Mapping the Impact of COVID-19 Lockdown on Urban Surface Ecological Status (USES): A Case Study of Kolkata Metropolitan Area (KMA), India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Spectral Indices and Framework
2.3.2. Modelling Urban Surface Ecological Status (USES) in KMA
2.3.3. Statistical Analysis
3. Results
3.1. Surface Biophysical Parameters
3.2. USES
3.3. USES Spatial Pattern
4. Discussion
4.1. Limitations and Uncertainties of the Work
4.2. Implication of Urban Ecological Restoration and Management Policies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Study Scale | Reference | Published Year | Study Period | Major Findings |
---|---|---|---|---|
Kolkata Metropolitan Area (KMA) | [66] | 2020 | 2000–2019 | Ecosystem Health since 2000 to 2019 declined from 73% to 52% due to mainly rapid built-up areas expansion and loss of vegetation cover. |
Kolkata Metropolitan Area (KMA) | [67] | 2021 | 2000–2019 | Built-up area increased by about 90% and vegetation cover decreased by about 56% from 2000 to 2019. |
Kolkata Metropolitan Area (KMA) | [79] | 2020 | 1990–2020 | In the last 30 years (1990 to 2020), cropland area declined by 181 km2. In core zone (144 municipalities), between 2020 to 2020,built-up areas increased by about 29.37% and wetland and cropland area decreased by 25.66% and 26.43%, respectively. |
South Kolkata | [80] | 2021 | 2009–2019 | Built-up area increased by about 22.11% and vegetation cover decreased by about 5.78%. |
East Kolkata Wetland | [81] | 2017 | 2000–2010 | Since 2000 to 2011, net loss of wetland was 13.16 km2 due to built-up growth. 4.76 km2 area of wetland was converted to cropland. |
Kolkata Metropolitian Area (KMA) | [82] | 2015 | 2000–2015 | Built-up area increased by about 55% and vegetation cover declined by about 25%. Agricultural land decreased(up to 6%) due to built-up expansion. |
Pujali Municipality (KMA) | [83] | 2017 | 1980–2015 | Built-up area increased by about 25%; vegetation cover and water bodies decreased by about 50%, respectively. |
Kolkata Metropolitan Area (KMA) | [84] | 2018 | 1990–2017 | Built-up area was increased by about 202% from1990 to 2017 and vegetation cover decreased by about 4%, respectively. |
East Kolkata Wetland | [85] | 2013 | 1973–2010 | Wetland area reduced by about 26% followed by agricultural land. Built-upareas increased by about 166%. |
of Kolkata Urban Agglomeration | [86] | 2019 | 1990–2015 | In thelast 25 years, built-up and agricultural land increased by 45% and 62%, respectively. On the other hand, agricultural land and vegetation cover decreased by about 35% and 12%, respectively. Built-up area increased due to conversion of agricultural and open land into built-up area. |
Kolkata Municipal Corporation (KMC) | [87] | 2021 | 1980–2018 | Low, dense, fragmented built-up areas increased by about 95% and other ecological landscapes significantly decreased, such as vegetation cover (69%), grass land (51%), water bodies (27%), wetland (58%), cropland (56%), respectively. |
Howrah Municipal Corporation (HMC) | [88] | 2018 | 1975–2015 | In the last 40 years, vegetation cover, agricultural land, water bodies and wetland declined by 14%, 23%, 12% and 10%, respectively. On the other hand, built-up area increased by about 58%. |
East Kolkata Wetlands | [89] | 2016 | 1972–2011 | Wetland area was reduced by about 28.1 km2 (decreased by 18%) followed by agricultural land (26%). Wetland decreased due to conversion of wetland intobuilt-up and other land covers. |
