Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and In Situ Measurement
2.2. Satellite Image Processing
2.3. Statistical Analysis
3. Results
3.1. In Situ a(420)CDOM Measurements and Satellite Image Acquisition
3.2. Partial Least Squares Regression (PLSR) Model to Explore the Relationship between CDOM and Band Ratios
3.3. Testing and Validating a(420)CDOM Retrieval Models
3.4. Comparing Observed and Modeled a(420)CDOM and Mapping Its Variability
4. Discussion
4.1. Band Ratio Algorithms
4.2. Atmospheric Effects
4.3. Spatial Variability of a(420)CDOM
4.4. Temporal Variability of a(420)CDOM
5. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birk, S.; Ecke, F. The Potential of Remote Sensing in the Ecological Status. Assessment of Coloured Lakes Using Aquatic Plants. Ecol. Indic. 2014, 46, 398–406. [Google Scholar] [CrossRef]
- Verpoorter, C.; Kutser, T.D.; Seekell, A.; Tranvik, L.J. A Global Inventory of Lakes Based on High-Resolution Satellite Imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Fölster, J.; Johnson, R.K.; Futter, M.N.; Wilander, A. The Swedish monitoring of surface waters: 50 years of adaptive monitoring. Ambio 2014, 43, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Monteith, D.T.; Stoddard, J.L.; Evans, C.D.; De Wit, H.A.; Forsius, M.; Høgåsen, T.; Wilander, A.; Skjelkvåle, B.L.; Jeffries, D.S.; Vourenmaa, J.; et al. Dissolved Organic Carbon Trends Resulting from Changes in Atmospheric Deposition Chemistry. Nature 2007, 450, 537. [Google Scholar] [CrossRef]
- Jansson, M.; Persson, L.; DeRoos, A.M.; Jones, R.I.; Tranvik, L.J. Terrestrial Carbon and Intraspecific Size-Variation Shape Lake Ecosystems. Trends Ecol. Evol. 2007, 22, 316–322. [Google Scholar] [CrossRef]
- Lapierre, J.F.; Guillemette, F.; Berggren, M.; del Giorgio, P.A. Increases in Terrestrially Derived Carbon Stimulate Organic Carbon Processing and CO2 Emissions in Boreal Aquatic Ecosystems. Nat. Commun. 2013, 4, 2972. [Google Scholar] [CrossRef]
- Brothers, S.; Köhler, J.; Attermeyer, K.; Grossart, H.P.; Mehner, T.; Meyer, N.; Scharnweber, K.; Hilt, S. A Feedback Loop Links Brownification and Anoxia in a Temperate, Shallow Lake. Limnol. Oceanogr. 2014, 59, 1388–1398. [Google Scholar] [CrossRef]
- Karlsson, J.; Byström, P.J.; Ask, P.; Ask, L.; Persson, L.; Jansson, M. Light Limitation of Nutrient Poor Lake Ecosystems. Nature 2009, 460, 506. [Google Scholar] [CrossRef]
- Deininger, A.; Faithfull, C.L.; Bergström, A.-K. Phytoplankton Response to Whole Lake Inorganic N Fertilization along a Gradient in Dissolved Organic Carbon. Ecology 2017, 98, 982–994. [Google Scholar] [CrossRef]
- Cuthbert, I.D.; del Giorgio, P. Toward a Standard Method of Measuring Color in Freshwater. Limnol. Oceanogr. 1992, 37, 1319–1326. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based Remote Sensing of Lake Water Quality Characteristics, Including Chlorophyll and Colored Dissolved Organic Matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Harvey, E.T.; Kratzer, S.; Andersson, A. Relationships between Colored Dissolved Organic Matter and Dissolved Organic Carbon in Different Coastal Gradients of the Baltic Sea. Ambio 2015, 44, S392–S401. [Google Scholar] [CrossRef] [Green Version]
- Keith, D.J.; Schaeffer, B.A.; Lunetta, R.S.; Gould, R.W.; Rocha, K.; Cobb, D.J. Remote Sensing of Selected Water-Quality Indicators with the Hyperspectral Imager for the Coastal Ocean (HICO) Sensor. Int. J. Remote Sens. 2014, 35, 2927–2962. [Google Scholar] [CrossRef]
- Song, K.; Zhao, Y.; Wen, Z.; Chong, F.; Shang, Y. A systematic examination of the relationships between CDOM and DOC in inland waters in China. Hydrol. Earth Syst. Sci. 2017, 21, 5127. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Pierson, D.C.; Kallio, K.Y.; Reinart, A.; Sobek, S. Mapping Lake CDOM by Satellite Remote Sensing. Remote Sens. Environ. 2005, 94, 535–540. [Google Scholar] [CrossRef]
