A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models
Abstract
:1. Introduction
2. Methods
2.1. Study Sites and Landsat-5 TM Data
2.2. Spectral Indices
2.3. Landsat TM LFMC Product
2.4. Fire Behavior Modeling with the LFMC Product
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koutsias, N.; Karteris, M. Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int. J. Remote Sens. 2003, 24, 3093–3104. [Google Scholar] [CrossRef]
- Burgan, R.E.; Rothermel, R.C. BEHAVE: Fire Behavior Prediction and Fuel Modeling System. Fuel Subsystem; GTR INT-167; USDA Forest Service: Ogden, UT, USA, 1984.
- Anderson, S.A.J.; Anderson, W.R. Ignition and fire spread thresholds in gorse (Ulex europaeus). Int. J. Wildland Fire 2010, 19, 589–598. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE: Fire Area Simulator—Model Development and Evaluation; RMRS-RP-4; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 1998; p. 47.
- Viegas, D.X.; Viegas, T.P.; Ferreira, A.D. Moisture content of fine forest fuels and fire occurrence in central Portugal. Int. J. Wildland Fire 1992, 2, 69–85. [Google Scholar] [CrossRef]
- Pimont, F.; Ruffault, J.; Martin-StPaul, N.K.; Dupuy, J.-L. Why is the effect of live fuel moisture content on fire rate of spread underestimated in field experiments in shrublands? Int. J. Wildland Fire 2019, 28, 127–137. [Google Scholar] [CrossRef]
- Plucinski, M.P.; Anderson, W.R.; Bradstock, R.A.; Gill, A.M. The initiation of fire spread in shrubland fuels recreated in the laboratory. Int. J. Wildland Fire 2010, 19, 512–520. [Google Scholar] [CrossRef]
- Matthews, S. Effect of drying temperature on fuel moisture content measurements. Int. J. Wildland Fire 2010, 19, 800–802. [Google Scholar] [CrossRef]
- NWCG, User Guide for the Glossary of Wildland Fire. PMS 937. 2018. Available online: https://www.nwcg.gov/publications/937 (accessed on 3 April 2020).
- Garcia, M.; Litago, J.; Palacios-Orueta, A.; Pinzon, J.E.; Ustin, S. Short-term propagation of rainfall perturbations on terrestrial ecosystems in central California. Appl. Veg. Sci. 2010, 13, 146–162. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R.J.; Danson, F.M.; Qi, Y.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Dennison, P.E.; Roberts, D.A.; Thorgusen, S.R.; Regelbrugge, J.C.; Weise, D.; Lee, C. Modeling seasonal changes in live fuel moisture and equivalent water thickness using a cumulative water balance index. Remote Sens. Environ. 2003, 88, 442–452. [Google Scholar] [CrossRef]
- Garcia, M.; Chuvieco, E.; Nieto, H.; Aguado, I. Combining AVHRR and meteorological data for estimating live fuel moisture content. Remote Sens. Environ. 2008, 112, 3618–3627. [Google Scholar] [CrossRef]
- Roberts, D.A.; Dennison, P.E.; Peterson, S.; Sweeney, S.; Rechel, J. Evaluation of airborne visible/infrared imaging spectrometer (AVIRIS) and moderate resolution imaging spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. J. Geophys. Res. Biogeosci. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Casas, A.; Riaño, D.; Ustin, S.L.; Dennison, P.; Salas, J. Estimation of water-related biochemical and biophysical vegetation properties using multitemporal airborne hyperspectral data and its comparison to MODIS spectral response. Remote Sens. Environ. 2014, 148, 28–41. [Google Scholar] [CrossRef]
- Jurdao, S.; Yebra, M.; Guerschman, J.P.; Chuvieco, E. Regional estimation of woodland moisture content by inverting Radiative Transfer Models. Remote Sens. Environ. 2013, 132, 59–70. [Google Scholar] [CrossRef]
- Yebra, M.; Chuvieco, E.; Riaño, D. Estimation of live Fuel Moisture Content from MODIS images for fire risk assessment. Agric. For. Meteorol. 2008, 148, 523–536. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riaño, D.; Rozas Larraondo, P.; van Dijk, A.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Ramirez, J.; Monedero, S.; Buckley, D. New approaches in fire simulations analysis with Wildfire Analyst. In Proceedings of the 5th International Wildland Fire Conference, Sun City, South Africa, 9–13 May 2011. [Google Scholar]
- Jolly, W.M.; Nemani, R.; Running, S.W. A generalized, bioclimatic index to predict foliar phenology in response to climate. Glob. Chang. Biol. 2005, 11, 619–632. [Google Scholar] [CrossRef]
- Chuvieco, E.; Cocero, D.; Riaño, D.; Martin, P.; Martínez-Vega, J.; de la Riva, J.; Pérez, F. Combining NDVI and Surface Temperature for the estimation of live fuels moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M.; Kaiser, J. MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. Int. J. Remote Sens 2005, 26, 3867–3873. [Google Scholar] [CrossRef]
- Chuvieco, E.; Riaño, D.; Aguado, I.; Cocero, D. Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. Int. J. Remote Sens. 2002, 23, 2145–2162. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Becker-Reshef, I.; Killough, B.D.; Justice, C.O. Meeting Earth Observation Requirements for Global Agricultural Monitoring: An Evaluation of the Revisit Capabilities of Current and Planned Moderate Resolution Optical Earth Observing Missions. Remote Sens. 2015, 7, 1482–1503. [Google Scholar] [CrossRef] [Green Version]
- Burgan, R.E.; Hartford, R.A. Monitoring Vegetation Greenness with Satellite Data; GTR INT-297; USDA Forest Service: Ogden, UT, USA, 1993.
- Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L.; Pippen, B.G. Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data. Int. J. Wildland Fire 2012, 21, 257–269. [Google Scholar] [CrossRef]
- Newnham, G.J.; Verbesselt, J.; Grant, I.F.; Anderson, S.A.J. Relative Greenness Index for assessing curing of grassland fuel. Remote Sens. Environ. 2011, 115, 1456–1463. [Google Scholar] [CrossRef]
- Stow, D.; Niphadkar, M. Stability, normalization and accuracy of MODIS-derived estimates of live fuel moisture for southern California chaparral. Int. J. Remote Sens. 2007, 28, 5175–5182. [Google Scholar] [CrossRef]
- Pollet, J.; Brown, A. Fuel Moisture Sampling Guide; Bureau of Land Management, Utah State Office: Salt Lake City, UT, USA, 2007.
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990-2000. IEEE Geosci. Remote Sens. Lett. 2006, 3. [Google Scholar] [CrossRef]
- Soenen, S.A.; Peddle, D.R.; Coburn, C.A. SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain. IEEE Trans. Geosci. Remote 2005, 43, 2148–2159. [Google Scholar] [CrossRef]
- Civco, D.L. Topographic Normalization of Landsat Thematic Mapper Digital Imagery. Photogramm. Eng. Remote Sens. 1989, 55, 1303–1309. [Google Scholar]
- Teillet, P.M.; Guindon, B.; Goodeonugh, D.G. On the slope-aspect correction of multispectral scanner data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Riaño, D.; Chuvieco, E.; Salas, F.J.; Aguado, I. Assessment of different topographic corrections in Landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote 2003, 41, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Fry, J.A.; Xian, G.; Jin, S.; Dewitz, J.A.; Homer, C.G.; Yang, L.; Barnes, C.A.; Herold, N.D.; Wickham, J.D. Completion of the 2006 national land cover database for the conterminous united states. Photogramm. Eng. Remote Sens. 2011, 77, 858–864. [Google Scholar]
- Danson, F.M.; Steven, M.D.; Malthus, T.J.; Clark, J.A. High-espectral resolution data for determining leaf water content. Int. J. Remote Sens. 1992, 13, 461–470. [Google Scholar] [CrossRef]
- Mendiguren, G.; Martin, M.P.; Nieto, H.; Pacheco-Labrador, J.; Jurdao, S. Seasonal variation in grass water content estimated from proximal sensing and MODIS time series in a Mediterranean Fluxnet site. Biogeosciences 2015, 12, 5523–5535. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Rock, B.N. Detection of changes in leaf water content using near and middle-infrared reflectances. Remote Sens. Environ. 1989, 30, 43–54. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface fire Spread Model; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005; p. 72.
- Monedero, S.; Ramirez, J.; Molina-Terren, D.; Cardil, A. Simulating wildfires backwards in time from the final fire perimeter in point-functional fire models. Environ. Modell. Softw. 2017, 92, 163–168. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; USDA, Forest Service: Ogden, UT, USA, 1972.
- Finney, M. An overview of FlamMap fire modeling capabilities. In Proceedings of the Fuels Management—How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; pp. 213–220. [Google Scholar]
- Rothermel, R.C. How to Predict the Spread and Intensity of Forest and Range Fires; GTR INT-143; USDA, Forest Service: Ogden, UT, USA, 1983; p. 161.