Kolkata Metropolitan Area | [27] | 2019 | 1991–2017 | Vegetation cover and agricultural land decreased by about 16% and 12%, respectively. Moderate dense built-up areas increased by about 23%. |
Kolkata and surrounding periphery | [90] | 2014 | 1997–2017 | Forests, low vegetation and agricultural land declined by 40%, 8%, and 20%, respectively. Built-up areas increased by 67%. |
Kolkata City | [30] | 2015 | 1989–2010 | Dense settlement area increased by about 39% and vegetation and wetland vegetation decreased from 178 to 109 km2 and 34 to 15 km2. |
Kolkata Urban Agglomeration | [28] | 2018 | 1990–2015 | Vegetation cover, wetland and agricultural land decreased by about 6.6%, 5.9%, and 26%. Built-up area increased by 24.5%. From 2000 to 2015, 103.7 km2 agricultural lands were converted into built-up areas. |
Kolkata Megacity | [91] | 2019 | 1991–2018 | From1991-2018, built-up areas increased by more than 200% and water bodies, dense vegetation and sparse vegetation cover declined by 14%, 47%, and 45%, respectively. |
References
- Lin, T.; Ge, R.; Huang, J.; Zhao, Q.; Lin, J.; Huang, N.; Zhang, G.-Q.; Li, X.; Ye, H.; Yin, K. A quantitative method to assess the ecological indicator system’s effectiveness: A case study of the Ecological Province Construction Indicators of China. Ecol. Indic. 2016, 62, 95–100. [Google Scholar] [CrossRef]
- Qureshi, S.; Alavipanah, S.K.; Konyushkova, M.; Mijani, N.; Fathololomi, S.; Firozjaei, M.K.; Homaee, M.; Hamzeh, S.; Kakroodi, A.A. A Remotely Sensed Assessment of Surface Ecological Change over the Gomishan Wetland, Iran. Remote Sens. 2020, 12, 2989. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Fu, Y.; Li, J.; Weng, Q.; Zheng, Q.; Li, L.; Dai, S.; Guo, B. Characterising the spatial pattern of annual urban growth by using time series Landsat imagery. Sci. Total Environ. 2019, 666, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Jin, K.; Wang, F.; Chen, D.; Liu, H.; Ding, W.; Shi, S. A new global gridded anthropogenic heat flux dataset with high spatial resolution and long-term time series. Sci. Data 2019, 6, 139. [Google Scholar] [CrossRef] [PubMed]
- United Nations, Population Division, Department of Economic and Social Affairs. World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Das, A.; Ghosh, S.; Das, K.; Basu, T.; Dutta, I.; Das, M. Living environment matters: Unravelling the spatial clustering of COVID-19 hotspots in Kolkata megacity, India. Sustain. Cities Soc. 2021, 65, 102577. [Google Scholar] [CrossRef] [PubMed]
- Firozjaei, M.K.; Fathololomi, S.; Kiavarz, M.; Arsanjani, J.J.; Homaee, M.; Alavipanah, S.K. Modeling the impact of the COVID-19 lockdowns on urban surface ecological status: A case study of Milan and Wuhan cities. J. Environ. Manag. 2021, 286, 112236. [Google Scholar] [CrossRef]
- Willis, K.S. Remote sensing change detection for ecological monitoring in United States protected areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Das, A. Exploring the pattern of outdoor thermal comfort (OTC) in a tropical planning region of eastern India during summer. Urban Clim. 2020, 34, 100708. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, T.; Wang, Z.; Niu, R. Detecting ecological spatial-temporal changes by Remote Sensing Ecological Index with local adaptability. J. Environ. Manag. 2021, 299, 113655. [Google Scholar] [CrossRef]