- Kuster, T. The Possibility of Using the Landsat Image Archive for Monitoring Long Trend in Colored Dissolved Organic Matter Concentration in Lake Waters. Remote Sens. Environ. 2012, 123, 334–338. [Google Scholar]
- Gholizadeh, M.; Melesse, A.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Klein, I.; Gessner, U.; Dietz, A.J.; Kuenzer, C. Global WaterPack—A 250 m Resolution Dataset Revealing the Daily Dynamics of Global Inland Water Bodies. Remote Sens. Environ. 2017, 198, 345–362. [Google Scholar] [CrossRef]
- Tyler, A.N.; Svab, E.; Preston, T.; Présing, M.; Kovács, W.A. Remote Sensing of the Water Quality of Shallow Lakes: A Mixture Modelling Approach to Quantifying Phytoplankton in Water Characterized by High-Suspended Sediment. Int. J. Remote Sens. 2006, 27, 1521–1537. [Google Scholar] [CrossRef]
- Hakvoort, H.; De Haan, J.; Jordans, R.; Vos, R.; Peters, S.; Rijkeboer, M. Towards Airborne Remote Sensing of Water Quality in the Netherlands—Validation and Error Analysis. ISPRS J. Photogramm. Remote Sens. 2002, 57, 171–183. [Google Scholar] [CrossRef]
- Arenz, R.F.; Lewis, W.M.; Saunders, J.F. Determination of Chlorophyll and Dissolved Organic Carbon from Reflectance Data for Colorado Reservoir. Int. J. Remote Sens. 1996, 17, 1547–1566. [Google Scholar] [CrossRef]
- Jaffé, R.; McKnight, D.; Maie, N.; Cory, R.; McDowell, W.H.; Campbell, J.L. Spatial and Temporal Variations in DOM Composition in Ecosystems: The Importance of Long-Term Monitoring of Optical Properties. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Sasaki, H.; Gomi, Y.; Asai, T.; Shibata, M.; Kiyomoto, Y.; Okamura, K.; Nishiuchi, K.; Hasegawa, T.; Yamada, H. Unique Dispersal of the Changjiang-Diluted Water Plume in the East China Sea Revealed from Satellite Monitoring of Colored Dissolved Organic Matter (CDOM). Terr. Atmos. Ocean. Sci. 2014, 25, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Palmer, S.C.J.; Kutser, T.; Hunter, P.D. Remote Sensing of Inland Waters: Challenges, Progress and Future Directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Bargellini, P. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Baillarin, S.J.; Meygret, A.; Dechoz, C.; Petrucci, B.; Lacherade, S.; Tremas, T.; Isola, C.; Martimort, P.; Spoto, F. Sentinel-2 level 1 Products and Image Processing Performances. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012. [Google Scholar]
- Salama, M.S.; Radwan, M.; van der Velde, R. A Hydro-Optical Model for Deriving Water Quality Variables from Satellite Images (Hydrosat): A Case Study of The Nile River Demonstrating the Future Sentinel-2 Capabilities. Phys. Chem. Earth 2012, 50, 224–232. [Google Scholar] [CrossRef]
- Slonecker, E.T.; Jones, D.K.; Pellerin, B.A. The New Landsat 8 Potential for Remote Sensing of Colored Dissolved Organic Matter (CDOM). Mar. Pollut. Bull. 2015, 107, 518–527. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lakewater Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef] [Green Version]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote Sensing of Black Lakes and Using 810 Nm Reflectance Peak for Retrieving Water Quality Parameters of Optically Complex Waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Kirk, J.T.O. Light and Photosynthesis in Aquatic Ecosystem; Cambridge University Press: Cambirdge, UK, 1983. [Google Scholar]
- Cardille, J.A.; Leguet, J.B.; del Giorgio, P. Remote Sensing of Lake CDOM Using Noncontemporaneous Field Data. Can. J. Remote Sens. 2013, 39, 118–126. [Google Scholar] [CrossRef]
- ESA. SENTINEL-2UserHandbook. 2015. Available online: https://sentinel.esa.int›documents›Sentinel-2_User_Handbook (accessed on 24 July 2015).
