Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hyperspectral Image Acquisition and Preprocessing
2.3. UAV Survey and DEM Processing
2.4. Ground Truthing of the Outcrop
2.5. Spectral Analysis
2.6. Band Selection and Spectral Index Derivation
2.7. Fusion of Hyperspectral Imaging and UAV-Based 3D Model
3. Results and Discussion
3.1. UAV-Based Orthorectified Image and Digital Elevation Model of the Outcrop
3.2. Spectral Characteristics of Limestone and Dolostone
3.3. Carbonate Rock Classification
3.3.1. Carbonate Rock Classification by Random Forest Classification
3.3.2. Band Selection and Derivation of Carbonate Rock Indices from Binary Logistic Regression
3.4. Fusion of Classification Map and UAV-Based 3D Model
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Blatt, H.; Jones, R.L. Proportions of Exposed Igneous, Metamorphic, and Sedimentary Rocks. GSA Bull. 1975, 86, 1085. [Google Scholar] [CrossRef]
- Blatt, H.; Middleton, G.; Murray, R. Origin of Limestones. In Origin of Sedimentary Rocks; Prentice-Hall: Englewood Cliffs, NJ, USA, 1972; pp. 409–455. [Google Scholar]
- Pettijohn, F.J. Limestones and Dolomite. In Sedimentary Rocks, 3rd ed.; Harper & Row: New York, NY, USA, 1975; pp. 316–391. [Google Scholar]
- Best, M.; Ku, T.; Kidwell, S.; Walter, L. Carbonate Preservation in Shallow Marine Environments: Unexpected Role of Tropical Siliciclastics. J. Geol. 2007, 115, 437–456. [Google Scholar] [CrossRef] [Green Version]
- Zaini, N.; Van der Meer, F.; Van der Werff, H. Determination of Carbonate Rock Chemistry Using Laboratory-Based Hyperspectral Imagery. Remote Sens. 2014, 6, 4149–4172. [Google Scholar] [CrossRef] [Green Version]
- Dalm, M.; Buxton, M.W.N.; Van Ruitenbeek, F.J.A. Discriminating ore and waste in a porphyry copper deposit using short-wavelength infrared (SWIR) hyperspectral imagery. Miner. Eng. 2017, 105, 10–18. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Steffens, M. The Effects of Spectral Pretreatments on Chemometric Analyses of Soil Profiles Using Laboratory Imaging Spectroscopy. Appl. Environ. Soil Sci. 2012, 2012, 274903. [Google Scholar] [CrossRef] [Green Version]
- Speta, M.; Rivard, B.; Feng, J.; Lipsett, M.; Gingras, M. Hyperspectral imaging for the determination of bitumen content in Athabasca oil sands core samples. AAPG Bull. 2015, 99, 1245–1259. [Google Scholar] [CrossRef]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Vest Sørensen, E.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens. 2018, 10, 176. [Google Scholar] [CrossRef] [Green Version]
- Chung, B.; Yu, J.; Wang, L.; Kim, N.H.; Lee, B.H.; Koh, S.; Lee, S. Detection of Magnesite and Associated Gangue Minerals using Hyperspectral Remote Sensing—A Laboratory Approach. Remote Sens. 2020, 12, 1325. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef] [Green Version]
- Krupnik, D.; Khan, S.D. High-Resolution Hyperspectral Mineral Mapping: Case Studies in the Edwards Limestone, Texas, USA and Sulfide-Rich Quartz Veins from the Ladakh Batholith, Northern Pakistan. Minerals 2020, 10, 967. [Google Scholar] [CrossRef]
- Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P.; Zhou, H.-W. Study of Upper Albian rudist buildups in the Edwards Formation using ground-based hyperspectral imaging and terrestrial laser scanning. Sediment. Geol. 2016, 345, 154–167. [Google Scholar] [CrossRef] [Green Version]
- Rokhmana, C.A. The Potential of UAV-based Remote Sensing for Supporting Precision Agriculture in Indonesia. Procedia Environ. Sci. 2015, 24, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, A.; Santos, P.; Espinha Marques, J.; Ribeiro, J.; Mansilha, C.; Melo, A.; Duarte, L.; Rodrigues de Almeida, C.; Flores, D. An Integrated Multi-Approach to Environmental Monitoring of a Self-Burning Coal Waste Pile: The São Pedro da Cova Mine (Porto, Portugal) Study Case. Environments 2021, 8, 48. [Google Scholar] [CrossRef]
