Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Descriptions of the Study Area
2.2. Datasets
2.2.1. ESA CCI Microwave Soil Moisture
2.2.2. FLDAS Noah Land Surface Model
2.2.3. CHIRPS Rainfall Product
2.2.4. ESA CCI Land Cover
2.3. Methods
2.3.1. Variability and Trend Analysis
2.3.2. The Relationship Between Soil Moisture and Rainfall in Autumn
3. Results
3.1. Variability and Trends of Soil Moisture
3.2. Variability and Trends of Rainfall
3.3. Correlation Coefficient Between Autumn Soil Moisture and Rainfall
3.4. Impact of Rainfall Variability on Soil Moisture Dynamics
3.5. The Effect of the Relationship Between Rainfall and ET on Soil Moisture
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Classes Considered in this Study | Land Types used in the CCI–LC Maps | |
---|---|---|
Agriculture | 10,11,12 | Rainfed cropland |
20 | Irrigated cropland | |
30 | Mosaic cropland (> 50%) / natural vegetation (tree, shrub, herbaceous cover) (< 50%) | |
40 | Mosaic natural vegetation (tree, shrub, herbaceous cover) (> 50%) / cropland (< 50%) | |
Forest | 50 | Tree cover, broadleaved, evergreen, closed to open (> 15%) |
60,61,62 | Tree cover, broadleaved, deciduous, closed to open (>15%) | |
70,71,72 | Tree cover, needleleaved, evergreen, closed to open (> 15%) | |
90 | Tree cover, mixed leaf type (broadleaved and needleleaved) | |
100 | Mosaic tree and shrub (> 50%) / herbaceous cover (< 50%) | |
160 | Tree cover, flooded, fresh or brakish water | |
170 | Tree cover, flooded, saline water | |
Grassland | 110 | Mosaic herbaceous cover (> 50%) / tree and shrub (< 50%) |
130 | Grassland | |
Wetland | 180 | Shrub or herbaceous cover, flooded, fresh-saline or brakish water |
Urban | 190 | Urban |
Shrubland | 120, 121, 122 | Shrubland |
Bare area | 200, 201, 202 | Bare areas |
Water | 210 | Water |
References
- Lin, H.; Bouma, J.; Wilding, L.; Richardson, J.; Kutilek, M.; Nielsen, D. Advances in hydropedology. Adv. Agron. 2005, 85, 1–89. [Google Scholar]
- Awulachew, S.B.; Yilma, A.; Loulseged, D.; Loiskandl, W.; Ayana, M.; Alamirew, T. Water Resources and Irrigation Development in Ethiopia. Colombo; International Water Management Institute: Battaramulla, Sri Lanka, 2007; p. 78. [Google Scholar]
- Cheung, W.H.; Senay, G.B.; Singh, A. Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int. J. Climatol. 2008, 28, 1723–1734. [Google Scholar] [CrossRef]
- MOA (Ministry of Agriculture). Natural Resources Management Directorates. Small-Scale Irrigation Situation Analysis and Capacity Needs Assessment; Ministry of Agriculture: Addis Ababa, Ethiopia, 2011. [Google Scholar]
- Conway, D. The climate and Hydrology of the Upper Blue Nile River. Geogr. J. 2000, 166, 49–62. [Google Scholar] [CrossRef] [Green Version]
- Engida, N.A.; Esteves, M. Characterization and disaggregation of daily rainfall in the upper Blue Nile Basinin Ethiopia. J. Hydrol. 2011, 399, 226–234. [Google Scholar] [CrossRef]
- Food and Agricultural Organization (FAO). Ethiopia Country Programming Framework; Office of the FAO Representative to Ethiopia; FAO: Addis Ababa, Ethiopia, 2014. [Google Scholar]
- Central Statistical Agency (CSA). Report on the Year 2000 Welfare Monitoring Survey; Central Statistical Authority; CSA: Addis Ababa, Ethiopia, 2001. [Google Scholar]
- Pielke, R.A.; Liston, G.E.; Eastman, J.L.; Lu, L.; Coughenour, M. Seasonal weather prediction as an initial value problem. J. Geophys. Res. Atmos. 1999, 104, 19463–19479. [Google Scholar] [CrossRef] [Green Version]
- Vinnikov, K.Y.; Robock, A.; Speranskaya, N.A.; Schlosser, C.A. Scales of temporal and spatial variability of mid-latitude soil moisture. J. Geophys. Res. Atmos. 1996, 101, 7163–7174. [Google Scholar] [CrossRef]