- Zhu, W.; Yu, Q.; Tian, Y.Q.; Becker, B.L.; Zheng, T.; Carrick, H.J. An Assessment of Remote Sensing Algorithms for Colored Dissolved Organic Matter in Complex Freshwater Environments. Remote Sens. Environ. 2014, 140, 766–778. [Google Scholar] [CrossRef]
- Kallio, K.; Attila, J.; Härmä, P.; Koponen, S.; Pulliainen, J.; Hyytiäinen, U.-M.; Pyhälahti, T. Landsat ETM+ Images in the Estimation of Seasonal Lake Water Quality in Boreal River Basins. Environ. Manag. 2008, 42, 511–522. [Google Scholar] [CrossRef]
- Li, J.; Yu, Q.; Tian, Y.; Becker, B.; Siqueira, P.; Torbick, N. Spatio-temporal variations of CDOM in shallow inland waters from a semi-analytical inversion of Landsat-8. Remote Sens. Environ. 2018, 218, 198–200. [Google Scholar] [CrossRef]
- Kelly, P.T.; Solomon, C.T.; Weidel, B.C.; Jones, S.E. Terrestrial carbon is a resource, but not a subsidy, for lake zooplankton. Ecology 2014, 95, 1236–1242. [Google Scholar] [CrossRef] [Green Version]
- Kritzberg, E.S.; Cole, J.J.; Pace, M.L.; Granéli, W.; Bade, D.L. Autochthonous versus allochthonous carbon sources of bacteria: Results from whole-lake 13C addition ex-periments. Limnol. Oceanogr. 2004, 49, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Boyle, E.S.; Guerriero, N.; Thiallet, A.; Vecchio, R.D.; Blough, N.V. Optical prop—Erties of humic substances and CDOM: Relation to structure. Environ. Sci. Technol. 2009, 43, 2262–2268. [Google Scholar] [CrossRef]
- Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffé, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159. [Google Scholar] [CrossRef]
- Maie, N.; Jaffé, R.; Miyoshi, T.; Childers, D.L. Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 2006, 78, 285–314. [Google Scholar] [CrossRef]
- Yallop, A.; Clutterbuck, B. Land management as a factor controlling dissolved organic carbon release from upland peat soils 1: Spatial variation in DOC pro-ductivity. Sci. Total. Environ. 2009, 407, 3803–3813. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Tian, Y.Q.; Yu, Q.; Zheng, Y.; Huang, L. Remote estimation of colored dissolved organic matter and chlorophyll—A in Lake Huron using Sentinel-2 measurements. J. Appl. Remote Sens. 2017, 11, 036007. [Google Scholar] [CrossRef]
- Berggren, M.; Klaus, M.; Selvam, B.P.; Ström, L.; Laudon, H. Quality transformation of dissolved organic carbon during water transit through lakes: Contrasting controls by photochemical and biological processes. Biogeosciences 2018, 15, 457–470. [Google Scholar] [CrossRef] [Green Version]
Sentinel-2 Tiles | Forest (Broadleaf and Coniferous) | Herbaceous | Wetland | Water |
---|---|---|---|---|