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- D’Odorico, P.; Gonsamo, A.; Damm, A.; Schaepman, M.E. Experimental Evaluation of Sentinel-2 Spectral Response Functions for NDVI Time-Series Continuity. IEEE Trans. Geosci. Remote 2013, 51, 1336–1348. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.; Feng, Z. Cross-Comparison of Vegetation Indices Derived from Landsat-7 Enhanced Thematic Mapper Plus (ETM plus) and Landsat-8 Operational Land Imager (OLI) Sensors. Remote Sens. 2014, 6, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Dennison, P.E.; Jolly, W.M.; Kropp, R.C.; Brewer, S.C. Spectroscopic analysis of seasonal changes in live fuel moisture content and leaf dry mass. Remote Sens. Environ. 2014, 150, 198–206. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Jolly, W.M.; Dennison, P.E.; Kropp, R.C. Seasonal relationships between foliar moisture content, heat content and biochemistry of lodgepole line and big sagebrush foliage. Int. J. Wildland Fire 2016, 25, 574–578. [Google Scholar] [CrossRef]
- Dennison, P.E.; Moritz, M.A.; Taylor, R.S. Evaluating predictive models of critical live fuel moisture in the Santa Monica Mountains, California. Int. J. Wildland Fire 2008, 17, 18–27. [Google Scholar] [CrossRef] [Green Version]
- Yebra, M.; Riaño, D.; Quan, X.; Mouillot, F.; Paget, E.; Di Bella, C.M.; García, M.; Martín, P.; van Dijk, A.; Cary, G.J.; et al. Global validation of Live Fuel Moisture Content (LFMC) products from satellite MODIS. In Proceedings of the 5th International Symposium Recent Advances in Quantitative Remote Sensing Torrent, Valencia, Spain, 18–22 September 2017. [Google Scholar]
- Youngentob, K.N.; Zdenek, C.; van Gorsel, E. A simple and effective method to collect leaves and seeds from tall trees. Methods Ecol. Evol. 2016, 7, 1119–1123. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Riaño, D.; Ustin, S.L. Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sens. Environ. 2014, 143, 39–53. [Google Scholar] [CrossRef]
- Cheng, T.; Riaño, D.; Koltunov, A.; Whiting, M.L.; Ustin, S.L.; Rodriguez, J.M. Detection of diurnal variation in orchard canopy water content using MODIS/ASTER airborne simulator (MASTER) data. Remote Sens. Environ. 2013, 132, 1–12. [Google Scholar] [CrossRef]
- Ustin, S.L.; Riaño, D.; Hunt, E.R., Jr. Estimating Canopy Water Content from Spectroscopy. Isr. J. Plant Sci. 2012, 60, 9–23. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Assessing the effect of foliar moisture on the spread rate of crown fires. Int. J. Wildland Fire 2013, 22, 415–427. [Google Scholar] [CrossRef]
- Calvet, J.-C.; Wigneron, J.-P.; Walker, J.; Karbou, F.; Chanzy, A.; Albergel, C. Sensitivity of Passive Microwave Observations to Soil Moisture and Vegetation Water Content: L-Band to W-Band. IEEE Trans. Geosci. Remote 2011, 49, 1190–1199. [Google Scholar] [CrossRef]
Sites | Path | Row | Latitude (N) | Longitude(W) | Sampling Period (yyyy/mm/dd) | Species | # Samples | |
---|---|---|---|---|---|---|---|---|
Clark Motorway, Malibu | 41 | 36 | 34.0844 | 118.8625 | 2001/01/08 | 2011/06/22 | Big-pod buckbrush; Chamise | 65 |
Glendora Rigde | 41 | 36 | 34.1653 | 117.8650 | 2003/01/29 | 2011/10/28 | Hoaryleaf ceanothus; Chamise | 55 |
Laurel Canyon, Mt Olympus | 41 | 36 | 34.1247 | 118.3689 | 2001/04/09 | 2011/10/28 | Chamise | 73 |
