Anthropization Processes and Protection of the Environment: An Assessment of Land Cover Changes in Sardinia, Italy
Abstract
:1. Introduction
- natural protected areas (NPAs) under the provisions of national or regional acts or regulations;
- sites belonging to the Natura 2000 network (N2Ss), that is protected under Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (“Habitats Directive”) or Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the conservation of wild birds (“Birds Directive”); and
- unprotected areas (UAs).
2. Effectiveness of Protected Areas in Maintaining Biodiversity: A Literature Review
3. Data and Methods
3.1. Study Area and Protection Levels
3.2. Data
3.3. Methodology: Identifying Processes of Land Cover Change
4. Results
4.1. Land Cover Changes in NPAs
4.2. Land Cover Changes in N2Ss
4.3. Land Cover Changes in UAs
5. Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References and Notes
- Martínez-Fernández, J.M.; Ruiz-Benito, P.; Zavala, M.A. Recent land cover changes in Spain across biogeographical regions and protection levels: Implications for conservation policies. Land Use Policy 2015, 44, 62–75. [Google Scholar] [CrossRef]
- Deguignet, M.; Juffe-Bignoli, D.; Harrison, J.; MacSharry, B.; Burgess, N.; Kingston, N. 2014 United Nations List of Protected Areas; UNEP-WCMC: Cambridge, UK, 2014; ISBN 978-92-807-3417-8. [Google Scholar]
- Donia, E.; Mineo, A.M.; Mascali, F.; Sgroi, F. Economic development and agriculture: Managing protected areas and safeguarding the environment. Ecol. Eng. 2017, 103, 198–206. [Google Scholar] [CrossRef]
- Macura, B.; Secco, L.; Pullin, A.S. What evidence exists on the impact of governance type on the conservation effectiveness of forest protected areas? Knowledge base and evidence gaps. Environ. Evid. 2015, 4, 24. [Google Scholar] [CrossRef]
- Martinuzzi, S.; Radeloff, V.C.; Joppa, L.N.; Hamilton, C.M.; Helmers, D.P.; Plantinga, A.J.; Lewis, D.J. Scenarios of future land use change around United States’ protected areas. Biol. Conserv. 2015, 184, 446–455. [Google Scholar] [CrossRef]
- EEA. CORINE Land Cover. 1995. Available online: http://www.eea.europa.eu/publications/COR0-landcover (accessed on 27 September 2017).
- EEA. Land Accounts for Europe 1990–2000: Towards Integrated Land and Ecosystem Accounting. European Environment Agency Report No. 11; Office for Official Publications of the European Communities: Luxembourg, 2006; ISBN 92-9167-888-0. Available online: http://www.eea.europa.eu/publications/eea_report_2006_11 (accessed on 27 September 2017).
- Gaston, K.J.; Charmanb, K.; Jacksona, S.F.; Armswortha, P.R.; Bonnc, A.; Briersd, R.A.; Callaghane, C.S.Q.; Catchpolef, R.; Hopkinsg, J.; Kunine, W.E.; et al. The ecological effectiveness of protected areas: The United Kingdom. Biol. Conserv. 2006, 132, 76–87. [Google Scholar] [CrossRef]
- Figueroa, F.; Sánchez-Cordero, V. Effectiveness of natural protected areas to prevent land use and land cover change in Mexico. Biodivers. Conserv. 2008, 17, 3223–3240. [Google Scholar] [CrossRef]
- Sieber, A.; Kuemmerle, T.; Prishchepov, A.V.; Wendland, K.J.; Baumann, M.; Radeloff, V.C.; Baskin, L.M.; Hostert, P. Landsat-based mapping of post-Soviet land-use change to assess the effectiveness of the Oksky and Mordovsky protected areas in European Russia. Remote Sens. Environ. 2013, 133, 38–51. [Google Scholar] [CrossRef]
- Coad, L.; Leverington, F.; Knights, K.; Geldmann, J.; Eassom, A.; Kapos, V.; Kingston, N.; de Lima, M.; Zamora, C.; Cuardros, I.; et al. Measuring impact of protected area management interventions: Current and future use of the Global Database of Protected Area Management Effectiveness. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370. [Google Scholar] [CrossRef] [PubMed]