33WXR | 35–82% | 57–98% | 10% | 2% |
33WWP | 37–78% | 55–95% | 3% | 1–11% |
33WXM-34WDS | 77–100% | 11–98% | 26% | 1% |
33WVM-33VUL-33VVL | 25% | 69–89% | 3.5–7% | 3–22% |
33VUG | 90–100% | 3–5% | 0 | 2–16% |
ID | Lake Name and Region | Latitude | Longitude |
---|---|---|---|
1 | Skrapmiejaure-Västerbotten W | 66°7′59.02″N | 16°8′47.79″E |
2 | Aitelnastjärn-Västerbotten W | 66° 6′17.87″N | 16°11′5.28″E |
3 | Mattekjaure-Västerbotten W | 66°7′3.34″N | 16°11′11.27″E |
4 | Lissojaure-Västerbotten W | 66°5′31.91″N | 16°17′14.08″E |
5 | Tjappisjaure-Västerbotten W | 66°4′5.96″N | 16°21′10.36″E |
6 | Ruohtajavratje-Västerbotten W | 66°5′11.45″N | 16°19′22.67″E |
7 | Båsatjaure-Västerbotten W | 66°7′18.87″N | 16°15′55.72″E |
8 | Stor Bissitj-Västerbotten W | 66°0′51.39″N | 16°14′58.71″E |
9 | Övre Buonuokjaure-Västerbotten W | 66°0′42.84″N | 16°16′30.55″E |
10 | Nedre Buonuokjaure-Västerbotten W | 66°0′32.77″N | 16°16′15.05″E |
11 | Laddejaure-Jämtland | 66°07′56.92″N | 16°17′25.21″E |
12 | Avundtjärn-Jämtland | 63°44′23.4″N | 12°36′37.9″E |
13 | Svartvikstjärnarna-Jämtland | 64°02′59.4″N | 13°09′59.8″E |
14 | Krutejaure-Jämtland | 63°55′20.2″N | 13°27′00.0″E |
15 | Jille Skoulkenjaevrie-Jämtland | 63°54′18.5″N | 13°30′14.2″E |
16 | Baulan (Östra)-Jämtland | 63°47′55.0″N | 13°17′43.8″E |
17 | Jille Baulan (Västra)-Jämtland | 63°47′58.9″N | 13°16′57.4″E |
18 | Klingervattnet-Jämtland | 64°37′16.4″N | 14°34′44.7″E |
19 | Örtjärnen-Värmland | 59°56′1.29″N | 13°19′53.96″E |
20 | Hemsjön-Värmland | 59°55′12.96″N | 13°20′9.74″E |
21 | Igeltjärnen-Värmland | 59°51′35.11″N | 13°17′28.68″E |
22 | Göptjärnet-Värmland | 59°53′4.93″N | 12°44′46.53″E |
23 | Markustjärnet-Värmland | 59°52′18.51″N | 12°42′13.89″E |
24 | Stora Abbortjärnet-Värmland | 59°50′48.60″N | 12°38′48.93″E |
25 | Isakstjärn-Värmland | 60°15′20.97″N | 12°38′14.89″E |
26 | Djupen-Värmland | 60°18′13.70″N | 12°35′7.07″E |
27 | Hotlamm-Värmland | 60°19′40.88″N | 12°36′56.95″E |
28 | Stortjärnen-Västerbotten E | 64°15′42.00″N | 19°45′44.37″E |
29 | Enhörningen-Västerbotten E | 64°15′2.39″N | 19°3′1.35″E |
30 | Gäddtjärn-Västerbotten E | 64°7′4.56″N | 19°3′48.18″E |
31 | Övre Btj-Västerbotten E | 64°7′24.34″N | 18°46′44.35″E |
32 | Byxrivarlidvägen-VästerbottenE | 64°7′31.28″N | 18°45′18.37″E |
33 | Gålgotjärn-Västerbotten E | 64°8′46.07″N | 18°42′53.81″E |
34 | Nästjärn-Västerbotten E | 64°9′1.26″N | 18°48′0.51"E |
35 | Övre Skarda-Västerbotten E | 64°13′19.64″N | 18°50′48.72″E |
36 | Nedre Skarda-Västerbotten E | 64°13′31.07″N | 18°46′22.28″E |
37 | Mångstenstjärn-Västerbotten E | 64°15′2.39″N | 18°45′45.07″E |
38 | Banansjön-Norrbotten | 68°26′43.24″N | 18°37′44.70″E |