- World Bank. Ethiopia-Managing Water Resources to Maximize Sustainable Growth: A World Bank Water Resources Assistance Strategy for Ethiopia; Report No. 36000-ET; The World Bank Agriculture and Rural Development Department: Washington, DC, USA, 2006. [Google Scholar]
- Awulachew, S.B.; Merry, J.; Kamara, A.B.; van Koppen, B.; de Vries, F.P.; Boelee, E.; Makombe, G. Experiences and Opportunities for Promoting Small-Scale/Micro Irrigation and Rainwater Harvesting for Food Security in Ethiopia; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2005; p. 91. [Google Scholar]
- Makombe, G.; Namara, R.; Hagos, F.; Awulachew, S.B.; Ayana, M.; Bossio, D. A Comparative Analysis of the Technical Efficiency of Rainfed and Smallholder Irrigation in Ethiopia; International Water Management Institute: Colombo, Sri Lanka, 2011; p. 37. [Google Scholar]
- Bekele, Y.; Nata, T.; Bheemalingswara, K. Preliminary Study on the Impact of Water Quality and Irrigation Practices on Soil Salinity and Crop Production, Gergera Watershed, Atsbi-Wonberta, Tigray, Northern Ethiopia. MEJS 2012, 4, 29–46. [Google Scholar] [CrossRef] [Green Version]
- Vanderlinden, K.; Vereecken, H.; Hardelauf, H.; Herbst, M.; Martinez, G.; Cosh, M.H.; Pachepsky, Y. Temporal stability of soil water contents: A review of data and analyses. Vadose Zone J. 2012, 11, 19. [Google Scholar] [CrossRef]
- Bosson, E.; Sabel, U.; Gustafsson, L.G.; Sassner, M.; Destouni, G. Influences of shifts in climate, landscape, and permafrost on terrestrial hydrology. J. Geophys. Res. Atmos. 2012, 117, D05120. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.; Roderick, M.L.; Farquhar, G.D. Changes in the variability of global land precipitation. Geophys. Res. Lett. 2012, 39, L19402. [Google Scholar] [CrossRef] [Green Version]
- Koster, D.; Dirmeyer, P.; Guo, Z. Regions of strong coupling between soil moisture and precipitation. Science 2004, 305, 1138–1140. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Geller, A.M.; Dickinson, E.R. The Response of Soil Moisture to Long-Term Variability of Precipitation. J. Hydrometeorol. 2002, 3, 604–613. [Google Scholar] [CrossRef]
- Jia, D.; Wen, J.; Zhang, T.; Xi, J. Responses of soil moisture and thermal conductivity to precipitation in the mesa of the Loess Plateau. Environ. Earth Sci. 2016, 75, 395. [Google Scholar] [CrossRef]
- Cheng, S.; Guan, X.; Huang, J.; Ji, F.; Guo, R. Long-term trend and variability of soil moisture over East Asia. J. Geophys. Res. Atmos. 2015, 120, 8658–8670. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.L.; Selker, J.S.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhao, W.; Liu, H.; Chang, X. The response of soil moisture to rainfall event size in subalpine grassland and meadows in a semi-arid mountain range: A case study in northwestern China’s Qilian Mountains. J. Hydrol. 2012, 420, 183–190. [Google Scholar] [CrossRef]
- Jia, B.; Liu, J.; Xie, Z.; Shi, C. Interannual Variations and Trends in Remotely Sensed and Modeled Soil Moisture in China. J. Hydrometeorol. 2018, 19, 831–847. [Google Scholar] [CrossRef]
- Yang, K.; Wang, C.; Bao, H. Contribution of soil moisture variability to summer precipitation in the Northern Hemisphere. J. Geophys. Res. Atmos. 2016, 12, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- Vereecken, H.; Huisman, A.J.; Pachepsky, Y.; Montzka, C.; van der Kruk, J.; Bogena, H.; Weihermüller, L.; Herbst, M.; Martinez, G.; Vanderborght, J. On the spatio-temporal dynamics of soil moisture at the field scale. J. Hydrol. 2014, 516, 76–96. [Google Scholar] [CrossRef]
