A Validation of Fengyun4A Temperature and Humidity Profile Products by Radiosonde Observations
Abstract
:1. Introduction
2. Data and Method
3. Results
3.1. Fengyun4A Data Quality Flags
3.2. Validation of Temperature
3.2.1. Validation of Temperature with QC Flag of “Good”
3.2.2. Validation of the Temperature with QC Flag of “Bad”
3.3. Validation of Humidity
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yue, Q.; Fetzer, E.J.; Kahn, B.H.; Wong, S.; Manipon, G.; Guillaume, A.; Wilson, B. Cloud-State-Dependent Sampling in AIRS Observations Based on CloudSat Cloud Classification. J. Clim. 2013, 26, 8357–8377. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Clim. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. How Well Do Coupled Models Simulate Today’s Climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–312. [Google Scholar] [CrossRef]
- Yang, K.; Wu, H.; Qin, J.; Lin, C.; Tang, W.; Chen, Y. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Glob. Planet. Chang. 2014, 112, 79–91. [Google Scholar] [CrossRef]
- Wallace, J.; Hobbs, P. Atmospheric Science: An Introductory Survey, 2nd ed.; Addison-Wesley: Boston, MA, USA, 2006; Chapter 8. [Google Scholar]
- Zhang, P.; Lu, Q.; Hu, X.; Gu, S.; Yang, L.; Min, M.; Chen, L.; Xu, N.; Sun, L.; Bai, W.; et al. Latest Progress of the Chinese Meteorological Satellite Program and Core Data Processing Technologies. Adv. Atmos. Sci. 2019, 36, 1027–1045. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Bickmeier, L.J.; Leslie, R.V.; Pieper, M.L.; Samra, J.E.; Surussavadee, C.; Upham, C.A. Hyperspectral Microwave Atmospheric Sounding. IEEE Trans. Geosci. Remote Sens. 2011, 49, 128–142. [Google Scholar] [CrossRef]
- Uspensky, A.B.; Rublev, A.N. The current state and prospects of satellite hyperspectral atmospheric sounding. Izvestiya Atmos. Ocean. Phys. 2014, 50, 892–903. [Google Scholar] [CrossRef]
- Wong, S.; Fetzer, E.J.; Schreier, M.; Manipon, G.; Fishbein, E.F.; Kahn, B.H.; Yue, Q.; Irion, F.W. Cloud-induced uncertainties in AIRS and ECMWF temperature and specific humidity. J. Geophys. Res. Atmos. 2015, 120, 1880–1901. [Google Scholar] [CrossRef]
- Li, J.; Liu, C.Y.; Zhang, P.; Schmit, T.J. Applications of Full Spatial Resolution Space-Based Advanced Infrared Soundings in the Preconvection Environment. Weather Forecast. 2012, 27, 515–524. [Google Scholar] [CrossRef]
- Chen, T.; Rossow, W.B.; Zhang, Y. Radiative Effects of Cloud-Type Variations. J. Clim. 2000, 13, 264–286. [Google Scholar] [CrossRef]
- Clerbaux, C.; Boynard, A.; Clarisse, L.; George, M.; Hadji-Lazaro, J.; Herbin, H.; Hurtmans, D.; Pommier, M.; Razavi, A.; Turquety, S.; et al. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmos. Chem. Phys. 2009, 9, 6041–6054. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Shuhui, Z. Research on Humidity Measurement Error of Radiosonde and Its Influence on Cloud Recognition. Adv. Earth Sci. 2018, 33, 85–92. [Google Scholar]