- Calvache, M.F.; Prados, M.J.; Lourenço, J.M. Assessment of National Parks affected by naturbanization processes in Southern Europe. J. Environ. Plan. Manag. 2016, 59, 1629–1655. [Google Scholar] [CrossRef]
- Hansen, A.J.; DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Benito, P.; Cuevas, J.A.; Bravo de la Parra, R.; Prieto, F.; García del Barrio, J.M.; Zavala, M.A. Land use change in a Mediterranean metropolitan region and its periphery: Assessment of conservation policies through CORINE Land Cover data and Markov models. For. Syst. 2010, 19, 315–328. [Google Scholar] [CrossRef]
- Geldmann, J.; Barnes, M.; Coad, L.; Craigie, I.D.; Hockings, M.; Burgess, N.D. Effectiveness of terrestrial protected areas in reducing habitat loss and population declines. Biol. Conserv. 2013, 161, 230–238. [Google Scholar] [CrossRef]
- Hockings, M. Systems for assessing the effectiveness of management in protected areas. BioScience 2003, 53, 823–832. [Google Scholar] [CrossRef]
- Kamlun, K.U.; Bürger Arndta, R.; Phuab, M.H. Monitoring deforestation in Malaysia between 1985 and 2013: Insightfrom South-Western Sabah and its protected peat swamp area. Land Use Policy 2019, 57, 418–430. [Google Scholar] [CrossRef]
- Nagendra, H. Do Parks Work? Impact of Protected Areas on Land Cover Clearing. AMBIO 2008, 37, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Scharsich, V.; Mtata, K.; Hauhs, M.; Lange, H.; Bognera, C. Analysing land cover and land use change in the Matobo National Park and surroundings in Zimbabwe. Remote Sens. Environ. 2017, 194, 278–286. [Google Scholar] [CrossRef]
- Ament, J.M.; Cumming, G.S. Scale dependency in effectiveness, isolation, and social-ecological spillover of protected areas. Conserv. Biol. 2016, 30, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Terra, T.A.; dos Santos, R.F.; Costa, D.C. Land use changes in protected areas and their future: The legal effectiveness of landscape protection. Land Use Policy 2014, 38, 378–387. [Google Scholar] [CrossRef]
- Votsi, N.E.P.; Kallimanis, A.S.; Mazaris, A.D.; Pantis, J.D. Integrating environmental policies towards a network of protected and quiet areas. Environ. Conserv. 2014, 41, 321–329. [Google Scholar] [CrossRef]
- Sader, S.A.; Hayes, D.J.; Hepinstall, J.A.; Coan, M.; Soza, C. Forest change monitoring of a remote biosphere reserve. Int. J. Remote Sens. 2001, 22, 1937–1950. [Google Scholar] [CrossRef]
- Willcock, S.; Phillips, O.L.; Platts, P.J.; Swetnam, R.D.; Balmford, A.; Burgess, N.D.; Ahrends, A.; Bayliss, J.; Doggart, N.; Doody, K.; et al. Land cover change and carbon emissions over 100 years in an African biodiversity hotspot. Glob. Chang. Biol. 2016, 22, 2787–2800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. The Natura 2000 Biogeographical Regions. Available online: http://ec.europa.eu/environment/nature/natura2000/biogeog_regions/ (accessed on 27 September 2017).
- Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31992L0043 (accessed on 27 September 2017).
- Council of Europe—Directorate of Culture and Cultural and Natural Heritage. Biogeographical Regions’ Map. 2010. Available online: https://rm.coe.int/168074623f (accessed on 27 September 2017).
- European Commission—DG Environment. Natura 2000 Barometer. 2016. Available online: http://ec.europa.eu/environment/nature/natura2000/barometer/index_en.htm (accessed on 27 September 2017).
