A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico
Abstract
:1. Introduction
Sustainability Assessment of Biofuels
2. Methodology
2.1. Interviews and the Local Community’s Perceptions
2.2. Propensity Score Matching
2.3. Life-Cycle Assessment
3. Results and Discussion
3.1. Local Community’s Perception
3.2. Effect on Annual Household Income
3.3. Potential Environmental Impacts
4. Conclusions
- •
- Jatropha curcas is a wild species for which optimum cultivation conditions are still being studied worldwide, including in Mexico. Overoptimistic assumptions regarding seed yields in poor soils and the wide genetic diversity of the plant materials were the main causes for the collapse of the project. Further projects should work with elite, genetically selected and improved varieties that have been tested in the field to guarantee seed yields and low consumption of agricultural inputs.
- •
- The RSB sustainability certification failed to reflect the problems with seed productivity. It also missed the fact that, over time, the so-called abandoned cattle ranches had come to offer valuable ecosystem services to the surrounding communities, which disappeared when the jatropha plantations were established. This leads to the conclusion that the sustainability of such interventions cannot be understood without a participatory process where local stakeholders can express what is most important to their living standards.
- •
- Even though the GHG emission savings are considerable, using pesticides, fungicides, and insecticides on the plantations causes important impacts, especially on the eutrophication potential. These red flags should be further investigated in the local context (i.e., karstic soil, underground river flows, and cenotes) using an environmental impact assessment, in order to evaluate with greater accuracy the impacts that these new activities will have on the local environment. Furthermore, agronomic studies should be directed at minimizing the use of these substances without significantly decreasing seed yields.
- •
- The economic benefits to jatropha workers were significant and positive for both household income and local economies. If the issues with seed productivity and plant management had been well thought out from the beginning of the projects, this aspect would have been of great value to local communities.
- •
- These conclusions on the corresponding three dimensions of sustainability offer a snapshot of the projected and actual benefits of establishing a jatropha plantation on so-called marginal land in order to produce oil for biofuels. Although currently there are no active large plantations or any commercial production of jatropha oil in Mexico, several groups are still working on the genetic selection of Jatropha curcas accessions and on improving cultivation conditions to give fresh impetus to this activity. If successful, the lessons learned from this sustainability evaluation could be useful for improving the overall sustainability of jatropha oil production.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Blanco-Rosete, S.; Webb, C. Emerging biorefinery markets: Global context and prospects for Latin America. Biofuels Bioprod. Biorefin. 2008, 2, 331–342. [Google Scholar] [CrossRef]
- Sacramento-Rivero, J.C.; Romero, G.; Cortés-Rodríguez, E.; Pech, E.; Blanco-Rosete, S. Diagnóstico del desarrollo de biorrefinerías en México. Rev. Mex. Ing. Quim. 2010, 9, 261–283. [Google Scholar]
- SENER, Secretaria Nacional de Energia. Programa de Introducción de Bioenergéticos. 2010. Available online: http://www.bioenergeticos.gob.mx/bio/descargas/Programa-Introduccion-de-Bioenergeticos.pdf (accessed on 22 November 2016).
- Contran, N.; Chessa, L.; Lubino, M.; Bellavite, D.; Roggero, P.P.; Enne, G. State-of-the-art of the Jatropha curcas productive chain: From sowing to biodiesel and by-products. Ind. Crops Prod. 2013, 42, 202–215. [Google Scholar] [CrossRef]
- Edrisi, S.A.; Dubey, R.K.; Tripathi, V.; Bakshi, M.; Srivastava, P.; Jamil, S.; Singh, H.B.; Singh, N.; Abhilash, P.C. Jatropha curcas L.: A crucified plant waiting for resurgence. Renew. Sustain. Energy Rev. 2015, 41, 855–862. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Skutsch, M.; de los Rios, E.; Solis, S.; Riegelhaupt, E.; Hinojosa, D.; Gerfert, S.; Gao, Y.; Masera, O. Jatropha in Mexico: Environmental and Social Impacts of an Incipient Biofuel Program. Ecol. Soc. 2011, 16, 11. [Google Scholar] [CrossRef]
- Kant, P.; Wu, S. The extraordinary collapse of Jatropha as a global biofuel. Environ. Sci. Technol. 2011, 45, 7114–7115. [Google Scholar] [CrossRef] [PubMed]
- Orellana, R.; Espadas, C.; Conde, C.; Gay, C. ATLAS. Escenarios de Cambio Climático en la Península de Yucatán, 1st ed.; Centro de Investigación Científica de Yucatán (CICY): Mérida, Mexico, 2009. [Google Scholar]
- El Economista. Kuo y Repsol se Unen Para Producir Biodiesel. 2010. Available online: http://eleconomista.com.mx/corporativos/2010/10/28/kuo-repsol-se-unen-producir-biodiesel (accessed on 22 November 2016).