- Korres, W.; Reichenau, G.T.; Fiener, P.; Koyama, N.C.; Bogena, R.H.; Cornelissen, T.; Baatz, R.; Herbst, M.; Diekkrüger, B.; Vereecken, H.; et al. Spatio-temporal soil moisture patterns – A meta-analysis using plot to catchment scale data. J. Hydrol. 2015, 520, 326–341. [Google Scholar] [CrossRef] [Green Version]
- Illston, B.; Basara, B.J.; Crawford, C.K. Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol. 2004, 24, 1883–1896. [Google Scholar] [CrossRef]
- Entin, J.K.; Robock, A.; Vinnikov, K.Y.; Hollinger, S.E.; Liu, S.X.; Namkhai, A. Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res. Atmos. 2000, 105, 11865–11877. [Google Scholar] [CrossRef]
- Li, B.; Wang, L.; Kaseke, K.F.; Li, L.; Seely, M.K. The Impact of Rainfall on Soil Moisture Dynamics in a Foggy Desert. PLoS ONE 2016, 11, e0164982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, A.; Lettenmaier, D.; Sheffield, J. Soil moisture drought in China, 1950–2006. J. Clim. 2011, 24, 3257–3271. [Google Scholar] [CrossRef]
- Njoku, E.; Jackson, T.; Lakshmi, V.; Chan, T.; Nghiem, S. Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 2003, 41, 215–229. [Google Scholar] [CrossRef]
- Albergel, C.; de Rosnay, P.; Gruhier, C.; Muñoz-Sabater, J.; Hasenauer, S.; Isaksen, L.; Kerr, Y.; Wagner, W. Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. Remote Sens. Environ. 2012, 118, 215–226. [Google Scholar] [CrossRef]
- de Rosnay, P.; Drusch, M.; Vasiljevic, D.; Balsamo, G.; Albergel, C.; Isaksen, L. A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Quart. J. R. Meteorol. Soc. 2013, 139, 1199–1213. [Google Scholar] [CrossRef]
- Wang, A.; Zeng, X. Sensitivities of terrestrial water cycle simulations to the variations of precipitation and air temperature in China. J. Geophys. Res. 2011, 116, D02107. [Google Scholar] [CrossRef] [Green Version]
- Hain, C.; Crow, W.; Mecikalski, J.; Anderson, M.; Holmes, T. Anintercomparison of available soil moisture estimates from thermal infrared and passive microwave remote sensing and land surface modeling. J. Geophys. Res. 2011, 116, 1158–1162. [Google Scholar] [CrossRef]
- Wagner, W.; Dorigo, W.; de Jeu, R.; Fernandez, D.; Benveniste, J.; Haas, E.; Ertl, M. Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 7, 315–321. [Google Scholar]
- Pangaluru, K.; Velicogna, I.; Geruo, A.; Mohajerani, Y.; Ciracì, E.; Charakola, S.; Basha, G.; Rao, S.V.B. Soil Moisture Variability in India: Relationship of Land Surface–Atmosphere Fields Using Maximum Covariance Analysis. Remote Sens. 2019, 11, 335. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Zhang, Y.; Li, Y.; Liang, X.S.; Jiang, T. Analyzing the Characteristics of Soil Moisture Using GLDAS Data: A Case Study in Eastern China. Appl. Sci. 2017, 7, 566. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Parinussa, R.M.; Dorigo, W.A.; De Jeu, R.A.M.; Wagner, W.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P. Developing an improved soil moisture dataset by blending passive and active microwave satellite-based retrievals. Hydrol. Earth Syst. Sci. 2011, 15, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Scanlon, T.; van der Schalie, R.; Wagner, W.; Dorigo, W. Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology. Earth Syst. Sci. Data 2019, 11, 717–739. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, W.; Gruber, A.; De Jeu, R.; Wagner, W.; Stacke, T.; Loew, A.; Albergel, C.; Brocca, L.; Chung, D.; Parinussa, R.; et al. Evaluation of the ESA CCI soil moisture product using ground-based observations. Remote Sens. Environ. 2015, 162, 380–395. [Google Scholar] [CrossRef]