- Byun, U.H.; Lee, H.S.; Kwon, Y.K. Sequence stratigraphy in the middle Ordovician shale successions, mid-east Korea: Stratigraphic variations and preservation potential of organic matter within a sequence stratigraphic framework. J. Asian Earth Sci. 2018, 152, 116–131. [Google Scholar] [CrossRef]
- Kwon, Y.; Chough, S.; Choi, D.; Lee, D. Sequence stratigraphy of the Taebaek Group (Cambrian–Ordovician), mideast Korea. Sediment. Geol. 2006, 192, 19–55. [Google Scholar] [CrossRef]
- Choi, D.K.; Chough, S.K. The Cambrian-Ordovician stratigraphy of the Taebaeksan Basin, Korea: A review. Geosci. J. 2005, 9, 187–214. [Google Scholar] [CrossRef]
- Chough, S.K.; Kwon, S.T.; Ree, J.H.; Choi, D.K. Tectonic and sedimentary evolution of the Korean Peninsula: A review and new view. Earth-Sci. Rev. 2000, 52, 175–235. [Google Scholar] [CrossRef]
- Woo, K.S. Cyclic tidal successions of the Middle Ordovician Maggol Formation in the Taebaeg area, Kangwondo, Korea. Geosci. J. 1999, 3, 123–140. [Google Scholar] [CrossRef]
- Behmann, J.; Acebron, K.; Emin, D.; Bennertz, S.; Matsubara, S.; Thomas, S.; Bohnenkamp, D.; Kuska, M.T.; Jussila, J.; Salo, H.; et al. Specim IQ: Evaluation of a New, Miniaturized Handheld Hyperspectral Camera and Its Application for Plant Phenotyping and Disease Detection. Sensors 2018, 18, 441. [Google Scholar] [CrossRef] [Green Version]
- Tsai, F.; Philpot, W. Derivative Analysis of Hyperspectral Data. Remote. Sens. Environ. 1998, 66, 41–51. [Google Scholar] [CrossRef]
- Green, A.; Berman, M.; Switzer, P.; Craig, M. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote. Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Dabiri, Z.; Lang, S. Comparison of Independent Component Analysis, Principal Component Analysis, and Minimum Noise Fraction Transformation for Tree Species Classification Using APEX Hyperspectral Imagery. ISPRS Int. J. Geo-Inf. 2018, 7, 488. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Townsend, P.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.; Adams, P. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote. Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Moyano, J.; Nieto-Julián, J.E.; Antón, D.; Cabrera, E.; Bienvenido-Huertas, D.; Sánchez, N. Suitability Study of Structure-from-Motion for the Digitisation of Architectural (Heritage) Spaces to Apply Divergent Photograph Collection. Symmetry 2020, 12, 1981. [Google Scholar] [CrossRef]
- Cabrelles, M.; Lerma, J.L.; Villaverde, V. Macro Photogrammetry & Surface Features Extraction for Paleolithic Portable Art Documentation. Appl. Sci. 2020, 10, 6908. [Google Scholar] [CrossRef]
- Zaini, N.; Van der Meer, F.; Van der Werff, H. Effect of Grain Size and Mineral Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength Regions. Remote Sens. 2012, 4, 987–1003. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, E.; Hoefen, T.; Kokaly, R.; Sutley, S.J. USGS Digital Spectral Library splib06a: U.S. Geological Survey, Digital Data Series 231. 2007. Available online: https://www.usgs.gov/labs/spec-lab/capabilities/superseded-spectral-library-versions?qt-capabilities_objects=0#qt-capabilities_objects (accessed on 30 April 2021).
- Kaab, A. Remote Sensing of Mountain Glaciers and Permafrost Creep; Geographisches Institut der Universität Zürich: Zurich, Switzerland, 2005; 264p. [Google Scholar]
- Kokaly, R.F.; Clark, R.N. Spectroscopic Determination of Leaf Biochemistry Using Band-Depth Analysis of Absorption Features and Stepwise Multiple Linear Regression. Remote Sens. Environ. 1999, 67, 267–287. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap Methods: Another look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Breiman, L.; Cutler, A. Random Forests—Classification Manual. Available online: http://www.math.usu.edu/~adele/forests/ (accessed on 30 April 2021).