- Directive 2009/147/EC of the European Parliament and of the Council of 30 November 2009 on the Conservation of Wild Birds. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0147 (accessed on 27 September 2017).
- With the approval of the Decree of the President of the Republic No. 357/1997, as emended by the Decree of the President of the Republic no. 120/2003.
- Data available from the website of the Italian Ministry for the Environment and for the Protection of Land and Sea: http://www.minambiente.it (accessed on 27 September 2017).
- De las Heras, P.; Fernández-Sañudo, P.; López-Estébanez, N.; Roldán, J. Territorial dynamics and boundary effects in a protected area of the Central Iberian Peninsula. Cent. Eur. J. Geosci. 2011, 3, 1–11. [Google Scholar] [CrossRef]
- ISPRA. Corine Land Cover. Available online: http://www.sinanet.isprambiente.it/it/sia-ispra/download-mais/corine-land-cover (accessed on 27 September 2017).
- Lai, S.; Zoppi, C. The Influence of Natura 2000 Sites on Land-Taking Processes at the Regional Level: An Empirical Analysis Concerning Sardinia (Italy). Sustainability 2017, 9, 259. [Google Scholar] [CrossRef]
- The main features of the two datasets can be found (in Italian only) at http://geoportale.isprambiente.it (accessed on 27 September 2017).
- Gómez, O.; Páramo, F. Environmental Accounting. Methodological Guidebook. Data Processing of Land Cover Flows. Internal Report of the European Topic Centre on Terrestrial Environment, with the Support of the EEA. 2005. Available online: http://www.eea.europa.eu/data-and-maps/data/land-cover-accounts-leac-based-on-corine-land-cover-changes-database-1990-2000/ (accessed on 27 September 2017).
- Radeloff, V.C.; Nelson, E.; Plantinga, A.J.; Lewis, D.J.; Helmers, D.; Lawler, J.J.; Withey, J.C.; Beaudry, F.; Martinuzzi, S.; Butsic, V.; et al. Economic-based projections of future land use in the conterminous United States under alternative policy scenarios. Ecol. Appl. 2012, 22, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
- Güneralp, B.; Seto, K.C. Futures of global urban expansion: Uncertainties and implications for biodiversity conservation. Environ. Res. Lett. 2013, 8, 1–10. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Kareiva, P.; Forman, R.T.T. The implications of current and future urbanization for global protected areas and biodiversity conservation. Biol. Conserv. 2008, 141, 1695–1703. [Google Scholar] [CrossRef]
- Beaumont, L.J.; Duursma, D. Global projections of 21st century land-use changes in regions adjacent to protected areas. PLoS ONE 2012, 7, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lasanta, T.; Nadal-Romero, E.; Errea, P.; Arnàez, J. The effect of landscape conservation measures in changing landscape patterns: A case study in Mediterranean mountains. Land Degrad. Dev. 2015, 27, 373–386. [Google Scholar] [CrossRef]
- Honrado, J.P.; Lomba, A.; Alves, P.; Aguiar, C.; Monteiro-Henriques, T.; Cerqueira, Y.; Monteiro, P.; Barreto Caldas, F. Conservation management of EU priority habitats after collapse of traditional pastoralism: Navigating socioecological transitions in mountain rangeland. Rural Sociol. 2017, 82, 101–128. [Google Scholar] [CrossRef]
- Vassilev, K.; Pedashenko, H.; Nikolov, S.C.; Apostolova, I.; Dengler, J. Effect of land abandonment on the vegetation of upland semi-natural grasslands in the Western Balkan Mts., Bulgaria. Plant Biosyst. 2011, 145, 654–665. [Google Scholar] [CrossRef]
- Halada, L.; Evans, D.; Romão, C.; Petersen, J.E. Which habitats of European importance depend on agricultural practices? Biodivers. Conserv. 2011, 20, 2365–2378. [Google Scholar] [CrossRef]
- Caraveli, H. A comparative analysis on intensification and extensification in mediterranean agriculture: Dilemmas for LFAs policy. J. Rural Stud. 2000, 16, 231–242. [Google Scholar] [CrossRef]