- Jatronergy Bioenergéticos. Company Information. 2016. Available online: http://jatronergy.com/index.php/en (accessed on 22 November 2016).
- Global Clean Energy Holdings Inc. Company Information. 2016. Available online: http://www.gceholdings.com/company/ (accessed on 22 November 2016).
- Afiff, S.A. Engineering the Jatropha Hype in Indonesia. Sustainability 2014, 6, 1686–1704. [Google Scholar] [CrossRef]
- Ceasar, S.A.; Ignacimuthu, S. Applications of biotechnology and biochemical engineering for the improvement of Jatropha and Biodiesel: A review. Renew. Sustain. Energy Rev. 2011, 15, 5176–5185. [Google Scholar] [CrossRef]
- Divakara, B.N.; Upadhyaya, H.D.; Wani, S.P.; Gowda, C.L.L. Biology and genetic improvement of Jatropha curcas L.: A review. Appl. Energy 2010, 87, 732–742. [Google Scholar] [CrossRef]
- Sudhakar Johnson, T.; Eswaran, N.; Sujatha, M. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop. Plant Cell Rep. 2011, 30, 1573–1591. [Google Scholar] [CrossRef] [PubMed]
- Florin, M.J.; van de Ven, G.W.J.; van Ittersum, M.K. What drives sustainable biofuels? A review of indicator assessments of biofuel production systems involving smallholder farmers. Environ. Sci. Policy 2013, 37, 142–157. [Google Scholar] [CrossRef]
- Haywood, L.K.; Wet, B.; Maltitz, G.P.; Brent, A.C. Development of a sustainability assessment framework for planning for sustainability for biofuel production at the policy, programme or project level. Energy Sustain. II 2009, 121, 355–365. [Google Scholar]
- Mata, T.M.; Caetano, N.S.; Costa, C.A.V.; Sikdar, S.K.; Martins, A.A. Sustainability analysis of biofuels through the supply chain using indicators. Sustain. Energy Technol. Assess. 2013, 3, 53–60. [Google Scholar] [CrossRef]
- Dale, B.E.; Ong, R.G. Design, implementation, and evaluation of sustainable bioenergy production systems. Biofuels Bioprod. Biorefin. 2014, 8, 487–503. [Google Scholar] [CrossRef]
- BEFSCI. A Compilation of Bioenergy Sustainability Initiatives Overview. 2011. Available online: http://www.fao.org/bioenergy/31594–044649dd008dd73d7fa09345453123875.pdf (accessed on 13 October 2016).
- Potts, J.; Lynch, M.; Wilkings, A.; Huppé, G.; Cunningham, M.; Voora, V. The State of Sustainability Initiatives Review 2014; International Institute for Sustainable Development: Winnepeg, MB, Canada; London, UK, 2014. [Google Scholar]
- Solomon, B.D.; Bailis, R. (Eds.) Sustainable Development of Biofuels in Latin America and the Caribbean; Springer: New York, NY, USA, 2014.
- Secretaria de Economia (SE). Proyecto de Norma Mexicana que Establece Especificaciones y Requisitos Para la Certificación de Sustentabilidad Ambiental en la Producción de Bioenergéticos Líquidos de Origen Vegetal. 2014. Available online: http://rembio.org.mx/wp-content/uploads/2015/02/proy-nmx-aa-174-scfi-2014.pdf (accessed on 22 November 2016).