39 | Koukkelsjön-Norrbotten | 68°26′33.21″N | 18°34′38.94″E |
40 | Solbackasjön-Norrbotten | 68°20′49.86″N | 18°54′46.05″E |
41 | Hästskosjön-Norrbotten | 68°21′1.55″N | 18°58′3.08″E |
42 | Vouskojavri-Norrbotten | 68°20′44.63″N | 19°6′2.76″E |
43 | Långsjön-Norrbotten | 68°20′15.96″N | 19°8′46.65″E |
44 | Lillsjön -Norrbotten | 68°19′57.79″N | 19°8′44.80″E |
45 | Almberga-Norrbotten | 68°19′54.46″N | 19°9′10.69″E |
46 | Kaisepaktesjön-Norrbotten | 68°15′53.85″N | 19°24′22.73″E |
Band | Resolution (m) | Central Wavelength (nm) | Region | Bandwidth (nm) | SNR |
---|---|---|---|---|---|
2 | 10 | 490 | Blue | 65 | 154 |
3 | 10 | 560 | Green | 35 | 168 |
4 | 10 | 665 | Red | 30 | 142 |
5 | 20 | 705 | Red-Edge | 15 | 117 |
ID | Area (m2) | Perimeter (m) | Sampling Date | a(420)CDOM (m−1) | Image Date |
---|---|---|---|---|---|
1 | 68,400 | 1980 | 28/07/2016 | 0.9 | 20/07/2016 |
2 | 136,800 | 2040 | 28/07/2016 | 0.52 | 20/07/2016 |
3 | 148,500 | 2220 | 28/07/2016 | 0.85 | 20/07/2016 |
4 | 376,200 | 3240 | 28/07/2016 | 0.97 | 20/07/2016 |
5 | 93,600 | 2760 | 28/07/2016 | 1.13 | 20/07/2016 |
6 | 209,700 | 3240 | 28/07/2016 | 1.42 | 20/07/2016 |
7 | 142,200 | 2280 | 28/07/2016 | 1.82 | 20/07/2016 |
8 | 117,900 | 2400 | 28/07/2016 | 0.85 | 20/07/2016 |
9 | 191,700 | 3120 | 28/07/2016 | 1.91 | 20/07/2016 |
10 | 238,500 | 2820 | 01/07/2016 | 1.14 | 20/07/2016 |
11 | 396,900 | 4080 | 24/08/2016 | 0.79 | 16/08/2016 |
12 | 279,900 | 3720 | 17/07/2016 | 1.02 | 05/09/2016 |
13 | 66,600 | 1620 | 17/07/2016 | 0.92 | 16/08/2016 |
14 | 218,700 | 2700 | 17/07/2016 | 2.4 | 16/08/2016 |
15 | 308,700 | 4740 | 17/07/2016 | 0.33 | 07/09/2016 |
16 | 227,700 | 3480 | 17/07/2016 | 0.3 | 07/09/2016 |
17 | 214,200 | 2760 | 17/07/2016 | 1.88 | 07/09/2016 |
18 | 341,100 | 5280 | 17/07/2016 | 1.78 | 07/09/2016 |
19 | 153,900 | 2520 | 09/07/2016 | 2.85 | 18/07/2016 |
20 | 251,100 | 3240 | 09/07/2016 | 0.55 | 18/07/2016 |
21 | 89,100 | 1620 | 09/07/2016 | 4.71 | 18/07/2016 |
22 | 32,400 | 720 | 11/07/2016 | 5.48 | 18/07/2016 |
23 | 48,600 | 1260 | 11/07/2016 | 8.22 | 18/07/2016 |
24 | 24,300 | 720 | 11/07/2016 | 9.21 | 18/07/2016 |
25 | 48,600 | 900 | 10/07/2016 | 4.06 | 18/07/2016 |
26 | 97,200 | 1980 | 10/07/2016 | 3.98 | 18/07/2016 |
27 | 340,200 | 3600 | 10/07/2016 | 2.29 | 18/07/2016 |
28 | 48,600 | 1080 | 12/07/2016 | 12.24 | 12/10/2016 |
29 | 129,600 | 1980 | 27/07/2016 | 2.93 | 21/07/2016 |
30 | 396,900 | 3780 | 27/07/2016 | 9.79 | 21/07/2016 |
31 | 56,700 | 1260 | 26/07/2016 | 13 | 21/07/2016 |
32 | 24,300 | 720 | 26/07/2016 | 10.62 | 21/07/2016 |
33 | 72,900 | 1620 | 27/07/2016 | 8.38 | 21/07/2016 |
