Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019
Abstract
:1. Introduction
2. Materials and Methods
2.1. Related Literature on NTL Validation Studies
2.2. Data and Methods
3. Results
3.1. Country-Level Results
3.2. Results at County and State Level
3.3. Results Using Earlier NTL Products
3.4. Results Using GDP by Industry
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sutton, P.C.; Costanza, R. Global estimates of market and non-market values derived from nighttime satellite imagery, land cover, and ecosystem service valuation. Ecol. Econ. 2002, 41, 509–527. [Google Scholar] [CrossRef]
- Ebener, S.; Murray, C.; Tandon, A.; Elvidge, C.C. From wealth to health: Modelling the distribution of income per capita at the sub-national level using night-time light imagery. Int. J. Health Geogr. 2005, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Doll, C.N.; Muller, J.P.; Morley, J.G. Mapping regional economic activity from night-time light satellite imagery. Ecol. Econ. 2006, 57, 75–92. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens. 1997, 18, 1373–1379. [Google Scholar] [CrossRef]
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of Gross Domestic Product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
- Henderson, V.; Storeygard, A.; Weil, D.N. A bright idea for measuring economic growth. Am. Econ. Rev. 2011, 101, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring economic growth from outer space. Am. Econ. Rev. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordhaus, W.; Chen, X. A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics. J. Econ. Geogr. 2015, 15, 217–246. [Google Scholar] [CrossRef]
- Heger, M.P.; Neumayer, E. The impact of the Indian Ocean tsunami on Aceh’s long-term economic growth. J. Dev. Econ. 2019, 141, 102365. [Google Scholar] [CrossRef]
- Kocornik-Mina, A.; McDermott, T.K.; Michaels, G.; Rauch, F. Flooded cities. Am. Econ. J. Appl. Econ. 2020, 12, 35–66. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Noy, I. Measuring the impact of insurance on urban earthquake recovery using nightlights. J. Econ. Geogr. 2020, 20, 857–877. [Google Scholar] [CrossRef]
- Eberhard-Ruiz, A.; Moradi, A. Regional market integration in East Africa: Local but no regional effects? J. Dev. Econ. 2019, 140, 255–268. [Google Scholar] [CrossRef]
- Jagnani, M.; Khanna, G. The effects of elite public colleges on primary and secondary schooling markets in India. J. Dev. Econ. 2020, 146, 102512. [Google Scholar] [CrossRef]
- Hodler, R.; Raschky, P.A. Regional favoritism. Q. J. Econ. 2014, 129, 995–1033. [Google Scholar] [CrossRef]
- Gibson, J.; Olivia, S.; Boe-Gibson, G. Night lights in economics: Sources and uses 1. J. Econ. Surv. 2020, 34, 955–980. [Google Scholar] [CrossRef]
- Li, G.; Cai, Z.; Liu, X.; Liu, J.; Su, S. A comparison of machine learning approaches for identifying high-poverty counties: Robust features of DMSP/OLS night-time light imagery. Int. J. Remote Sens. 2019, 40, 5716–5736. [Google Scholar] [CrossRef]
- Gao, B.; Huang, Q.; He, C.; Ma, Q. Dynamics of urbanization levels in China from 1992 to 2012: Perspective from DMSP/OLS nighttime light data. Remote Sens. 2015, 7, 1721–1735. [Google Scholar] [CrossRef] [Green Version]
- Rybnikova, N.A.; Portnov, B.A. Mapping geographical concentrations of economic activities in Europe using light at night (LAN) satellite data. Int. J. Remote Sens. 2014, 35, 7706–7725. [Google Scholar] [CrossRef]
- Rybnikova, N.A.; Portnov, B.A. Estimating geographic concentrations of quaternary industries in Europe using Artificial Light-At-Night (ALAN) data. Int. J. Digit. Earth 2017, 10, 861–878. [Google Scholar] [CrossRef]