- Chang, N.-B.; Sun, Z.; Opp, C. Using SPOT-VGT NDVI as a successive ecological indicator for understanding the environmental implications in the Tarim River Basin, China. J. Appl. Remote Sens. 2010, 4, 043554. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Das, A. Estimation of Ecosystem Services (EESs) loss due to transformation of Local Climatic Zones (LCZs) in Sriniketan-Santiniketan Planning Area (SSPA)West Bengal, India. Sustain. Cities Soc. 2019, 47, 101474. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Seikh, S.; Pandey, R. Nexus between indigenous ecological knowledge and ecosystem services: A socio-ecological analysis for sustainable ecosystem management. Environ. Sci. Pollut. Res. 2021, 1–18. [Google Scholar] [CrossRef]
- Sharma, S.; Nahid, S.; Sharma, M.; Sannigrahi, S.; Anees, M.M.; Sharma, R.; Shekhar, R.; Basu, A.S.; Pilla, F.; Basu, B.; et al. A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City Environ. Interact. 2020, 7, 100047. [Google Scholar] [CrossRef]
- Bhagat, R.B.; Mohanty, S. Emerging pattern of urbanisation and the contribution of migration in urban growth in India. Asian Popul. Stud. 2019, 5, 5–20. [Google Scholar] [CrossRef]
- Taubenböck, H.; Wegmann, M.; Roth, A.; Mehl, H.; Dech, S. Urbanisation in India–Spatiotemporal analysis using remote sensing data. Comput. Environ. Urban Syst. 2009, 33, 179–188. [Google Scholar] [CrossRef]
- Connor, R. The United Nations World Water Development Report 2015: Water for a Sustainable World; UNESCO Publishing: Paris, France, 2015; Volume 1. [Google Scholar]
- International Resource Panel, United Nations Environment Programme, Sustainable Consumption, and Production Branch. Decoupling Natural Resource use and Environmental Impacts from Economic Growth; UNEP/Earthprint: Nairobi, Kenya, 2011. [Google Scholar]
- Ramachandra, T.V.; Bharath, A.H.; Sowmyashree, M.V. Monitoring urbanisation and its implications in a mega city from space: Spatiotemporal patterns and its indicators. J. Environ. Manag. 2015, 148, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; White, M.; Radivojac, P. Estimating the class prior and posterior from noisy positives and unlabeled data. arXiv 2016, arXiv:1606.08561. [Google Scholar]
- Bhatta, B. Analysis of urban growth pattern using remote sensing and GIS: A case study of Kolkata, India. Int. J. Remote Sens. 2009, 30, 4733–4746. [Google Scholar] [CrossRef]
- Ramachandra, T.; Bharath, S.; Gupta, N. Modelling landscape dynamics with LST in protected areas of Western Ghats, Karnataka. J. Environ. Manag. 2018, 206, 1253–1262. [Google Scholar] [CrossRef]
- Mondal, S.; Kundu, D.; Haque, S.; Senapati, T.; Ghosh, A.R. Seasonal variation of zooplankton distribution in sewage-fed East Kolkata wetland, West Bengal, India. Pollut. Res. 2015, 34, 477–787. [Google Scholar]
- Kundu, D.; Mondal, S.; Dutta, D.; Haque, S.; Ghosh, A.R. Accumulation and contamination of lead in different trophic levels of food chain in sewage-fed East Kolkata Wetland, West Bengal, India. Int. J. Env. Tech. Sci. 2016, 2, 61–68. [Google Scholar]
- Ghosh, S.; Das, A. Urban expansion induced vulnerability assessment of East Kolkata Wetland using Fuzzy MCDM method. Remote Sens. Appl. Soc. Environ. 2019, 13, 191–203. [Google Scholar] [CrossRef]
- Sahana, M.; Hong, H.; Sajjad, H.; Liu, J.; Zhu, A.-X. Assessing deforestation susceptibility to forest ecosystem in Rudraprayag district, India using fragmentation approach and frequency ratio model. Sci. Total Environ. 2018, 627, 1264–1275. [Google Scholar] [CrossRef]