- McNally, A.; Shukla, S.; Arsenault, R.K.; Wang, S.; Peters-Lidard, D.C.; Verdin, P.J. Evaluating ESA CCI soil moisture in East Africa. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Gao, Q.; Wang, S.; Su, Z. Comparison of temporal trends from multiple soil moisture data sets and precipitation: The implication of irrigation on regional soil moisture trend. Int. J. Appl. Earth Observ. Geoinf. 2016, 48, 17–27. [Google Scholar] [CrossRef]
- Chen, X.; Su, Y.; Liao, J.; Shang, J.; Dong, T.; Wang, C.; Liu, W.; Zhou, G.; Liu, L. Detecting significant decreasing trends of land surface soil moisture in eastern China during the past three decades (1979–2010). J. Geophys. Res. Atmos. 2016, 121, 5177–5192. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Ma, Z.; Pan, M.; Shi, C. Microwave remote sensing of short-term droughts during crop growing seasons. Geophys. Res. Lett. 2015, 42, 4394–4401. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- Degefu, G.T. The Nile Historical Legal and Developmental Perspectives; Trafford Publishing: Victoria, BC, Canada, 2003. [Google Scholar]
- Kim, U.; Kaluarachchi, J.; Smakhtin, V. Generation of monthly precipitation under climate change for the upper Blue Nile River Basin, Ethiopia. JAWRA J. Am. Water Resour. Assoc. 2008, 44, 1231–1247. [Google Scholar] [CrossRef]
- Taye, M.; Willems, P. Temporal variability of hydro-climatic extremes in the Blue Nile basin. Water Resour. Res. 2012, 48, 1–13. [Google Scholar] [CrossRef]
- ESA: ESA Climate Change Initiative Phase II—Soil Moisture. Product Specification Document (PSD) D1.2.1 Version 4.2. 2018. Available online: https://www.esa-soilmoisture-cci.org/ (accessed on 20 August 2019).
- Anderson, W.; Zaitchik, B.; Hain, C.; Anderson, M.; Yilmaz, M.; Mecikalski, J.; Schultz, L. Towards an integrated soil moisture drought monitor for East Africa. Hydrol. Earth Syst. Sci. 2012, 16, 2893–2913. [Google Scholar] [CrossRef] [Green Version]
- Ayehu, G.; Tadesse, T.; Gessesse, B.; Yigrem, Y. Soil Moisture Monitoring Using Remote Sensing Data and a Stepwise-Cluster Prediction Model: The Case of Upper Blue Nile Basin, Ethiopia. Remote Sens. 2019, 11, 125. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayehu, G.; Tadesse, T.; Gessesse, B.; Dinku, T. Validation of new satellite rainfall products over the Upper Blue Nile basin, Ethiopia. Atmos. Meas. Tech. 2018, 11, 1921–1936. [Google Scholar] [CrossRef] [Green Version]
- Bojinski, S.; Verstraete, M.; Peterson, T.C.; Richter, C.; Simmons, A.; Zemp, M. The concept of essential climate Variables in support of climate research, applications, and policy. Bull. Am. Meteorol. Soc. 2014, 95, 1431–1443. [Google Scholar] [CrossRef]
- ESA. Land Cover CCI Product User Guide Version 2.0. 2017. Available online: http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (accessed on 31 July 2019).
- Defourny, P.; Schouten, L.; Bartalev, S.; Bontemps, S.; Caccetta, P.; De Wit, A.J.W.; Di Bella, C.; Gérard, B.; Giri, C.; Gond, V.; et al. Accuracy Assessment of a 300 m Global Land Cover Map: The GlobCover Experience. 2008. Available online: http://www.un-spider.org/space-application/space-application-matrix/accuracy-assessment-300-m-global-land-cover-map-globcover (accessed on 31 July 2019).
- Plummer, S.; Lecomte, P.; Doherty, M. The ESA climate change initiative (CCI): A European contribution to the generation of the global climate observing system. Remote Sens. Environ. 2017, 203, 2–8. [Google Scholar] [CrossRef]
- Bontemps, S.; Defourny, P.; van Bogaert, E.; Kalogirou, V.; Arino, O. Glob Cover 2009: Products Description and Validation Report. 2011. Available online: http://due.esrin.esa.int/files/GLOBCOVER2009_Validation_Report_2.2.pdf (accessed on 31 July 2019).