- Lee, Y.S. International isolation and regional inequality: Evidence from sanctions on North Korea. J. Urban. Econ. 2018, 103, 34–51. [Google Scholar] [CrossRef]
- Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens. 2009, 30, 1003–1018. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia-Pac. Adv. Netw. 2013, 35, 62. [Google Scholar] [CrossRef] [Green Version]
- Abrahams, A.; Oram, C.; Lozano-Gracia, N. Deblurring DMSP nighttime lights: A new method using Gaussian filters and frequencies of illumination. Remote Sens. Environ. 2018, 210, 242–258. [Google Scholar] [CrossRef]
- Gibson, J.; Olivia, S.; Boe-Gibson, G.; Li, C. Which night lights data should we use in economics, and where? J. Dev. Econ. 2021, 149, 102602. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W.D. VIIRS nighttime lights in the estimation of cross-sectional and time-series GDP. Remote Sens. 2019, 11, 1057. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Zhizhin, M.; Ghosh, T.; Hsu, F.-C.; Taneja, J. Annual time series of global VIIRS nighttime lights derived from monthly averages: 2012 to 2019. Remote Sens. 2021, 13, 922. [Google Scholar] [CrossRef]
- Goldblatt, R.; Heilmann, K.; Vaizman, Y. Can Medium-Resolution Satellite Imagery Measure Economic Activity at Small Geographies? Evidence from Landsat in Vietnam. World Bank Econ. Rev. 2020, 34, 635–653. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia-Pac. Adv. Netw. 2010, 30, 114. [Google Scholar] [CrossRef]
- Jing, X.; Shao, X.; Cao, C.; Fu, X.; Yan, L. Comparison between the Suomi-NPP Day-Night Band and DMSP-OLS for correlating socio-economic variables at the provincial level in China. Remote Sens. 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef] [Green Version]
- Gibson, J. Better night lights data, for longer. Oxf. Bull. Econ. Stat. 2021, 83, 770–791. [Google Scholar] [CrossRef]
- Fuller, W.A. Measurement Error Models; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Bound, J.; Krueger, A.B. The extent of measurement error in longitudinal earnings data: Do two wrongs make a right? J. Labor Econ. 1991, 9, 1–24. [Google Scholar] [CrossRef]
- Kim, B.; Solon, G. Implications of mean-reverting measurement error for longitudinal studies of wages and employment. Rev. Econ. Stat. 2005, 87, 193–196. [Google Scholar] [CrossRef]
- Gibson, J.; Beegle, K.; De Weerdt, J.; Friedman, J. What does variation in survey design reveal about the nature of measurement errors in household consumption? Oxf. Bull. Econ. Stat. 2015, 77, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Bluhm, R.; Krause, M. Top Lights: Bright Cities and Their Contribution to Economic Development; Working Paper No. 2020-08; Monash University, SoDa Laboratories: Melbourne, Australia, 2020. [Google Scholar]
- Lessmann, C.; Seidel, A. Regional inequality, convergence, and its determinants–A view from outer space. Eur. Econ. Rev. 2017, 92, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Singhal, A.; Sahu, S.; Chattopadhyay, S.; Mukherjee, A.; Bhanja, S.N. Using night time lights to find regional inequality in India and its relationship with economic development. PLoS ONE 2020, 15, e0241907. [Google Scholar] [CrossRef] [PubMed]
- Keola, S.; Andersson, M.; Hall, O. Monitoring economic development from space: Using nighttime light and land cover data to measure economic growth. World Dev. 2015, 66, 322–334. [Google Scholar] [CrossRef]
- Chen, X.; Nordhaus, W. A test of the new VIIRS lights data set: Population and economic output in Africa. Remote Sens. 2015, 7, 4937–4947. [Google Scholar] [CrossRef] [Green Version]