- Queiroz, C.; Beilin, R.; Folke, C.; Lindborg, R. Farmland abandonment: Threat or opportunity for biodiversity conservation? A global review. Front. Ecol. Environ. 2014, 12, 288–296. [Google Scholar] [CrossRef]
- Faria, N.; Rabaça, J.E.; Morales, M.B. The importance of grazing regime in the provision of breeding habitat for grassland birds: The case of the endangered little bustard (Tetrax tetrax). J. Nat. Conserv. 2012, 20, 211–218. [Google Scholar] [CrossRef]
- Farris, E.; Secchi, Z.; Rosati, L.; Filigheddu, R. Are all pastures eligible for conservation? A phytosociological survey of the Sardinian–Corsican Province as a basic tool for the Habitats Directive. Plant Biosyst. 2013, 147, 931–946. [Google Scholar] [CrossRef]
- Campagnaro, T.; Frate, L.; Carranza, M.L.; Sitzia, T. Multi-scale analysis of alpine landscapes with different intensities of abandonment reveals similar spatial pattern changes: Implications for habitat conservation. Ecol. Indic. 2017, 74, 147–159. [Google Scholar] [CrossRef]
- Öckinger, E.; Eriksson, A.K.; Smith, H.G. Effects of grassland abandonment, restoration and management on butterflies and vascular plants. Biol. Conserv. 2006, 133, 291–300. [Google Scholar] [CrossRef]
- The Appropriate assessment is ruled, throughout the EU, by art. 6, paragraph 3 of the Council Directive 92/43/EEC of 21 May 1992 on the Conservation of Natural Habitats and of Wild Fauna and Flora.
- Blankespoor, B.; Dasgupta, S.; Wheeler, D. Protected areas and deforestation: New results from high-resolution panel data. Nat. Resour. Forum 2017, 41, 56–58. [Google Scholar] [CrossRef]
- Bruner, A.G.; Gullison, R.E.; Rice, R.E.; da Fonseca, G.A.B. Effectiveness of parks in protecting tropical biodiversity. Science 2001, 291, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Gaymer, C.F.; Stadel, A.V.; Ban, N.C.; Cárcamo, P.F.; Ierna, J., Jr.; Lieberknecht, L.M. Merging top-down and bottom-up approaches in marine protected areas planning: Experiences from around the globe. Aquat. Conserv. 2014, 24, 128–144. [Google Scholar] [CrossRef]
- Strickland-Munro, J.; Moore, S. Indigenous involvement and benefits from tourism in protected areas: A study of Purnululu National Park and Warmun Community, Australia. J. Sustain. Tour. 2013, 21, 26–41. [Google Scholar] [CrossRef]
- Pollnac, R.B.; Crawford, B.R.; Gorospe, M.L.G. Discovering factors that influence the success of community-based marine protected areas in the Visayas, Philippines. Ocean Coast. Manag. 2001, 44, 683–710. [Google Scholar] [CrossRef]
- Beilin, R.; Lindborg, R.; Stenseke, M.; Pereira, H.M.; Llausàs, A.; Slätmo, E.; Cerqueira, Y.; Navarro, L.; Rodrigues, P.; Reichelt, N.; et al. Analysing how drivers of agricultural land abandonment affect biodiversity and cultural landscapes using case studies from Scandinavia, Iberia and Oceania. Land Use Policy 2014, 36, 60–72. [Google Scholar] [CrossRef]
- Hamilton, C.M.; Martinuzzi, S.; Plantinga, A.J.; Radeloff, V.C.; Lewis, D.J.; Thogmartin, W.E.; Heglund, P.J.; Pidgeon, A.M. Current and future land use around a nationwide protected area network. PLoS ONE 2013, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hockings, M.; Stolton, S.; Leverington, F.; Dudley, N.; Courrau, J. Evaluating Effectiveness: A framework for Assessing Management Effectiveness of Protected Areas, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2006; ISBN 2-8317-0939-3. [Google Scholar]
- Zoppi, C.; Lai, S. Assessment of the Regional Landscape Plan of Sardinia (Italy): A participatory-action-research case study type. Land Use Policy 2010, 22, 390–405. [Google Scholar] [CrossRef]
- European Commission. Commission Note on Setting Conservation Objectives for Natura 2000 Sites. 2012. Available online: http://ec.europa.eu/environment/nature/natura2000/management/docs/commission_note/commission_note2_EN.pdf (accessed on 27 September 2017).