- Steinbrecht, W.; Claude, H.; Schönenborn, F.; Leiterer, U.; Dier, H.; Lanzinger, E. Pressure and Temperature Differences between Vaisala RS80 and RS92 Radiosonde Systems. J. Atmos. Ocean. Technol. 2008, 25, 909–927. [Google Scholar] [CrossRef]
- Turner, D.D.; Lesht, B.M.; Clough, S.A.; Liljegren, J.C.; Revercomb, H.E.; Tobin, D.C. Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience. J. Atmos. Ocean. Technol. 2003, 20, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Cole, H.L.; Carlson, D.J.; Miller, E.R.; Beierle, K.; Paukkunen, A.; Laine, T.K. Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde—Application to TOGA COARE Data. J. Atmos. Ocean. Technol. 2002, 19, 981–1002. [Google Scholar] [CrossRef]
- Jun, Y.; Qingxiang, L.; Jie, L.; Rong, M.; Qilin, L. Cross Comparison of Three Kinds of Upper Air Temperature and Humidity Data over China. Meteorol. Mon. 2016, 42, 743–755. [Google Scholar]
- Wu, D.; Hu, Y.; McCormick, M.P.; Yan, F. Global cloud-layer distribution statistics from 1 year CALIPSO lidar observations. Int. J. Remote Sens. 2011, 32, 1269–1288. [Google Scholar] [CrossRef]
- Wylie, D.; Jackson, D.L.; Menzel, W.P.; Bates, J.J. Trends in Global Cloud Cover in Two Decades of HIRS Observations. J. Clim. 2005, 18, 3021–3031. [Google Scholar] [CrossRef]
- Wang, X.; Min, M.; Wang, F.; Guo, J.; Li, B.; Tang, S. Intercomparisons of Cloud Mask Products Among Fengyun-4A, Himawari-8, and MODIS. IEEE Trans. Geosci. Remote Sens. 2019, 1–13. [Google Scholar] [CrossRef]
- He, M.; Hu, Y.; Huang, J.P.; Stamnes, K. Aerosol optical depth under ‘clear’ sky conditions derived from sea surface reflection of lidar signals. Opt. Express 2016, 24, A1618–A1634. [Google Scholar] [CrossRef]
- Menzel, W.P.; Schmit, T.J.; Zhang, P.; Li, J. Satellite-Based Atmospheric Infrared Sounder Development and Applications. Bull. Am. Meteorol. Soc. 2018, 99, 583–603. [Google Scholar] [CrossRef]
- Li, J.; Wolf, W.W.; Menzel, W.P.; Zhang, W.; Huang, H.L.; Achtor, T.H. Global Soundings of the Atmosphere from ATOVS Measurements: The Algorithm and Validation. J. Appl. Meteorol. 2000, 39, 1248–1268. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.C.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.K.; Smith, W.L.; Larar, A.M.; Liu, X.; Taylor, J.P.; Schlüssel, P.; Strow, L.L.; Mango, S.A. All weather IASI single field-of-view retrievals: case study—Validation with JAIVEx data. Atmos. Chem. Phys. 2009, 9, 2241–2255. [Google Scholar] [CrossRef]
- Weisz, E.; Li, J.; Li, J.; Zhou, D.K.; Huang, H.L.; Goldberg, M.D.; Yang, P. Cloudy sounding and cloud-top height retrieval from AIRS alone single field-of-view radiance measurements. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Fauchez, T.; Cornet, C.; Szczap, F.; Dubuisson, P.; Rosambert, T. Impact of cirrus clouds heterogeneities on top-of-atmosphere thermal infrared radiation. Atmos. Chem. Phys. 2014, 14, 5599–5615. [Google Scholar] [CrossRef] [Green Version]
- Lv, M.; Zhao, C.; Wang, Q.; Li, Z. Feasibility study of water vapor and temperature retrieval using a combined vibrational rotational Raman and Mie scattering multi-wavelength lidar. Proc. SPIE Remote Sens. Atmos. Clouds Precip. 2014, 9259. [Google Scholar] [CrossRef]