- Henderson, J.V.; Squires, T.; Storeygard, A.; Weil, D. The global distribution of economic activity: Nature, history, and the role of trade. Q. J. Econ. 2018, 133, 357–406. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, S.; Jendryke, M.; Li, D.; Wu, C. Night-time light dynamics during the Iraqi civil war. Remote Sens. 2018, 10, 858. [Google Scholar] [CrossRef] [Green Version]
- Asher, S.; Lunt, T.; Matsuura, R.; Novosad, P. Development research at high geographic resolution: An analysis of night-lights, firms and poverty in India suing the SHRUG open data platform. World Bank Econ. Rev. 2021. [Google Scholar] [CrossRef]
- Tuttle, B.T.; Anderson, S.; Elvidge, C.; Ghosh, T.; Baugh, K.; Sutton, P. Aladdin’s magic lamp: Active target calibration of the DMSP OLS. Remote Sens. 2014, 6, 12708–12722. [Google Scholar] [CrossRef] [Green Version]
- Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ. 2005, 96, 277–291. [Google Scholar] [CrossRef]
- Mirza, M.U.; Xu, C.; van Bavel, B.; van Nes, E.H.; Scheffer, M. Global inequality remotely sensed. Proc. Natl. Acad. Sci. USA 2021, 118, e1919913118. [Google Scholar] [CrossRef] [PubMed]
- Storeygard, A. Farther on down the road: Transport costs, trade and urban growth in sub-Saharan Africa. Rev. Econ. Stud. 2016, 83, 1263–1295. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin E., H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622. [Google Scholar] [CrossRef]
- Hsu, F.-C.; Baugh, K.E.; Ghosh, T.; Zhizhin, M.; Elvidge, C.D. DMSP-OLS radiance calibrated nighttime lights time series with intercalibration. Remote Sens. 2015, 7, 1855–1876. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Baugh, K.E.; Dietz, J.B.; Bland, T.; Sutton, P.C.; Kroehl, H.W. Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Remote Sens. Environ. 1999, 68, 77–88. [Google Scholar] [CrossRef]
Independent Variables and Summary Stats | All Countries with Data | Henderson et al. (2012) Specification | ||
---|---|---|---|---|
Mean Radiance | Masked Mean | Masked Mean/Area | Quadratic Model | |
ln(lights) | 0.015 ** | 0.094 ** | 0.085 ** | 0.084 ** |
(0.007) | (0.038) | (0.037) | (0.040) | |
R-squared (within) | 0.012 | 0.076 | 0.074 | 0.074 |
Independent Variables and Summary Statistics | V.2 VNL Annual Data Product | |||
---|---|---|---|---|
Average Radiance | Median Radiance | Masked Average Radiance | Masked Median Radiance | |
Within-estimator, for annual GDP changes within each county | ||||
ln(sum of lights) | 0.021 * | 0.004 | 0.118 *** | 0.131 *** |
(0.013) | (0.011) | (0.019) | (0.022) | |
Year fixed effects | Yes | Yes | Yes | Yes |
County fixed effects | Yes | Yes | Yes | Yes |
R-squared (Within) | 0.002 | 0.000 | 0.029 | 0.030 |
Between-estimator, for average GDP differences between counties | ||||
ln(sum of lights) | 1.261 *** | 1.270 *** | 1.049 *** | 1.045 *** |
(0.015) | (0.015) | (0.007) | (0.008) | |
R-squared (Between) | 0.706 | 0.709 | 0.863 | 0.861 |
Independent Variables and Summary Statistics | V.2 VNL Annual Data Product | |||
---|---|---|---|---|
Average Radiance | Median Radiance | Masked Average Radiance | Masked Median Radiance | |
Within-estimator, for annual GDP changes within each state | ||||
ln(sum of lights) | 0.050 ** | 0.047 | 0.043 | 0.037 |
(0.025) | (0.032) | (0.038) | (0.031) | |
Year fixed effects | Yes | Yes | Yes | Yes |
State fixed effects | Yes | Yes | Yes | Yes |
R-squared (Within) | 0.053 | 0.040 | 0.021 | 0.013 |
Between-estimator, for average GDP differences between states | ||||
ln(sum of lights) | 0.598 *** | 0.591 *** | 0.840 *** | 0.838 *** |
(0.116) | (0.114) | (0.083) | (0.079) | |
R-squared (Between) | 0.351 | 0.355 | 0.679 | 0.699 |
Indep Variables and Summary Stat | Within Estimator | Between Estimator | ||