- Tsendbazar, N.E.; de Bruin, S.; Fritz, S.; Herold, M. Spatial accuracy assessment and integration of global land cover datasets. Remote Sens. 2015, 7, 15804–15821. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Guidigan, L.M.; Sanou, L.C.; Ragatoa, S.D.; Fafa, O.C.; Mishra, N.V. Assessing Land Use/Land Cover Dynamic and Its Impact in Benin Republic Using Land Change Model and CCI-LC Products. Earth Syst. Environ. 2019, 3, 127–137. [Google Scholar] [CrossRef]
- Li, W.; MacBean, N.; Ciais, P.; Defourny, P.; Lamarche, C.; Bontemps, S.; Houghton, A.R.; Peng, S. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992–2015). Earth Syst. Sci. Data 2018, 10, 219–234. [Google Scholar] [CrossRef] [Green Version]
- Hijmans, R.J. Geographic Data Analysis and Modeling “Raster” Package in R. 2018. Available online: https://rdrr.io/github/rspatial/raster/ (accessed on 2 July 2020).
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Bronaugh, D.; Werner, A. “ZYP (Zhang+Yue_pilon)” Prewhitened nonlinear trend analysis package in R. 2019. Available online: https://cran.r-project.org/web/packages/zyp/index.html (accessed on 2 July 2020).
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Hare, W. Assessment of Knowledge on Impacts of Climate Change, Contribution to the Specification of Art, 2 of the UNFCCC; WBGU: Berlin, Germany, 2003. [Google Scholar]
- Usowicz, B.; Lipiec, J.; Lukowski, M. Evaluation of Soil Moisture Variability in Poland from SMOS Satellite Observations. Remote Sens. 2019, 11, 1280. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Zucco, G.; Mittelbach, H.; Moramarco, T.; Seneviratne, S.I. Absolute versus temporal anomaly and percent of saturation soil moisture spatial variability for six networks worldwide. Water Resour. Res. 2014, 50, 5560–5576. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, R.; Zuo, Z. The Relationship between Soil Moisture and LAI in Different Types of Soil in Central Eastern China. J. Hydrometeorol. 2016, 17, 2733–2742. [Google Scholar] [CrossRef]
- Tilahun, K. Analysis of rainfall climate and evapo-transpiration in arid and semi-arid regions of Ethiopia using data over the last half a century. J. Arid Environ. 2006, 64, 474–487. [Google Scholar] [CrossRef]
- Hu, W.; Shao, M.G.; Han, F.P.; Reichardt, K. Spatio-temporal variability behavior of land surface soil water content in shrub- and grass-land. Geoderma 2011, 162, 260–272. [Google Scholar] [CrossRef]
- Qiu, Y.; Fu, B.; Wang, J.; Chen, L. Spatial variability of soil moisture content and its relation to environmental indices in a semi-arid gully catchment of the Loess Plateau, China. J. Arid Environ. 2001, 49, 723–750. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Zhao, W.; Qiu, Y.; Zhao, M.; Zhong, L. Spatial Heterogeneity of Soil Moisture and the Scale Variability of Its Influencing Factors: A Case Study in the Loess Plateau of China. Water 2013, 5, 1226–1242. [Google Scholar] [CrossRef]
- Dorigo, W.; Wagner, W.; Calvet, J.-C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Longobardi, A. Observing soil moisture temporal variability under fluctuating climatic conditions. Hydrol. Earth Syst. Sci. Discuss. 2008, 5, 935–969. [Google Scholar] [CrossRef] [Green Version]