- Ghosh, S.; Das Chatterjee, N.; Dinda, S. Relation between urban biophysical composition and dynamics of land surface temperature in the Kolkata metropolitan area: A GIS and statistical based analysis for sustainable planning. Model. Earth Syst. Environ. 2019, 5, 307–329. [Google Scholar] [CrossRef]
- Sharma, R.; Chakraborty, A.; Joshi, P.K. Geospatial quantification and analysis of environmental changes in urbanising city of Kolkata (India). Environ. Monit. Assess. 2015, 187, 4206. [Google Scholar] [CrossRef]
- Nimish, G.; Bharath, H.; Lalitha, A. Exploring temperature indices by deriving relationship between land surface temperature and urban landscape. Remote Sens. Appl. Soc. Environ. 2020, 18, 100299. [Google Scholar] [CrossRef]
- Sarkar, U.K.; Mishal, P.; Borah, S.; Karnatak, G.; Chandra, G.; Kumari, S.; Meena, D.K.; Debnath, D.; Yengkokpam, S.; Das, P.; et al. Status, Potential, Prospects, and Issues of Floodplain Wetland Fisheries in India: Synthesis and Review for Sustainable Management. Rev. Fish. Sci. Aquac. 2021, 29, 1–32. [Google Scholar] [CrossRef]
- Chakraborty, I.; Maity, P. COVID-19 outbreak: Migration, effects on society, global environment and prevention. Sci. Total Environ. 2020, 728, 138882. [Google Scholar] [CrossRef]
- Muhammad, S.; Long, X.; Salman, M. COVID-19 pandemic and environmental pollution: A blessing in disguise? Sci. Total Environ. 2020, 728, 138820. [Google Scholar] [CrossRef] [PubMed]
- Nakada, L.Y.K.; Urban, R.C. COVID-19 pandemic: Impacts on the air quality during the partial lockdown in São Paulo state, Brazil. Sci. Total Environ. 2020, 730, 139087. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef] [PubMed]
- Berman, J.D.; Ebisu, K. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 2020, 739, 139864. [Google Scholar] [CrossRef]
- Panda, S.; Mallik, C.; Nath, J.; Das, T.; Ramasamy, B. A study on variation of atmospheric pollutants over Bhubaneswar during imposition of nationwide lockdown in India for the COVID-19 pandemic. Air Qual. Atmos. Health 2021, 14, 97–108. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Sarkar, R.; Saha, S.; Mandal, A. Examining the impact of lockdown (due to COVID-19) on ambient aerosols (PM 2.5): A study on Indo-Gangetic Plain (IGP) Cities, India. Stoch. Environ. Res. Risk Assess. 2021, 35, 1301–1317. [Google Scholar] [CrossRef] [PubMed]
- Bera, B.; Bhattacharjee, S.; Shit, P.K.; Sengupta, N.; Saha, S. Significant impacts of COVID-19 lockdown on urban air pollution in Kolkata (India) and amelioration of environmental health. Environ. Dev. Sustain. 2021, 23, 6913–6940. [Google Scholar] [CrossRef]
- Pettorelli, N.; Vik, J.O.; Mysterud, A.; Gaillard, J.-M.; Tucker, C.J.; Stenseth, N.C. Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol. Evol. 2005, 20, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Ridd, M.K. Exploring a V-I-S (vegetation-impervious surface-soil) model for urban ecosystem analysis through remote sensing: Comparative anatomy for cities. Int. J. Remote Sens. 1995, 16, 2165–2185. [Google Scholar] [CrossRef]
- Robinson, N.P.; Allred, B.W.; Jones, M.O.; Moreno, A.; Kimball, J.S.; Naugle, D.E.; Erickson, T.A.; Richardson, A.D. A Dynamic Landsat Derived Normalized Difference Vegetation Index (NDVI) Product for the Conterminous United States. Remote Sens. 2017, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Yan, D.; Liu, Z.; Zhou, Y. Analysis of remotely-sensed ecological indexes’ influence on urban thermal environment dynamic using an integrated ecological index: A case study of Xi’an, China. Int. J. Remote Sens. 2018, 40, 3421–3447. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristóbal, J. Land Surface Temperature Retrieval Methods from Landsat-8 Thermal Infrared Sensor Data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Weng, Q.; Firozjaei, M.K.; Kiavarz, M.; Alavipanah, S.K.; Hamzeh, S. Normalizing land surface temperature for environmental parameters in mountainous and urban areas of a cold semi-arid climate. Sci. Total Environ. 2019, 650, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Baig, M.H.A.; Zhang, L.; Shuai, T.; Tong, Q. Derivation of a tasselled cap transformation based on Landsat 8 at-satellite reflectance. Remote Sens. Lett. 2014, 5, 423–431. [Google Scholar] [CrossRef]
- Mijani, N.; Alavipanah, S.K.; Firozjaei, M.K.; Arsanjani, J.J.; Hamzeh, S.; Weng, Q. Modeling outdoor thermal comfort using satellite imagery: A principle component analysis-based approach. Ecol. Indic. 2020, 117, 106555. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Alavipanah, S.K.; Liu, H.; Sedighi, A.; Mijani, N.; Kiavarz, M.; Weng, Q. A PCA–OLS Model for Assessing the Impact of Surface Biophysical Parameters on Land Surface Temperature Variations. Remote Sens. 2019, 11, 2094. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Zhao, S. Spatiotemporal dynamics of urban expansion in 13 cities across the Jing-Jin-Ji Urban Agglomeration from 1978 to 2015. Ecol. Indic. 2018, 87, 302–313. [Google Scholar] [CrossRef]
- Tayyebi, A.; Shafizadeh-Moghadam, H.; Tayyebi, A.H. Analysing long-term spatio-temporal patterns of land surface temperature in response to rapid urbanisation in the megacity of Tehran. Land Use Polic y 2018, 71, 459–469. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, X.; Zeng, Y.; Koga, M.; Vejre, H. Variations in land surface temperature and cooling efficiency of green space in rapid urbanisation: The case of Fuzhou city, China. Urban For. Urban Green. 2018, 29, 113–121. [Google Scholar] [CrossRef]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Alavipanah, S.K. A novel method to quantify urban surface ecological poorness zone: A case study of several European cities. Sci. Total Environ. 2021, 757, 143755. [Google Scholar] [CrossRef]
- Weng, Q.; Firozjaei, M.K.; Sedighi, A.; Kiavarz, M.; Alavipanah, S.K. Statistical analysis of surface urban heat island intensity variations: A case study of Babol city, Iran. GISci. Remote Sens. 2019, 56, 576–604. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Fathololoumi, S.; Alavipanah, S.K.; Kiavarz, M.; Vaezi, A.R.; Biswas, A. A new approach for modeling near surface temperature lapse rate based on normalised land surface temperature data. Remote Sens. Environ. 2020, 242, 111746. [Google Scholar] [CrossRef]
- Fu, P.; Weng, Q. A time series analysis of urbanisation induced land use and land cover change and its impact on land surface temperature with Landsat imagery. Remote Sens. Environ. 2016, 175, 205–214. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Weng, Q.; Zhao, C.; Kiavarz, M.; Lu, L.; Alavipanah, S.K. Surface anthropogenic heat islands in six megacities: An assessment based on a triple-source surface energy balance model. Remote Sens. Environ. 2020, 242, 111751. [Google Scholar] [CrossRef]
- Chen, S.; Hu, D.; Wong, M.S.; Ren, H.; Cao, S.; Yu, C.; Ho, H.C. Characterising spatiotemporal dynamics of anthropogenic heat fluxes: A 20-year case study in Beijing–Tianjin–Hebei region in China. Environ. Pollut. 2019, 249, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.D.; Kant, Y.; Mitra, D. Assessment of land surface temperature and heat fluxes over Delhi using remote sensing data. J. Environ. Manag. 2015, 148, 143–152. [Google Scholar] [CrossRef]