- European Commission. Commission Note on Establishing Conservation Measures for Natura 2000. 2013. Available online: http://ec.europa.eu/environment/nature/natura2000/management/docs/commission_note/comNote%20conservation%20measures_EN.pdf (accessed on 27 September 2017).
- Leone, F.; Zoppi, C. Conservation measures and loss of ecosystem services: A study concerning the Sardinian Natura 2000 Network. Sustainability 2016, 8, 1061. [Google Scholar] [CrossRef]
- Zoppi, C.; Lai, S. An Ontology of the appropriate assessment of municipal master plans related to Sardinia (Italy). Future Internet 2014, 6, 223–241. [Google Scholar] [CrossRef] [Green Version]
- Kovács, E.; Kelemen, K.; Kalóczkai, A.; Margóczi, K.; Pataki, G.; Gébert, J.; Málovics, G.; Balázs, B.; Roboz, A.; Krasznai Kovács, E.; et al. Understanding the links between ecosystem service trade-offs and conflicts in protected areas. Ecosyst. Serv. 2015, 12, 117–127. [Google Scholar] [CrossRef]
Sardinia Total Area | NPAs | N2Ss | UAs | |||||
---|---|---|---|---|---|---|---|---|
Within 5-km Buffer around NPAs and N2Ss | Outside 5-km Buffer around NPAs and N2Ss | |||||||
[km2] | [km2] | [%] | [km2] | [%] | [km2] | [%] | [km2] | [%] |
24,088 | 2364 | 9.81 | 3502 | 14.54 | 9599 | 39.85 | 8622 | 35.79 |
LEAC Groups | CORINE Land Cover Classes 1 | |
---|---|---|
A | Artificial surfaces | 1. * |
ARA | Arable land and permanent crops | 2.1. * 2.2. * 2.4.1 |
PMF | Pastures and mosaic farmland | 2.3. * 2.4.2 2.4.3 2.4.4 |
FOR | Standing forests | 3.1. * |
TRW | Transitional woodland and shrub | 3.2.4 |
GRSH | Natural grassland, heathland, sclerophylous vegetation | 3.2.1 3.2.2 3.2.3 |
OPEN | Open space with little or no vegetation | 3.3. * |
WAT | Wetlands and water bodies | 4. * 5. * (except 523-sea) |
Code | Land Cover Change Processes | Land Cover Changes Included in the Process | ||||
---|---|---|---|---|---|---|
1 | Anthropization processes | |||||
11 | Urbanization | |||||
111 | Urbanization and artificialization from crops, pastures and semi-natural areas | ARA-A | PMF-A | |||
112 | Urbanization and artificialization from natural areas | FOR-A OPEN-A | TRW-A WAT-A | GRSH-A | ||
12 | Agrarian creation from natural areas | |||||
121 | Creation of new predominantly homogeneous agrarian areas | FOR-ARA OPEN-ARA | TRW-ARA WAT-ARA | GRSH-ARA | ||
122 | Creation of new heterogeneous or semi-natural agrarian areas | FOR-PMF OPEN-PMF | TRW-PMF WAT-PMF | GRSH-PMF | ||
13 | Homogenization or simplification of agrarian areas | PMF-ARA | ||||
2 | Processes to higher naturalization | |||||
21 | Conversion and restoration from artificial area | |||||
211 | Conversion from artificial to agrarian areas predominantly homogeneous | A-ARA | ||||