- Breiman, L. Random Forests. Mach. Learn. J. Pap. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (Random Forest). Remote Sens. Environ. 2006, 100, 356–362. [Google Scholar] [CrossRef]
- Mellor, A.; Haywood, A.; Stone, C.; Jones, S. The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification. Remote Sens. 2013, 5, 2838–2856. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press Taylor Fr. Group: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Davoudi Kakhki, F.; Freeman, S.A.; Mosher, G.A. Use of Logistic Regression to Identify Factors Influencing the Post-Incident State of Occupational Injuries in Agribusiness Operations. Appl. Sci. 2019, 9, 3449. [Google Scholar] [CrossRef] [Green Version]
- Borucka, A.; Grzelak, M. Application of Logistic Regression for Production Machinery Efficiency Evaluation. Appl. Sci. 2019, 9, 4770. [Google Scholar] [CrossRef] [Green Version]
- Štefko, R.; Horváthová, J.; Mokrišová, M. Bankruptcy Prediction with the Use of Data Envelopment Analysis: An Empirical Study of Slovak Businesses. J. Risk Financ. Manag. 2020, 13, 212. [Google Scholar] [CrossRef]
- Díaz-Pérez, M.; Carreño-Ortega, Á.; Gómez-Galán, M.; Callejón-Ferre, Á.-J. Marketability Probability Study of Cherry Tomato Cultivars Based on Logistic Regression Models. Agronomy 2018, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: New Jersey, NJ, USA, 2013; Volume 398. [Google Scholar]
- Menard, S. Coefficients of determination for multiple logistic regression analysis. Am. Stat. 2000, 54, 17–24. [Google Scholar]
- Nagelkerke, N.J. A note on a general definition of the coefficient of determination. Biometrika 1991, 78, 691–692. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, X.; Li, Y.; Xiong, Q. Garch Model Test Using High-Frequency Data. Mathematics 2020, 8, 1922. [Google Scholar] [CrossRef]
- Zizi, Y.; Oudgou, M.; El Moudden, A. Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach. Risks 2020, 8, 107. [Google Scholar] [CrossRef]
- Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE International Conference on Computer Vision, Corfu, Greece, 20–25 September 1999; Volume 2, pp. 1150–1157. [Google Scholar] [CrossRef]
- Dong, Y.; Jiao, W.; Long, T.; Liu, L.; He, G.; Gong, C.; Guo, Y. Local Deep Descriptor for Remote Sensing Image Feature Matching. Remote Sens. 2019, 11, 430. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yuan, X.; Yuan, W.; Niu, J.; Xu, F.; Zhang, Y. Matching Multi-Sensor Remote Sensing Images via an Affinity Tensor. Remote Sens. 2018, 10, 1104. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; King, T.V.V.; Klejwa, M.; Swayze, G.A.; Vergo, N. High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res. 1990, 95, 12653–12680. [Google Scholar] [CrossRef] [Green Version]
- Gaffey, S.J. Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 microns); calcite, aragonite, and dolomite. Am. Mineral. 1986, 71, 151–162. [Google Scholar]
- Baissa, R.; Labbassi, K.; Launeau, P.; Gaudin, A.; Ouajhain, B. Using HySpex SWIR-320m hyperspectral data for the identification and mapping of minerals in hand specimens of carbonate rocks from the Ankloute Formation (Agadir Basin, Western Morocco). J. Afr. Earth Sci. 2011, 61, 1–9. [Google Scholar] [CrossRef]
- Clark, W.; Hoskings, P. Statistical methods for geographers. In Clark Statistical Methods for Geographers; John Wiley and Sons: New York, NY, USA, 1986. [Google Scholar]
- Mokhtari, A.R. Hydrothermal alteration mapping through multivariate logistic regression analysis of lithogeochemical data. J. Geochem. Explor. 2014, 145, 207–212. [Google Scholar] [CrossRef]
Spectral range | 930–2500 nm |
Spatial pixels | 384 |
Spectral channels | 288 |
Spectral sampling | 5.45 nm |
FOV | 16° |
Pixel FOV across/along | 0.73/0.73 mrad |