---|---|---|---|---|
V.1 VNL | V.2 VNL | V.1 VNL | V.2 VNL | |
ln(sum of lights) | 0.020 | 0.078 *** | 1.037 ** | 1.026 *** |
(0.015) | (0.017) | (0.007) | (0.008) | |
R-squared | 0.001 | 0.014 | 0.865 | 0.857 |
Independent Variables and Summary Statistics | Approach Used for Years with Two Satellites | Restricting to a 6-Year Time-Series (2008 to 2013) | ||
---|---|---|---|---|
Averaging within Year | Use Observations of only 1 Satellite/Year | Use Satellite-Year Observations | ||
Within-estimator, for annual GDP changes within each county | ||||
ln(sum of lights) | 0.245 *** | 0.173 *** | 0.099 *** | 0.190 *** |
(0.027) | (0.030) | (0.019) | (0.032) | |
Year fixed effects | Yes | Yes | Yes | Yes |
County fixed effects | Yes | Yes | Yes | Yes |
Satellite fixed effects | No | No | Yes | No |
R-squared (Within) | 0.100 | 0.070 | 0.042 | 0.080 |
Between-estimator, for average GDP differences between counties | ||||
ln(sum of lights) | 1.221 *** | 1.222 *** | 1.219 *** | 1.208 *** |
(0.011) | (0.011) | (0.011) | (0.011) | |
R-squared (Between) | 0.798 | 0.798 | 0.801 | 0.783 |
Sample size | 40,408 | 40,408 | 62,163 | 18,653 |
Indep Variables and Summary Stat | Within Estimator | Between Estimator | ||
---|---|---|---|---|
DMSP | V.2 VNL | DMSP | V.2 VNL | |
ln(sum of lights) | 0.025 ** | 0.090 *** | 1.139 *** | 1.047 *** |
(0.010) | (0.018) | (0.011) | (0.008) | |
R-squared | 0.004 | 0.016 | 0.767 | 0.862 |
Independent Variables and Summary Statistics | Services Sector | Private Goods Sector | Agriculture, Forestry, Fishing | Mining, Quarrying, Oil & Gas Extraction |
---|---|---|---|---|
Within-estimator, for annual GDP changes within each county | ||||
ln(sum of lights) | 0.065 *** | 0.154 *** | −0.038 | 0.161 *** |
(0.010) | (0.030) | (0.061) | (0.050) | |
Year fixed effects | Yes | Yes | Yes | Yes |
County fixed effects | Yes | Yes | Yes | Yes |
R-squared (Within) | 0.013 | 0.008 | 0.000 | 0.002 |
Between-estimator, for average GDP differences between counties | ||||
ln(sum of lights) | 1.097 *** | 0.960 *** | 0.136 *** | 0.639 *** |
(0.010) | (0.010) | (0.020) | (0.032) | |
R-squared (Between) | 0.813 | 0.747 | 0.016 | 0.130 |
Independent Variables and Summary Statistics | Agriculture Share of GDP | Population Density | ||
---|---|---|---|---|
Below Median | Above Median | Below Median | Above Median | |
Within-estimator, for annual GDP changes within each county | ||||
ln(sum of lights) | 0.181 *** | 0.053 *** | 0.142 *** | 0.093 *** |
(0.029) | (0.015) | (0.025) | (0.015) | |
Year fixed effects | Yes | Yes | Yes | Yes |
County fixed effects | Yes | Yes | Yes | Yes |
R-squared (Within) | 0.080 | 0.005 | 0.020 | 0.040 |
Between-estimator, for average GDP differences between counties | ||||
ln(sum of lights) | 1.073 *** | 0.908 *** | 0.799 *** | 1.163 *** |
(0.011) | (0.012) | (0.012) | (0.012) | |
R-squared (Between) | 0.849 | 0.800 | 0.726 | 0.851 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, J.; Boe-Gibson, G. Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019. Remote Sens. 2021, 13, 2741. https://doi.org/10.3390/rs13142741
Gibson J, Boe-Gibson G. Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019. Remote Sensing. 2021; 13(14):2741. https://doi.org/10.3390/rs13142741
Chicago/Turabian StyleGibson, John, and Geua Boe-Gibson. 2021. "Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019" Remote Sensing 13, no. 14: 2741. https://doi.org/10.3390/rs13142741
APA StyleGibson, J., & Boe-Gibson, G. (2021). Nighttime Lights and County-Level Economic Activity in the United States: 2001 to 2019. Remote Sensing, 13(14), 2741. https://doi.org/10.3390/rs13142741