- German, L.; Schoneveld, G.; Pacheco, P. Local social and environmental impacts of biofuels: Global comparative assessment and implications for governance. Ecol. Soc. 2013, 16, 29. [Google Scholar] [CrossRef]
- Hunsberger, C.; Bolwig, S.; Corbera, E.; Creutzig, F. Livelihood impacts of biofuel crop production: Implications for governance. Geoforum 2014, 54, 248–260. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, S.S.; Chandel, A.K. Biofuels in Brazil: Fundamental Aspects, Recent Developments, and Future Perspectives; Springer Science & Business Media: New York, NY, USA, 2014; p. 435. [Google Scholar]
- Becerril, J.; Abdulai, A. The Impact of Improved Maize Varieties on Poverty in Mexico: A Propensity Score-Matching Approach. World Dev. 2010, 38, 1024–1035. [Google Scholar] [CrossRef]
- Shonnard, D.R.; Klemetsrud, B.; Sacramento-Rivero, J.; Navarro-Pineda, F.; Hilbert, J.; Handler, R.; Suppen, N.; Donovan, R.P. A Review of Environmental Life Cycle Assessments of Liquid Transportation Biofuels in the Pan American Region. Environ. Manag. 2015, 56, 1356–1376. [Google Scholar] [CrossRef] [PubMed]
- Van Eijck, J.; Romijn, H.; Balkema, A.; Faaij, A. Global experience with jatropha cultivation for bioenergy: An assessment of socio-economic and environmental aspects. Renew. Sustain. Energy Rev. 2014, 32, 869–889. [Google Scholar] [CrossRef]
- Martínez-Hernandez, E.; Martinez-Herrera, J.; Campbell, G.M.; Sadhukhan, J. Process integration, energy and GHG emission analyses of jatropha-based biorefinery systems. Biomass Convers. Biorefin. 2014, 4, 105–124. [Google Scholar] [CrossRef]
- Martínez-Hernandez, E.; Campbell, G.M.; Sadhukhan, J. Economic and environmental impact marginal analysis of biorefinery products for policy targets. J. Clean. Prod. 2014, 74, 74–85. [Google Scholar] [CrossRef]
- Silverman, D. Doing Qualitative Research, 3rd ed.; Sage Publications: London, UK, 2009. [Google Scholar]
- Creswell, J. Qualitative Inquiry and Research Design: Choosing among Five Approaches, 2nd ed.; Sage Publications: Thousand Oaks, CA, USA, 2007. [Google Scholar]
- Consejo Nacional de Población. Índice de Marginación Por Localidad; CONAPO: Mexico City, Mexico, 2010. [Google Scholar]
- Instituto Nacional de Estadística y Geografía (INEGI). Censo de Población y Vivienda. 2010. Available online: http://www.beta.inegi.org.mx/proyectos/ccpv/2010/ (accessed on 30 October 2016).
- Rosenbaum, P.R.; Rubin, D.B. The central role of the propensity score in observational studies for causal effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Yúnez-Naude, A.; Taylor, J.E. Manual Para la Elaboración de Matrices de Contabilidad Social con Base en Encuestas Socioeconómicas Aplicadas a Pequeñas Poblaciones Rurales; El Colegio de México, Centro de Estudios Económicos: Mexico City, Mexico, 1999. [Google Scholar]
- Taylor, J.E.; Adelman, I. Agricultural Household Models: Genesis, Evolution, and Extensions. Rev. Econ. Househ. 2002, 1, 33–58. [Google Scholar] [CrossRef]
- Taylor, J.E.; Dyer, G.A.; Yúnez-Naude, A. Disaggregated Rural Economywide Models for Policy Analysis. World Dev. 2005, 33, 1671–1688. [Google Scholar] [CrossRef]
- Finnveden, G.; Hauschild, M.Z.; Ekvall, T.; Guinée, J.; Heijungs, R.; Hellweg, S.; Suh, S. Recent developments in life cycle assessment. J. Environ. Manag. 2009, 91, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Cherubini, F.; Jungmeier, G.; Wellisch, M.; Willke, T.; Skiadas, I.; van Ree, R.; Jong, E. Toward a common classification approach for biorefinery systems. Biofuels Bioprod. Biorefin. 2009, 3, 534–546. [Google Scholar] [CrossRef]
- Roundtable on Sustainable Biofuels. RSB GHG Calculation Methodology. 2012. Available online: http://rsb.org/pdfs/12-12-20-RSB-STD-01-003-01-RSB-GHG-Calculation-Methodology-v2-1.pdf (accessed on 30 October 2016).
- Nemecek, T.; Schnetzer, J. Methods of Assessment of Direct Field Emissions for LCIs of Agricultural Production Systems—Data v3.0; AgroscopeReckenholz-Tänikon Research Station ART: Zürich, Switzerland, 2011. [Google Scholar]
- Andersen, O. Consequential Life Cycle Environmental Impact Assessment. In Unintended Consequences of Renewable Energy. Problems to Be Solved; Springer: London, UK, 2013; pp. 35–45. [Google Scholar]
- Chavez, L. Mexico Biofuels Annual: Uncertainty on the Future of Mexican Biofuels GAIN Report MX2507; U.S. Department of Agriculture, Foreign Agriculture Service: Washington, DC, USA, 2012.
- Matlack, C. Jatropha: A Green Fuel Awash in Red Ink. Bloomberg Business Week, 2012. Available online: http://www.businessweek.com/printer/articles/86078-jatropha-a-green-fuel-awash-in-red-ink (accessed on 20 October 2016).