- Rossow, W.B.; Schiffer, R.A. Advances in Understanding Clouds from ISCCP. Bull. Am. Meteorol. Soc. 1999, 80, 2261–2288. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9—Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Schiffer, R.A.; Rossow, W.B. The International Satellite Cloud Climatology Project (ISCCP): The First Project of the World Climate Research Programme. Bull. Am. Meteorol. Soc. 1983, 64, 779–784. [Google Scholar] [CrossRef] [Green Version]
- Rossow, W.; Mosher, F.; Kinsella, E.; Arking, A.; Desbois, M.; Harrison, E.; Minnis, P.; Ruprecht, E.; Sèze, G.; Smith, E. ISCCP cloud analysis algorithm intercomparison. Adv. Space Res. 1985, 5, 185. [Google Scholar] [CrossRef]
- Rossow, W.B.; Garder, L.C. Cloud Detection Using Satellite Measurements of Infrared and Visible Radiances for ISCCP. J. Clim. 1993, 6, 2341–2369. [Google Scholar] [CrossRef]
- Young, A.H.; Knapp, K.R.; Inamdar, A.; Hankins, W.; Rossow, W.B. The International Satellite Cloud Climatology Project H-Series climate data record product. Earth Syst. Sci. Data 2018, 10, 583–593. [Google Scholar] [CrossRef] [Green Version]
- Pougatchev, N. Validation of atmospheric sounders by correlative measurements. Appl. Opt. 2008, 47, 4739–4748. [Google Scholar] [CrossRef] [PubMed]
- Pougatchev, N.; August, T.; Calbet, X.; Hultberg, T.; Oduleye, O.; Schlüssel, P.; Stiller, B.; Germain, K.S.; Bingham, G. IASI temperature and water vapor retrievals – error assessment and validation. Atmos. Chem. Phys. 2009, 9, 6453–6458. [Google Scholar] [CrossRef]
- Divakarla, M.G.; Barnet, C.D.; Goldberg, M.D.; McMillin, L.M.; Maddy, E.; Wolf, W.; Zhou, L.; Liu, X. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Wei, C.; Lu, F.; Guo, Q. Introducing the New Generation of Chinese Geostationary Weather Satellites, Fengyun-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Li, J.; Huang, H.L. Retrieval of atmospheric profiles from satellite sounder measurements by use of the discrepancy principle. Appl. Opt. 1999, 38, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, G.; Lin, T.; Liu, C.; Ren, H.; Young, C. Using Surface Stations to Improve Sounding Retrievals from Hyperspectral Infrared Instruments. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6957–6963. [Google Scholar] [CrossRef]
Clear | Ci | Cs | DC | Ac | As | Ns | Cu | Sc | St | |
---|---|---|---|---|---|---|---|---|---|---|
N | 15,467 | 15,768 | 19,863 | 32,189 | 3504 | 3048 | 4113 | 727 | 795 | 501 |
total, | −0.12 | −0.41 | −0.49 | −0.26 | −0.48 | −0.54 | −0.22 | −0.91 | −0.12 | 0.44 |
2.59 | 2.89 | 3.05 | 2.72 | 2.70 | 2.58 | 3.12 | 2.40 | 3.65 | 2.58 | |
N | 4376 | 4593 | 5563 | 9262 | 1022 | 847 | 1208 | 182 | 229 | 138 |
SL, | −0.43 | −0.60 | −0.90 | −0.47 | −0.89 | −1.05 | 0.23 | −1.86 | 2.02 | 2.40 |
3.41 | 3.19 | 3.35 | 3.06 | 2.85 | 3.12 | 4.19 | 2.14 | 4.24 | 3.25 | |
N | 4187 | 4286 | 5310 | 8724 | 957 | 819 | 1071 | 216 | 197 | 126 |
TPL, | −0.12 | −0.80 | −0.52 | −0.49 | −0.62 | −0.11 | 0.11 | −0.01 | 0.54 | 0.25 |