- Deadman, P.; Brown, R.D.; Gimblett, H.R. Modelling Rural Residential Settlement Patterns with Cellular Automata. J. Environ. Manag. 1993, 37, 147–160. [Google Scholar] [CrossRef]
- Mohajerani, A.; Bakaric, J.; Jeffrey-Bailey, T. The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. J. Environ. Manag. 2017, 197, 522–538. [Google Scholar] [CrossRef]
- Gaur, A.; Eichenbaum, M.K.; Simonovic, S.P. Analysis and modelling of surface Urban Heat Island in 20 Canadian cities under climate and land-cover change. J. Environ. Manag. 2018, 206, 145–157. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. The COVID-19 epidemic. Trop. Med. Int. Health 2020, 25, 278. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Das, A.; Mandal, A. Research note: Ecosystem Health (EH) assessment of a rapidly urbanising metropolitan city region of eastern India–A study on Kolkata Metropolitan Area. Landsc. Urban Plan. 2020, 204, 103938. [Google Scholar] [CrossRef]
- Das, M.; Das, A.; Pereira, P.; Mandal, A. Exploring the spatio-temporal dynamics of ecosystem health: A study on a rapidly urbanising metropolitan area of Lower Gangetic Plain, India. Ecol. Indic. 2021, 125, 107584. [Google Scholar] [CrossRef]
- Subbaraman, R.; Nathavitharana, R.R.; Mayer, K.H.; Satyanarayana, S.; Chadha, V.K.; Arinaminpathy, N.; Pai, M. Constructing care cascades for active tuberculosis: A strategy for program monitoring and identifying gaps in quality of care. PLoS Med. 2019, 16, e1002754. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Wu, G. Rapid urbanisation and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Singh, R.P.; Chauhan, A. Impact of lockdown on air quality in India during COVID-19 pandemic. Air Qual. Atmos. Health 2020, 13, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Zhang, M.; Anshika; Gao, J.; Zhang, H.; Kota, S.H. Effect of restricted emissions during COVID-19 on air quality in India. Sci. Total Environ. 2020, 728, 138878. [Google Scholar] [CrossRef] [PubMed]
- Singhal, S.; Matto, M. COVID-19 Lockdown: A Ventilator for Rivers. 2020. Available online: https://www.downtoearth.org.in/blog/covid-19-lockdown-a-ventilator-for-rivers-70771 (accessed on 16 August 2021).
- Somani, M.; Srivastava, A.N.; Gummadivalli, S.K.; Sharma, A. Indirect implications of COVID-19 towards sustainable environment: An investigation in Indian context. Bioresour. Technol. Rep. 2020, 11, 100491. [Google Scholar] [CrossRef]
- Terry, C.; Rothendler, M.; Zipf, L.; Dietze, M.C.; Primack, R.B. Effects of the COVID-19 pandemic on noise pollution in three protected areas in metropolitan Boston (USA). Biol. Conserv. 2021, 256, 109039. [Google Scholar] [CrossRef]
- Gandhiok, J.; Ibra, M. COVID-19: Noise Pollution Falls as Lockdown Rings in Sound of Salience. 2020. Available online: https://timesofindia.indiatimes.com/india/covid-19-noise-pollution-falls-as-lockdown-rings-in-sound-of-silence/articleshow/75309318.cms (accessed on 30 August 2021).
- Kundu, C. Has the Covid-19 Lockdown Returned Dolphins and Swans to ITALIAN Waterways? The India Today. 2020. Available online: https://www.indiatoday.in/fact-check/story/has-covid19-lockdown-returned-dolphins-swans-italian-waterways-1658457-2020-03-22 (accessed on 30 August 2021).
- Rahman, M. Rare Dolphin Sighting as Cox’s Bazar Lockdown under COVID-19 Coronavirus. 2020. Available online: https://www.youtube.com/watch?v=gjw8ZllIlbQ (accessed on 30 August 2021).