Trippet Ranch, Topanga | 41 | 36 | 34.0933 | 118.5978 | 2001/02/05 | 2011/10/28 | Chamise | 69 |
Peach Motorway | 41 | 36 | 34.3556 | 118.5347 | 2005/04/02 | 2011/10/28 | Chamise | 50 |
Placerita Canyon | 41 | 36 | 34.3753 | 118.4389 | 2001/05/02 | 2011/10/28 | Chamise | 72 |
Kinsman | 42 | 34 | 37.1981 | 119.4197 | 2001/09/20 | 2011/08/23 | Whiteleaf Manzanita; Big-pod buckbrush | 22 |
Keeney | 42 | 29 | 43.9133 | 117.1783 | 2000/07/17 | 2011/08/30 | Wyoming Big sagebrush | 39 |
Shirttail | 42 | 29 | 44.53 | 117.4186 | 2000/07/24 | 2011/09/16 | Wyoming Big sagebrush | 41 |
SI | Equation | |
---|---|---|
Normalized Difference Vegetation Index (NDVI) [38] | (2) | |
Normalized Difference Infrared Index (NDII) [39] | (3) | |
Enhanced Vegetation Index (EVI) [40] | (4) | |
Visible Atmospherically Resistant Index (VARI) [41] | (5) |
r | RMSE (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Site | Depen. Var. | Indep. Var. | NDVI | NDII | EVI | VARI | NDVI | NDII | EVI | VARI |
ClarkMotorway, Malibu | LFMC | SI | 0.85 | 0.77 | 0.89 | 0.65 | 15.39 | 18.29 | 13.07 | 22.05 |
Glendora Ridge, Glendora | LFMC | SI | 0.69 | 0.65 | 0.80 | 0.33 | 19.38 | 20.30 | 16.03 | 25.17 |
Laurel Canyon | LFMC | SI | 0.81 | 0.85 | 0.87 | 0.48 | 15.53 | 13.95 | 13.11 | 23.46 |
Trippet Ranch | LFMC | SI | 0.84 | 0.72 | 0.77 | 0.73 | 26.33 | 33.80 | 31.39 | 33.57 |
Peach Motorway | LFMC | SI | 0.87 | 0.89 | 0.93 | 0.79 | 11.67 | 10.44 | 8.72 | 14.50 |
Placerita Canyon | LFMC | SI | 0.80 | 0.84 | 0.86 | 0.52 | 20.24 | 18.32 | 17.30 | 28.91 |
Kinsman | LFMC | SI | 0.66 | 0.82 | 0.82 | 0.61 | 17.60 | 13.28 | 13.40 | 18.54 |
Keeney | LFMC | SI | 0.79 | 0.64 | 0.74 | 0.36 | 22.02 | 27.61 | 24.11 | 33.58 |
Shirttail | LFMC | SI | 0.73 | 0.67 | 0.69 | 0.69 | 24.48 | 26.53 | 26.12 | 26.23 |
All sites | LFMC | SI | 0.22 | 0.32 | 0.44 | 0.35 | 36.26 | 35.16 | 33.35 | 34.85 |
All sites | relLFMC | SI | 0.46 | 0.52 | 0.62 | 0.50 | 0.24 | 0.23 | 0.21 | 0.23 |
All sites | LFMC | relSI | 0.49 | 0.51 | 0.57 | 0.49 | 32.47 | 32.00 | 30.51 | 32.31 |
All sites | relLFMC | relSI | 0.61 | 0.66 | 0.69 | 0.55 | 0.21 | 0.20 | 0.19 | 0.22 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, M.; Riaño, D.; Yebra, M.; Salas, J.; Cardil, A.; Monedero, S.; Ramirez, J.; Martín, M.P.; Vilar, L.; Gajardo, J.; et al. A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models. Remote Sens. 2020, 12, 1714. https://doi.org/10.3390/rs12111714
García M, Riaño D, Yebra M, Salas J, Cardil A, Monedero S, Ramirez J, Martín MP, Vilar L, Gajardo J, et al. A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models. Remote Sensing. 2020; 12(11):1714. https://doi.org/10.3390/rs12111714
Chicago/Turabian StyleGarcía, Mariano, David Riaño, Marta Yebra, Javier Salas, Adrián Cardil, Santiago Monedero, Joaquín Ramirez, M. Pilar Martín, Lara Vilar, John Gajardo, and et al. 2020. "A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models" Remote Sensing 12, no. 11: 1714. https://doi.org/10.3390/rs12111714
APA StyleGarcía, M., Riaño, D., Yebra, M., Salas, J., Cardil, A., Monedero, S., Ramirez, J., Martín, M. P., Vilar, L., Gajardo, J., & Ustin, S. (2020). A Live Fuel Moisture Content Product from Landsat TM Satellite Time Series for Implementation in Fire Behavior Models. Remote Sensing, 12(11), 1714. https://doi.org/10.3390/rs12111714