2.36 | 2.91 | 2.81 | 2.46 | 2.65 | 2.22 | 2.64 | 1.79 | 3.26 | 1.50 | |
N | 6590 | 6637 | 8477 | 13,507 | 1468 | 1301 | 1681 | 321 | 333 | 217 |
TL, | 0.05 | −0.06 | −0.26 | −0.02 | −0.14 | −0.49 | −0.78 | −0.94 | −1.90 | −0.69 |
1.99 | 2.59 | 2.81 | 2.59 | 2.55 | 2.35 | 2.36 | 2.65 | 2.48 | 1.81 | |
N | 314 | 252 | 513 | 696 | 57 | 81 | 153 | 8 | 36 | 20 |
PBL, | 0.36 | 0.75 | 0.33 | 0.64 | 0.46 | −0.27 | 0.05 | −2.41 | −0.97 | 0.33 |
2.92 | 2.86 | 4.80 | 2.66 | 3.14 | 2.53 | 2.57 | 2.91 | 2.04 | 1.86 |
Clear | Ci | Cs | DC | Ac | As | Ns | Cu | Sc | St | |
---|---|---|---|---|---|---|---|---|---|---|
N | 10,221 | 11,725 | 14,829 | 22,404 | 2824 | 2061 | 3388 | 497 | 653 | 358 |
total, | −3.36 | −4.34 | −4.33 | −4.31 | −6.33 | −3.65 | −2.95 | −6.09 | −2.25 | 0.18 |
8.99 | 10.95 | 10.49 | 10.02 | 10.39 | 8.22 | 12.09 | 9.78 | 6.21 | 4.31 | |
N | 3881 | 4414 | 5121 | 8490 | 1005 | 755 | 1125 | 162 | 216 | 118 |
SL, | −3.19 | −4.09 | −4.22 | −3.71 | −6.09 | −4.26 | −2.52 | −8.98 | 0.79 | 3.63 |
9.06 | 10.78 | 9.04 | 8.70 | 10.90 | 8.43 | 10.11 | 8.84 | 7.09 | 3.46 | |
N | 2933 | 3748 | 4296 | 6969 | 929 | 549 | 905 | 157 | 163 | 82 |
TPL, | −3.72 | −5.70 | −4.13 | −5.15 | −8.38 | −2.61 | −1.06 | −4.46 | −0.93 | 0.35 |
9.38 | 12.13 | 11.91 | 11.61 | 10.55 | 9.75 | 14.58 | 8.95 | 5.32 | 3.88 | |
N | 3000 | 3423 | 4904 | 6404 | 860 | 685 | 1218 | 177 | 240 | 126 |
TL, | −3.55 | −3.35 | −4.92 | −4.56 | −4.58 | −3.99 | −4.94 | −4.92 | −5.89 | −3.15 |
8.93 | 9.69 | 10.80 | 9.88 | 9.29 | 6.79 | 12.03 | 10.73 | 3.77 | 2.97 | |
N | 407 | 140 | 508 | 541 | 30 | 72 | 140 | 1 | 34 | 32 |
PBL, | −0.96 | 0.01 | −1.61 | 0.02 | −1.63 | −1.92 | −1.23 | −2.08 | −2.28 | 0.09 |
4.19 | 6.36 | 7.16 | 6.85 | 5.20 | 2.71 | 4.43 | 0 | 5.13 | 1.69 |
Clear | Ci | Cs | DC | Ac | As | Ns | Cu | Sc | St | |
---|---|---|---|---|---|---|---|---|---|---|
N | 6204 | 6079 | 8091 | 12479 | 1307 | 1235 | 1672 | 268 | 333 | 209 |
−0.9 | 1.4 | 0.1 | 0.5 | 4.3 | 1.3 | 0.9 | 2.5 | 0.7 | 1.5 | |
18.3 | 20.6 | 19.4 | 21.3 | 21.1 | 20.6 | 21.3 | 27.9 | 22.3 | 16.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; Wang, D.; Ding, W.; Wan, Y.; Chen, Y.; Zhang, Y. A Validation of Fengyun4A Temperature and Humidity Profile Products by Radiosonde Observations. Remote Sens. 2019, 11, 2039. https://doi.org/10.3390/rs11172039
He M, Wang D, Ding W, Wan Y, Chen Y, Zhang Y. A Validation of Fengyun4A Temperature and Humidity Profile Products by Radiosonde Observations. Remote Sensing. 2019; 11(17):2039. https://doi.org/10.3390/rs11172039
Chicago/Turabian StyleHe, Min, Donghai Wang, Weiyu Ding, Yijing Wan, Yonghang Chen, and Yu Zhang. 2019. "A Validation of Fengyun4A Temperature and Humidity Profile Products by Radiosonde Observations" Remote Sensing 11, no. 17: 2039. https://doi.org/10.3390/rs11172039
APA StyleHe, M., Wang, D., Ding, W., Wan, Y., Chen, Y., & Zhang, Y. (2019). A Validation of Fengyun4A Temperature and Humidity Profile Products by Radiosonde Observations. Remote Sensing, 11(17), 2039. https://doi.org/10.3390/rs11172039