212 | Conversion from artificial to heterogeneous or semi-natural agrarian areas | A-PMF | ||||
213 | Restoration from artificial to natural areas | A-FOR A-OPEN | A-TRW | A-GRSH | ||
22 | Heterogeneization or semi-naturalization of agrarian areas | ARA-PMF | ||||
23 | Agrarian abandonment | |||||
231 | Abandonment of “homogenous” agrarian areas | ARA-FOR ARA-OPEN | ARA-TRW | ARA-GRSH | ||
232 | Abandonment of “heterogeneous or semi-natural” agrarian areas | PMF-FOR PMF-OPEN | PMF-TRW | PMF-GRSH | ||
3 | Internal changes in natural areas | |||||
31 | Successional processes (e.g., recovery, densification, shrub encroachment) | TRW-FOR WAT-FOR WAT-TRW WAT-OPEN | GRSH-FOR GRSH-TRW OPEN-GRSH | OPEN-FOR OPEN-TRW WAT-GRSH | ||
32 | Processes derived from disturbances, conducive towards higher simplification or degradation or less dominance and density | FOR-TRW TRW-GRSH | FOR-GRSH TRW-OPEN | FOR-OPEN GRSH-OPEN | ||
4 | Processes leading to increase in water surfaces | A-W FOR-W OPEN-W | ARA-W TRW-W | PMF-W GRSH-W |
Code | Land Cover Change Processes | Protection Level | |||||
---|---|---|---|---|---|---|---|
Sardinia | NPAs | N2Ss | UAs | ||||
[%] | [%] | [%] | [%] | ||||
1 | Anthropization processes | 5.16 | 0.52 | 6.26 | 5.49 | ||
11 | Urbanization | 0.41 | 0.04 | 0.13 | 0.39 | ||
111 | Urbanization and artificialization from crops, pastures and semi-natural areas | 0.30 | 0.01 | 0.05 | 0.32 | ||
112 | Urbanization and artificialization from natural areas | 0.11 | 0.03 | 0.08 | 0.07 | ||
12 | Agrarian creation from natural areas | 3.95 | 0.45 | 5.63 | 4.19 | ||
121 | Creation of new predominantly homogeneous agrarian areas | 0.41 | 0.05 | 0.23 | 0.46 | ||
122 | Creation of new heterogeneous or semi-natural agrarian areas | 3.54 | 0.40 | 5.40 | 3.73 | ||
13 | Homogenization or simplification of agrarian areas | 0.80 | 0.03 | 0.50 | 0.91 | ||
2 | Processes to higher naturalization | 1.99 | 0.63 | 2.09 | 2.24 | ||
21 | Conversion and restoration from artificial area | 0.22 | 0.06 | 0.14 | 0.21 | ||
211 | Conversion from artificial to agrarian areas predominantly homogeneous | 0.08 | 0.00 | 0.02 | 0.09 | ||
212 | Conversion from artificial to heterogeneous or semi-natural agrarian areas | 0.07 | 0.00 | 0.02 | 0.08 | ||
213 | Restoration from artificial to natural areas | 0.07 | 0.06 | 0.10 | 0.04 | ||
22 | Heterogeneization or semi-naturalization of agrarian areas | 0.30 | 0.09 | 0.52 | 0.31 | ||
23 | Agrarian abandonment | 1.47 | 0.48 | 1.43 | 1.72 | ||
231 | Abandonment of “homogenous” agrarian areas | 0.42 | 0.05 | 0.35 | 0.55 | ||
232 | Abandonment of “heterogeneous or semi-natural” agrarian areas | 1.05 | 0.43 | 1.08 | 1.17 | ||
3 | Internal changes in natural areas | 3.07 | 9.52 | 3.98 | 1.74 | ||
31 | Successional processes (e.g., recovery, densification, shrub encroachment) | 1.49 | 3.22 | 2.25 | 1.02 | ||