- SCS Global Services. Certification Evaluation Report, Roundtable on Sustainable Biofuels, Global Clean Energy; SCS Certificate Code: SCS-RSB/PC-0001; SCS Global Services: Long Beach, CA, USA, 2012. [Google Scholar]
- Diario de Yucatán. El Cultivo de la Jatropha Decae. Despidos Masivos por la Crisis, en Colonia Yucatan. 2012. Available online: http://yucatan.com.mx/yucatan/el-cultivo-de-la-jatropha-decae (accessed on 30 October 2016).
- Terán, S.; Rasmussen, C. La Milpa de los Mayas; Universidad Autónoma de México y Universidad de Oriente: Merida, Yucatan, Mexico, 2009. [Google Scholar]
- Becerril, J.; Ortíz, R.; Albornoz, L. Maquiladoras e ingreso de los hogares en Yucatán. Probl. Desarro. Rev. Latinoam. Econ. 2012, 43, 171. [Google Scholar]
- Ovando-Medina, I.; Espinosa-García, F.; Núñez-Farfán, J.; Salvador-Figueroa, M. Does biodiesel from Jatropha curcas represent a sustainable alternative energy source? Sustainability 2009, 1, 1035–1041. [Google Scholar] [CrossRef]
- Portugal-Pereira, J.; Nakatani, J.; Kurisu, K.; Hanaki, K. Life cycle assessment of conventional and optimised Jatropha biodiesel fuels. Renew. Energy 2016, 86, 585–593. [Google Scholar] [CrossRef]
- Roundtable on Sustainable Biofuels. Indicadores de Cumplimiento de los Principios y Criterios de la RSB. 2012. Available online: http://rsb.org/pdfs/standards/12-08-23-RSB-IND-20-001_es.pdf (accessed on 30 October 2016).
- Council of the European Union; European Parliament. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, L140, 16–61. [Google Scholar]
- Hinojosa, M.J.R.; Galvín, A.P.; Agrela, F.; Perianes, M.; Barbudo, A. Potential use of biomass bottom ash as alternative construction material: Conflictive chemical parameters according to technical regulations. Fuel 2014, 128, 248–259. [Google Scholar] [CrossRef]
- Eshton, B.; Katima, J.H.Y.; Kituyi, E. Greenhouse gas emissions and energy balances of jatropha biodiesel as an alternative fuel in Tanzania. Biomass Bioenergy 2013, 58, 95–103. [Google Scholar] [CrossRef]
- Prueksakorn, K.; Gheewala, S.H.; Malakul, P.; Bonnet, S. Energy analysis of Jatropha plantation systems for biodiesel production in Thailand. Energy Sustain. Dev. 2010, 14, 1–5. [Google Scholar] [CrossRef]
- Chavez-Rodriguez, M.F.; Nebra, S.A. Assessing GHG Emissions, Ecological Footprint, and Water Linkage for Different Fuels. Environ. Sci. Technol. 2010, 44, 9252–9257. [Google Scholar] [CrossRef] [PubMed]
- Emmenegger, M.F.; Pfister, S.; Koehler, A.; de Giovanetti, L.; Arena, A.P.; Zah, R. Taking into account water use impacts in the LCA of biofuels: An Argentinean case study. Int. J. Life Cycle Assess. 2011, 16, 869. [Google Scholar] [CrossRef]
- Yang, Y.; Bae, J.; Kim, J.; Suh, S. Replacing Gasoline with Corn Ethanol Results in Significant Environmental Problem-Shifting. Environ. Sci. Technol. 2012, 46, 3671–3678. [Google Scholar] [CrossRef] [PubMed]
Variable Name | Description | Unit 1 | Average 2 |
---|---|---|---|
Individual descriptors | |||
Sex | 1 = man, 0 = woman | b. | 0.50 ± 0.50 |
Age | Current age in years | years | 40.0 ± 15.4 |
Education | Completed years of formal education | years | 5.8 ± 4.1 |
Maya | 1 = speaks Mayan language | b. | 0.87 ± 0.34 |
English | 1 = speaks English language | b. | 0.04 ± 0.19 |
Household descriptors | |||
Family | Number of family members in adult equivalent 3 | Adult eq. | 4.6 ± 2.2 |
Home garden | 1 = household has home garden | b. | 0.8 ± 0.4 |
Home garden crops | Number of dissimilar crops in home garden | -- | 4.4 ± 2.8 |
Parcela | 1 = household has a parcela | b. | 0.18 ± 0.3 |
Parcela crops | Number of dissimilar perennial crops in parcelas | -- | 3.2 ± 2.0 |