Bit resolution | 16 bit |
Noise floor | 150 e |
Dynamic range | 7500 |
Peak SNR (at full resolution) | >1100 |
Max speed | 400 fps |
Power consumption | 30 W |
Dimensions (l–w–h) | 38–12–17.5 cm |
Weight | 5.7 kg |
Class | Training Data | |||
User’s Accuracy (%) | Producer’s Accuracy (%) | Commission Error (%) | Omission Error (%) | |
Limestone | 95.12 | 95.51 | 4.88 | 4.49 |
Dolostone | 96.41 | 95.17 | 3.59 | 4.83 |
Overall Accuracy: 95.34% Kappa Coefficient: 0.91 | ||||
Class | Validation Data | |||
User’s Accuracy (%) | Producer’s Accuracy (%) | User’s Accuracy (%) | Omission Error (%) | |
Limestone | 93.5 | 92.38 | 6.5 | 7.62 |
Dolostone | 95.04 | 91.03 | 4.96 | 8.97 |
Overall Accuracy: 91.71% Kappa Coefficient: 0.89 |
Wavelength (nm) | β1 | S.E. 2 | Wald 3 | Df 4 | Sig. 5 | Exp (β) 6 |
---|---|---|---|---|---|---|
Final selected spectral variables for limestone classification | ||||||
980 | 7.126 | 0.720 | 97.951 | 1 | 0 | 1244.091 |
1584 | −0.072 | 0.087 | 0.692 | 1 | 0.406 | 0.930 |
2290 | −149.158 | 60.089 | 6.162 | 1 | 0.013 | 0 |
2295 | 891.720 | 187.400 | 22.642 | 1 | 0 | 0 |
2300 | −1737.397 | 260.817 | 44.374 | 1 | 0 | 0 |
2306 nm | 1100.121 | 164.159 | 44.911 | 1 | 0 | 0 |
2316 nm | −468.074 | 116.805 | 16.058 | 1 | 0 | 0 |
2321 nm | 902.109 | 129.375 | 48.620 | 1 | 0 | 0 |
2331 nm | −1073.833 | 157.677 | 46.381 | 1 | 0 | 0 |
2336 nm | 1101.590 | 217.570 | 25.635 | 1 | 0 | 0 |
2341 nm | −1531.512 | 301.279 | 25.841 | 1 | 0 | 0 |
2346 nm | 1627.802 | 235.607 | 47.734 | 1 | 0 | 0 |
2352 nm | −967.948 | 95.835 | 102.012 | 1 | 0 | 0 |
2362 nm | 309.900 | 27.601 | 126.067 | 1 | 0 | 0 |
2480 nm | −19.540 | 2.481 | 62.014 | 1 | 0 | 0 |
Constant | −3.837 | 0.344 | 124.627 | 1 | 0 | 0.22 |
Final selected spectral variables for dolostone classification | ||||||
1968 nm | −27.184 | 6.085 | 19.960 | 1 | 0 | 0 |
2009 nm | 74.529 | 14.975 | 24.771 | 1 | 0 | 0 |
2024 nm | 104.447 | 20.916 | 24.936 | 1 | 0 | 0 |
2055 nm | −417.089 | 30.179 | 191.004 | 1 | 0 | 0 |
2091 nm | 173.937 | 24.084 | 52.157 | 1 | 0 | 0 |
2132 nm | 40.597 | 9.344 | 18.877 | 1 | 0 | 0 |
2300 nm | −24.935 | 4.797 | 27.021 | 1 | 0 | 0 |
2336 nm | −458.285 | 34.881 | 172.621 | 1 | 0 | 0 |
2341 nm | 537.312 | 35.762 | 225.745 | 1 | 0 | 0 |
Constant | −2.512 | 0.245 | 105.108 | 1 | 0 | 0.081 |
Parameters | Pseudo-R2 | Hosmer and Lemeshow Test | |||
---|---|---|---|---|---|
Cox and Snell R2 | Nagelkerke R2 | χ2 | df | p-Value | |
Limestone | 0.734 | 0.979 | 5.869 | 8 | 0.662 |
Dolostone | 0.712 | 0.956 | 17.533 | 8 | 0.07 |
Class | Validation Data | ||
---|---|---|---|
Overall Accuracy (%) | Commission Error (%) | Omission Error (%) | |
Limestone | 87.73 | 1.77 | 12.27 |
Dolostone | 88.02 | 0.22 | 11.98 |
Overall Accuracy: 87.91% Kappa Coefficient: 0.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, H.H.; Yu, J.; Wang, L.; Kim, N.H.; Lee, B.H.; Koh, S.-M.; Cho, S.; Pham, T.H. Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks. Remote Sens. 2021, 13, 3037. https://doi.org/10.3390/rs13153037
Huynh HH, Yu J, Wang L, Kim NH, Lee BH, Koh S-M, Cho S, Pham TH. Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks. Remote Sensing. 2021; 13(15):3037. https://doi.org/10.3390/rs13153037
Chicago/Turabian StyleHuynh, Huy Hoa, Jaehung Yu, Lei Wang, Nam Hoon Kim, Bum Han Lee, Sang-Mo Koh, Sehyun Cho, and Trung Hieu Pham. 2021. "Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks" Remote Sensing 13, no. 15: 3037. https://doi.org/10.3390/rs13153037
APA StyleHuynh, H. H., Yu, J., Wang, L., Kim, N. H., Lee, B. H., Koh, S. -M., Cho, S., & Pham, T. H. (2021). Integrative 3D Geological Modeling Derived from SWIR Hyperspectral Imaging Techniques and UAV-Based 3D Model for Carbonate Rocks. Remote Sensing, 13(15), 3037. https://doi.org/10.3390/rs13153037