- Bayabil, H.K. Modeling Rainfall-runoff Relationship and Assessing Impacts of Soil Conservation Research Program Intervention on Soil Physical and Chemical Properties at Maybar Research Unit; Cornell University: Wollo, Ethiopia, 2009. [Google Scholar]
- Yang, T.; Ala, M.; Zhang, Y.; Wu, J.; Wang, A.; Guan, D. Characteristics of soil moisture under different vegetation coverage in Horqin Sandy Land, northern China. PLoS ONE 2018, 13, e0198805. [Google Scholar] [CrossRef] [PubMed]
- Crave, A.; Gascuel-Odux, C. The influence of topography on the time and space distribution of soil surface water content. Hydrol. Process. 1997, 11, 203–210. [Google Scholar] [CrossRef]
- Venkatesh, B.; Lakshman, N.; Purandara, B.K.; Reddy, V.B. Analysis of observed soil moisture patterns under different land covers in Western Ghats, India. J. Hydrol. 2011, 397, 281–294. [Google Scholar] [CrossRef]
Product | Data Type | Spatial Cover | Temporal Cover | Spatial Reso | Temporal Reso | Sensor |
---|---|---|---|---|---|---|
ESA CCI | Soil moisture (m3 m−3) | Global | 1978–2018 | 0.25° | Daily | SMMR, SSM/I, TMI, AMSR-E, ASCAT, ERS |
FLDAS Noah LSM | Soil moisture (m3 m−3) | Global | 1982–present | 0.10° | Monthly | MERRA-2, CHIRPS |
ET (kg m−2s−1) | ||||||
CHIRPS v2 | Rainfall | Global | 1981–present | 0.05° | Daily, Pentadal, Dekadal, Monthly | NOAA TIR satellite, TRMM |
ESA CCI | Land cover | Global | 1992–2015 | 300 m | 1 year | MERIS; FR/RR SPOT-VGT; AVHRR; PROBA-V |
DEM | Elevation | Global | - | 30 m | - | SRTM |
LULC Type | 1992 to 2000 | 2001 to 2010 | 2010 to 2017 | ||||
---|---|---|---|---|---|---|---|
ESA CCI LCM Code | Mean | CV (%) | Mean | CV (%) | Mean | CV (%) | |
Agriculture | 10,11,12,20,30,40 | 0.28 | 5.27 | 0.24 | 11.20 | 0.27 | 3.90 |
Forest | 50,60,61,62,70,72,80,81,82,90,100,160,170 | 0.28 | 5.01 | 0.22 | 27.07 | 0.29 | 8.28 |
Shrub | 120,121,122 | 0.24 | 5.93 | 0.21 | 12.88 | 0.25 | 7.04 |
LULC Type | ESA CCI LCM Code | Rainfall | ||||
---|---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Annual | ||
Agriculture | 10,11,12,20,30,40 | −0.16 | 0.37 | −0.04 | 0.40 * | 0.35 |
Forest | 50,60,61,62,70,72,80,81,82,90,100,160,170 | −0.12 | 0.51 * | −0.28 | 0.19 | 0.26 |
Shrub | 120,121,122 | −0.10 | 0.46 * | 0.12 | 0.40 * | 0.46 * |
Soil Moisture | Rainfall | ||||
---|---|---|---|---|---|
Winter | Spring | Summer | Autumn | Annual | |
ESA CCI SM | 0.12 | 0.46 * | 0.10 | 0.64 * | 0.64 * |
FLDAS NOAH (0–10 cm) | −0.07 | 0.36 | 0.07 | 0.91 * | 0.69 * |
FLDAS NOAH (0–40 cm) | −0.08 | 0.35 | 0.10 | 0.91 * | 0.71 * |
FLDAS NOAH (0–100 cm) | −0.08 | 0.35 | 0.12 | 0.91 * | 0.73 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayehu, G.; Tadesse, T.; Gessesse, B. Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia. Remote Sens. 2020, 12, 2138. https://doi.org/10.3390/rs12132138
Ayehu G, Tadesse T, Gessesse B. Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia. Remote Sensing. 2020; 12(13):2138. https://doi.org/10.3390/rs12132138
Chicago/Turabian StyleAyehu, Getachew, Tsegaye Tadesse, and Berhan Gessesse. 2020. "Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia" Remote Sensing 12, no. 13: 2138. https://doi.org/10.3390/rs12132138
APA StyleAyehu, G., Tadesse, T., & Gessesse, B. (2020). Monitoring Residual Soil Moisture and Its Association to the Long-Term Variability of Rainfall over the Upper Blue Nile Basin in Ethiopia. Remote Sensing, 12(13), 2138. https://doi.org/10.3390/rs12132138