32 | Processes derived from disturbances, conducive towards higher simplification or degradation or less dominance and density | 1.58 | 6.30 | 1.73 | 0.72 | ||
4 | Processes leading to increase in water surfaces | 0.11 | 0.01 | 0.38 | 0.08 | ||
Total area with change | 10.33 | 10.68 | 12.71 | 9.55 | |||
Total area without changes (persistence) | 89.67 | 89.32 | 87.29 | 90.45 |
Sardinia | NPAs | N2Ss | UAs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 [%] | 2012 [%] | NC | 2000 [%] | 2012 [%] | NC | 2000 [%] | 2012 [%] | NC | 2000 [%] | 2012 [%] | NC | ||
(Artificial types) | A | 2.76 | 2.96 | 0.07 | 0.51 | 0.48 | −0.06 | 0.66 | 0.65 | −0.02 | 2.30 | 2.49 | 0.08 |
(Agricultural types) | ARA | 24.42 | 24.79 | 0.02 | 0.81 | 0.73 | −0.09 | 14.09 | 13.90 | −0.01 | 30.78 | 31.16 | 0.01 |
PMF | 19.50 | 21.38 | 0.10 | 1.92 | 1.96 | 0.02 | 11.87 | 15.95 | 0.35 | 24.12 | 26.01 | 0.08 | |
(Natural types) | FOR | 16.42 | 17.03 | 0.04 | 53.37 | 50.20 | −0.06 | 18.26 | 19.00 | 0.04 | 11.67 | 12.82 | 0.10 |
GRSH | 33.73 | 30.03 | −0.11 | 37.18 | 37.32 | 0.00 | 46.00 | 40.18 | −0.13 | 29.73 | 25.80 | −0.13 | |
OPEN | 1.46 | 1.48 | 0.01 | 4.79 | 4.51 | −0.06 | 3.59 | 3.59 | 0.00 | 0.46 | 0.47 | 0.01 | |
TRW | 0.57 | 1.19 | 1.09 | 0.76 | 4.13 | 4.47 | 0.43 | 1.50 | 2.48 | 0.53 | 0.77 | 0.47 | |
WAT | 1.13 | 1.14 | 0.03 | 0.66 | 0.67 | 0.01 | 5.09 | 5.22 | 0.03 | 0.41 | 0.48 | 0.18 | |
Total artificial surfaces | 2.76 | 2.96 | 0.07 | 0.51 | 0.48 | −0.06 | 0.66 | 0.65 | −0.02 | 2.30 | 2.49 | 0.08 | |
Total agricultural surfaces | 43.92 | 46.17 | 0.05 | 2.73 | 2.70 | −0.01 | 25.96 | 29.85 | 0.15 | 54.90 | 57.17 | 0.04 | |
Total natural surfaces | 53.31 | 50.87 | −0.05 | 96.76 | 96.82 | 0.001 | 73.38 | 69.49 | −0.05 | 42.80 | 40.34 | −0.06 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, S.; Leone, F.; Zoppi, C. Anthropization Processes and Protection of the Environment: An Assessment of Land Cover Changes in Sardinia, Italy. Sustainability 2017, 9, 2174. https://doi.org/10.3390/su9122174
Lai S, Leone F, Zoppi C. Anthropization Processes and Protection of the Environment: An Assessment of Land Cover Changes in Sardinia, Italy. Sustainability. 2017; 9(12):2174. https://doi.org/10.3390/su9122174
Chicago/Turabian StyleLai, Sabrina, Federica Leone, and Corrado Zoppi. 2017. "Anthropization Processes and Protection of the Environment: An Assessment of Land Cover Changes in Sardinia, Italy" Sustainability 9, no. 12: 2174. https://doi.org/10.3390/su9122174
APA StyleLai, S., Leone, F., & Zoppi, C. (2017). Anthropization Processes and Protection of the Environment: An Assessment of Land Cover Changes in Sardinia, Italy. Sustainability, 9(12), 2174. https://doi.org/10.3390/su9122174