34 | 24,300 | 720 | 26/07/2016 | 1.57 | 21/07/2016 |
35 | 40,500 | 1080 | 28/07/2016 | 5.29 | 21/07/2016 |
36 | 40,500 | 1080 | 28/07/2016 | 5.29 | 21/07/2016 |
37 | 56,700 | 1080 | 28/07/2016 | 4.97 | 09/10/2016 |
38 | 64,800 | 1980 | 25/08/2016 | 1.72 | 09/10/2016 |
39 | 40,500 | 1080 | 25/08/2016 | 1.42 | 09/10/2016 |
40 | 48,600 | 1080 | 23/08/2016 | 0.27 | 09/10/2016 |
41 | 72,900 | 1260 | 23/08/2016 | 0.8 | 09/10/2016 |
42 | 712,800 | 4680 | 23/08/2016 | 0.86 | 09/10/2016 |
43 | 137,700 | 2340 | 24/08/2016 | 0.14 | 09/10/2016 |
44 | 32,400 | 900 | 24/08/2016 | 0.82 | 09/10/2016 |
45 | 72,900 | 1260 | 24/08/2016 | 0.87 | 09/10/2016 |
46 | 2,770,200 | 12960 | 25/08/2016 | 0.4 | 09/10/2016 |
Band Ratio | Model | RMSE | MAE | R2 |
---|---|---|---|---|
B2/B3 b | y = 0.0764 * X6.9008 | 1.0008 | 2.5384 | 0.2235 |
B3/B4 b | y = 3.9179 * X−1.452 | 1.0563 | 2.9864 | 0.0126 |
B3/B5 b | y = 2.0273 * X−0.231 | 1.0982 | 3.3289 | 0.0009 |
B2/B3 a | y = 1.7235 * X−0.056 | 0.6412 | 1.9617 | 0.0013 |
B3/B4 a | y = 2.332 * X−0.956 | 0.964 | 3.4234 | 0.2753 |
B3/B5 a | y = 1.457 * X−0.41 | 0.6611 | 1.6376 | 0.1925 |
Band Ratio | RMSE | MAE | R2 |
---|---|---|---|
B2/B3 b | 3.676 | 2.71 | 0.152 |
B3/B4 b | 3.018 | 2.51 | 0.319 |
B3/B5 b | 4.567 | 3.142 | 0.108 |
B2/B3 a | 3.318 | 2.612 | 0.238 |
B3/B4 a | 3.018 | 2.923 | 0.487 |
B3/B5 a | 3.486 | 2.736 | 0.178 |
Band Ratio | Model | RMSE | MAE | R2 |
---|---|---|---|---|
B2/B3a | y = 1.9517* X0.2007 | 1.7095 | 1.3831 | 0.0076 |
B3/B4a | y = 2.8091* X−2.341 | 3.4834 | 1.09077 | 0.648 |
B3/B5a | y = 1.3702* X−0.615 | 6.4979 | 3.43316 | 0.2244 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kharusi, E.S.; Tenenbaum, D.E.; Abdi, A.M.; Kutser, T.; Karlsson, J.; Bergström, A.-K.; Berggren, M. Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data. Remote Sens. 2020, 12, 157. https://doi.org/10.3390/rs12010157
Al-Kharusi ES, Tenenbaum DE, Abdi AM, Kutser T, Karlsson J, Bergström A-K, Berggren M. Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data. Remote Sensing. 2020; 12(1):157. https://doi.org/10.3390/rs12010157
Chicago/Turabian StyleAl-Kharusi, Enass Said., David E. Tenenbaum, Abdulhakim M. Abdi, Tiit Kutser, Jan Karlsson, Ann-Kristin Bergström, and Martin Berggren. 2020. "Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data" Remote Sensing 12, no. 1: 157. https://doi.org/10.3390/rs12010157
APA StyleAl-Kharusi, E. S., Tenenbaum, D. E., Abdi, A. M., Kutser, T., Karlsson, J., Bergström, A. -K., & Berggren, M. (2020). Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data. Remote Sensing, 12(1), 157. https://doi.org/10.3390/rs12010157