Milpa | 1 = household has milpa | b. | 0.38 ± 0.49 |
Milpa crops | Number of dissimilar crops in milpa | -- | 2.0 ± 1.1 |
Total crops | Home garden crops + Parcela crops + Milpa crops | -- | 4.8 ± 3.8 |
Total parcelas | Total number of parcelas | -- | 1.2 ± 0.6 |
Land | Total land area owned by the household | ha | 23.2 ± 22.9 |
Own house | 1 = interviewee owns the house he/she lives in | b. | 0.93 ± 0.25 |
Rooms | Number of rooms in the house | -- | 1.8 ± 0.8 |
Sewage | 1 = household has a sewage system | b. | 0.61 ± 0.49 |
Potable water | 1 = household has potable water service | b. | 0.97 ± 0.16 |
Electricity | 1 = household has electricity | b. | 0.98 ± 0.14 |
Gas cooker | 1 = household has a gas stove | b. | 0.05 ± 0.21 |
Wood cooker | 1 = household cooks using wood | b. | 0.74 ± 0.44 |
Owns car | 1 = household owns a car | b. | 0.03 ± 0.16 |
Owns motorcycle | 1 = household owns a motorcycle | b. | 0.32 ± 0.47 |
Owns bicycle | 1 = household owns a bicycle | b. | 0.68 ± 0.47 |
Owns TV | 1 = household owns a TV | b. | 0.88 ± 0.32 |
Owns PC | 1 = household owns a PC | b. | 0.09 ± 0.29 |
Landline | 1 = household has a working landline (telephone) | b. | 0.12 ± 0.33 |
Access to public social-aid program descriptors | |||
Procampo | 1 = household is subscribed to the public program “Procampo” | b. | 0.27 ± 0.44 |
65 y mas | 1 = household is subscribed to the public program “65 y más” | b. | 0.10 ± 0.31 |
Seguro Popular | 1 = household is subscribed to the public health service “Seguro Popular” | b. | 0.69 ± 0.46 |
PET | 1 = household is subscribed to the public program “Programa de Empleo Temporal” | b. | 0.02 ± 0.14 |
Oportunidades | 1 = household is subscribed to the public program “Oportunidades” | b. | 0.67 ± 0.47 |
PP income | Annual income from public social-aid programs | $MXN | 7021 ± 8014 |
Environmental services descriptors | |||
ES trees | 1 = household utilizes trees from surrounding woods | b. | 0.09 ± 0.28 |
ES wood | 1 = household collects wood from surrounding woods | b. | 0.91 ± 0.28 |
ES fruit | 1 = household collects wild fruits from surrounding woods | b. | 0.44 ± 0.50 |
ES medicinal plants | 1 = household utilizes medicinal plants from surrounding woods | b. | 0.11 ± 0.31 |
ES Deer | 1 = household reported hunting wild deer in surrounding woods | b. | 0.14 ± 0.35 |
Variable | Coefficient | Std. Error | |z|-Value 1 |
---|---|---|---|
Sex | 1.834 | 0.643 | 2.85 |
Age | –0.049 | 0.020 | 2.44 |
Education | –0.123 | 0.066 | 1.86 |
Family | –0.122 | 0.128 | 0.95 |
Total crops | 0.064 | 0.053 | 1.21 |
Land | –0.038 | 0.019 | 1.98 |
Procampo | 0.706 | 0.457 | 1.55 |
Seguro Popular | 0.279 | 0.519 | 0.54 |
ES fruit | 0.337 | 0.406 | 0.83 |
ES wood | –0.670 | 0.413 | 1.62 |
Owns motorcycle | 1.006 | 0.437 | 2.30 |
Landline | 1.108 | 0.755 | 1.47 |
Constant term | –0.563 | 1.283 | 0.44 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacramento Rivero, J.C.; Eastmond-Spencer, A.; Becerril García, J.; Navarro-Pineda, F.S. A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico. Sustainability 2016, 8, 1316. https://doi.org/10.3390/su8121316
Sacramento Rivero JC, Eastmond-Spencer A, Becerril García J, Navarro-Pineda FS. A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico. Sustainability. 2016; 8(12):1316. https://doi.org/10.3390/su8121316
Chicago/Turabian StyleSacramento Rivero, Julio C., Amarella Eastmond-Spencer, Javier Becerril García, and Freddy S. Navarro-Pineda. 2016. "A Three-Dimensional Sustainability Evaluation of Jatropha Plantations in Yucatan, Mexico" Sustainability 8, no. 12: 1316. https://doi.org/10.3390/su8121316