 | 0.352 | 0.359 | 0.370 | 0.382 | 0.392 | 0.403 | 0.302 | H |
Guangxi | 0.187 | 0.217 | 0.236 | 0.261 | 0.288 | 0.317 | 0.346 | 0.372 | 0.394 | 0.421 | 0.429 | 0.440 | 0.456 | 0.336 | G |
Inner Mongolia | 0.220 | 0.253 | 0.278 | 0.297 | 0.324 | 0.352 | 0.368 | 0.379 | 0.393 | 0.405 | 0.417 | 0.435 | 0.449 | 0.351 | F |
Xinjiang | 0.175 | 0.211 | 0.232 | 0.253 | 0.283 | 0.296 | 0.314 | 0.407 | 0.354 | 0.369 | 0.385 | 0.400 | 0.422 | 0.315 | H |
Tibet | 0.001 | 0.116 | 0.157 | 0.193 | 0.218 | 0.264 | 0.268 | 0.283 | 0.296 | 0.307 | 0.317 | 0.317 | 0.331 | 0.236 | I |
Qinghai | 0.123 | 0.166 | 0.187 | 0.210 | 0.251 | 0.275 | 0.294 | 0.316 | 0.322 | 0.331 | 0.340 | 0.342 | 0.342 | 0.269 | I |
Ningxia | 0.122 | 0.146 | 0.179 | 0.207 | 0.235 | 0.259 | 0.283 | 0.312 | 0.322 | 0.338 | 0.355 | 0.363 | 0.382 | 0.270 | I |
Western Region | 0.162 | 0.204 | 0.231 | 0.257 | 0.291 | 0.322 | 0.341 | 0.370 | 0.382 | 0.398 | 0.412 | 0.423 | 0.437 | 0.325 | G |
Nationwide | 0.236 | 0.277 | 0.304 | 0.332 | 0.368 | 0.399 | 0.423 | 0.454 | 0.472 | 0.497 | 0.519 | 0.532 | 0.549 | 0.412 | E |
Year | Gini Coefficient | Within-Group Gini Coefficient | Between-Group Gini Coefficient | Contribution Rate (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Overall | Eastern | Central | Western | Eastern and Central | Eastern and Western | Western and Central | Within the Group | Between Groups | Transvariation Density | |
2011 | 0.248 | 0.185 | 0.073 | 0.215 | 0.248 | 0.373 | 0.184 | 23.81% | 66.13% | 10.07% |
2012 | 0.204 | 0.161 | 0.066 | 0.142 | 0.221 | 0.31 | 0.138 | 23.00% | 69.18% | 7.82% |
2013 | 0.188 | 0.154 | 0.063 | 0.116 | 0.211 | 0.285 | 0.119 | 22.84% | 70.13% | 7.04% |
2014 | 0.175 | 0.146 | 0.062 | 0.103 | 0.198 | 0.268 | 0.11 | 22.69% | 70.94% | 6.37% |
2015 | 0.164 | 0.138 | 0.067 | 0.095 | 0.186 | 0.248 | 0.105 | 23.04% | 70.04% | 6.91% |
2016 | 0.157 | 0.139 | 0.067 | 0.087 | 0.182 | 0.234 | 0.097 | 23.53% | 68.59% | 7.88% |
2017 | 0.157 | 0.143 | 0.066 | 0.087 | 0.179 | 0.233 | 0.1 | 23.82% | 67.75% | 8.43% |
2018 | 0.157 | 0.149 | 0.075 | 0.087 | 0.183 | 0.228 | 0.097 | 24.67% | 65.55% | 9.78% |
2019 | 0.161 | 0.15 | 0.078 | 0.09 | 0.182 | 0.233 | 0.105 | 24.67% | 65.61% | 9.72% |
2020 | 0.164 | 0.15 | 0.079 | 0.093 | 0.185 | 0.239 | 0.109 | 24.37% | 66.12% | 9.51% |
2021 | 0.167 | 0.149 | 0.085 | 0.093 | 0.186 | 0.244 | 0.114 | 24.19% | 66.74% | 9.08% |
2022 | 0.17 | 0.151 | 0.088 | 0.101 | 0.189 | 0.246 | 0.119 | 24.48% | 65.46% | 10.06% |
2023 | 0.169 | 0.151 | 0.092 | 0.099 | 0.186 | 0.243 | 0.122 | 24.63% | 64.75% | 10.61% |
Category | Region | Factor | Influence | Factor | Influence | Factor | Influence | Factor | Influence | Factor | Influence |
---|---|---|---|---|---|---|---|---|---|---|---|
New-Quality Productivity | Nationwide | A9 | 0.152 | A11 | 0.142 | A18 | 0.103 | A10 | 0.074 | A17 | 0.067 |
Eastern | A9 | 0.161 | A11 | 0.16 | A18 | 0.091 | A10 | 0.082 | A17 | 0.06 | |
Central | A9 | 0.149 | A11 | 0.141 | A18 | 0.091 | A10 | 0.07 | A6 | 0.069 | |
Western | A9 | 0.152 | A11 | 0.142 | A18 | 0.103 | A10 | 0.074 | A17 | 0.067 | |
Digital Transformation | Nationwide | B5 | 0.226 | B16 | 0.123 | B9 | 0.122 | B7 | 0.109 | B8 | 0.089 |
Eastern | B5 | 0.232 | B16 | 0.128 | B9 | 0.117 | B7 | 0.106 | B8 | 0.092 | |
Central | B5 | 0.224 | B9 | 0.124 | B16 | 0.121 | B7 | 0.108 | B8 | 0.088 | |
Western | B5 | 0.222 | B9 | 0.126 | B16 | 0.120 | B7 | 0.114 | B8 | 0.086 |
Variables | (1) | (2) | (3) |
---|---|---|---|
DT | 1.067 ** (4.444) | 1.188 ** (4.913) | 1.112 ** (3.382) |
Control Variables | YES | YES | YES |
Sample Size | 397 | 397 | 397 |
AR(2) | 0.699 | 0.941 | 0.357 |
Hansen test | 0.732 | 0.326 | 0.314 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, D.; Cao, S.; Zhao, M. Research on the Coupling and Coordination Between New-Quality Productivity and Digital Transformation in China’s Provinces. Sustainability 2025, 17, 3806. https://doi.org/10.3390/su17093806
Dai D, Cao S, Zhao M. Research on the Coupling and Coordination Between New-Quality Productivity and Digital Transformation in China’s Provinces. Sustainability. 2025; 17(9):3806. https://doi.org/10.3390/su17093806
Chicago/Turabian StyleDai, Debao, Shali Cao, and Min Zhao. 2025. "Research on the Coupling and Coordination Between New-Quality Productivity and Digital Transformation in China’s Provinces" Sustainability 17, no. 9: 3806. https://doi.org/10.3390/su17093806
APA StyleDai, D., Cao, S., & Zhao, M. (2025). Research on the Coupling and Coordination Between New-Quality Productivity and Digital Transformation in China’s Provinces. Sustainability, 17(9), 3806. https://doi.org/10.3390/su17093806