- Firozjaei, M.K.; Fathololoumi, S.; Kiavarz, M.; Arsanjani, J.J.; Alavipanah, S.K. Modelling surface heat island intensity according to differences of biophysical characteristics: A case study of Amol city, Iran. Ecol. Indic. 2020, 109, 105816. [Google Scholar] [CrossRef]
- Majumdar, S.; Sivaramakrishnan, L. Mapping of Urban Growth Dynamics in Kolkata Metropolitan Area: A Geospatial Approach. In Terrorism Revisited; Springer: Berlin, Germany, 2020; pp. 9–24. [Google Scholar]
- Halder, B.; Banik, P.; Bandyopadhyay, J. Mapping and monitoring land dynamic due to urban expansion using geospatial techniques on South Kolkata. Saf. Extrem. Environ. 2021, 3, 27–42. [Google Scholar] [CrossRef]
- Mondal, B.; Dolui, G.; Pramanik, M.; Maity, S.; Biswas, S.S.; Pal, R. Urban expansion and wetland shrinkage estimation using a GIS-based model in the East Kolkata Wetland, India. Ecol. Indic. 2017, 83, 62–73. [Google Scholar] [CrossRef]
- Majumdar, S.; Sivaramakrishnan, L. Monitoring Urban Growth and Land Use Change Detection in The Southern Fringes of Kolkata Metropolitan Area. Indian Geogr. J. 2017, 92, 168–183. [Google Scholar]
- Majumdar, S.; Sivaramakrishnan, L. Patterns of Land Use in and Around Kolkata City: A Spatio-Temporal Analysis. Indian Cartogr. 2015, 35, 218–223. [Google Scholar]
- Shafia, A.; Gaurav, S.; Bharath, H.A. Urban growth modelling using Cellular Automata coupled with land cover indices for Kolkata Metropolitan region. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 169, p. 012090. [Google Scholar]
- Parihar, S.M.; Sarkar, S.; Dutta, A.; Sharma, S.; Dutta, T. Characterising wetland dynamics: A post-classification change detection analysis of the East Kolkata Wetlands using open source satellite data. Geocarto Int. 2013, 28, 273–287. [Google Scholar] [CrossRef]
- Rahaman, M.; Dutta, S.; Sahana, M.; Das, D.N. Analysing Urban Sprawl and Spatial Expansion of Kolkata Urban Agglomeration Using Geospatial Approach. In Applications and Challenges of Geospatial Technology; Springer: Berlin, Germany, 2019; pp. 205–221. [Google Scholar]
- Dinda, S.; Das Chatterjee, N.; Ghosh, S. An integrated simulation approach to the assessment of urban growth pattern and loss in urban green space in Kolkata, India: A GIS-based analysis. Ecol. Indic. 2021, 121, 107178. [Google Scholar] [CrossRef]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S.C. Impacts of urbanisation on land use/cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Li, X.; Mitra, C.; Marzen, L.; Yang, Q. Spatial and Temporal Patterns of Wetland Cover Changes in East Kolkata Wetlands, India from 1972 to 2011. Int. J. Appl. Geospat. Res. 2016, 7, 1–13. [Google Scholar] [CrossRef]
- Ghosh, S.; Singh, P.; Kumari, M. Assessment of Urban Sprawl and Land Use Change Dynamics, Using Remote Sensing Technique: A Study of Kolkata and Surrounding Periphery; WB, India. 2014. Available online: https://www.researchgate.net/profile/Sukanya-Ghosh-5/publication/321125830_ASSESSMENT_OF_URBAN_SPRAWL_AND_LAND_USE_CHANGE_DYNAMICS_USING_REMOTE_SENSING_TECHNIQUE_A_STUDY_OF_KOLKATA_AND_SURROUNDING_PERIPHERY_WB_INDIA/links/5a1e47e3458515a4c3d1deaa/ASSESSMENT-OF-URBAN-SPRAWL-AND-LAND-USE-CHANGE-DYNAMICS-USING-REMOTE-SENSING-TECHNIQUE-A-STUDY-OF-KOLKATA-AND-SURROUNDING-PERIPHERY-WB-INDIA.pdf (accessed on 16 August 2021).
- Mandal, J.; Ghosh, N.; Mukhopadhyay, A. Urban growth dynamics and changing land-use land-cover of megacity Kolkata and its environs. J. Indian Soc. Remote Sens. 2019, 47, 1707–1725. [Google Scholar] [CrossRef]
Year | Lockdown Phase | Month | Dateof Acquisition | Image ID | Sensor | Resolution (m) | Source | |
---|---|---|---|---|---|---|---|---|
Non Pandemic year | 2019 | Same period during Prelockdown (Phase I) | January | 30 January 2019 | LC08_L2SP_138044_20190130_20200829_02_T1 | LANDSAT8 OLI (Operational LandImager) | 30 | USGS (https://earthexplorer.usgs.gov/) acessed on 26 August 2021 |
February | 15 February 2019 | LC08_L2SP_138044_20190215_20200829_02_T1 | ||||||
Same period during lockdown (Phase II) | April | 20 April 2019 | LC08_L2SP_138044_20190420_20200828_02_T1 | |||||
Same period during after lockdown (Phase III) | November | 14 November 2019 | LC08_L2SP_138044_20191114_20200825_02_T1 | |||||
December | 16 December 2019 | LC08_L2SP_138044_20191216_20201023_02_T1 | ||||||
Pandemic year | 2020 | Prelockdown (Phase I) | January | 17 January 2020 | LC08_L2SP_138044_20200117_20200823_02_T1 | |||
February | 18 February 2020 | LC08_L2SP_138044_20200218_20200823_02_T1 | ||||||
During lockdown (Phase II) | April | 6 April 2020 | LC08_L2SP_138044_20200406_20200822_02_T1 | |||||
After lockdown (Phase III) | November | 16 November 2020 | LC08_L2SP_138044_20201116_20210315_02_T1 | |||||
December | 18 December 2020 | LC08_L2SP_138044_20201218_20210309_02_T1 |
Parameters | Ecological Significance | Equation | Reference |
---|---|---|---|
(a) LST | Heat | [46,47] | |
(b) NDVI | Greenness | [43,8] | |
(c) NDSI | Dryness | [44,45] | |
(d) Wetnessderivedfrom TCT | Wetness | [48,49] |
Year | Indices | PI | PII | PIII | Mean | CV |
---|---|---|---|---|---|---|
2019 | LST (°C) | 58 | 64.91 | 59.3 | 60.74 | 0.060 |
NDVI | 0.14 | 0.19 | 0.2 | 0.18 | 0.107 | |
NDSI | 0.51 | 0.26 | 0.35 | 0.37 | 0.703 | |
Wetness | 0.24 | 0.16 | 0.22 | 0.21 | 0.198 | |
2020 | LST (°C) | 58.15 | 64.27 | 56.03 | 59.48 | 0.072 |
NDVI | 0.16 | 0.22 | 0.21 | 0.20 | 0.161 | |
NDSI | 0.41 | 0.22 | 0.33 | 0.32 | 0.298 | |
Wetness | 0.25 | 0.21 | 0.22 | 0.23 | 0.091 |
Year | PI | PII | PIII | Mean | CV |
---|---|---|---|---|---|
2019 | 0.59 | 0.41 | 0.48 | 0.49 | 0.184 |
2020 | 0.38 | 0.31 | 0.33 | 0.34 | 0.106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, M.; Das, A.; Pereira, P.; Mandal, A. Mapping the Impact of COVID-19 Lockdown on Urban Surface Ecological Status (USES): A Case Study of Kolkata Metropolitan Area (KMA), India. Remote Sens. 2021, 13, 4395. https://doi.org/10.3390/rs13214395
Das M, Das A, Pereira P, Mandal A. Mapping the Impact of COVID-19 Lockdown on Urban Surface Ecological Status (USES): A Case Study of Kolkata Metropolitan Area (KMA), India. Remote Sensing. 2021; 13(21):4395. https://doi.org/10.3390/rs13214395
Chicago/Turabian StyleDas, Manob, Arijit Das, Paulo Pereira, and Asish Mandal. 2021. "Mapping the Impact of COVID-19 Lockdown on Urban Surface Ecological Status (USES): A Case Study of Kolkata Metropolitan Area (KMA), India" Remote Sensing 13, no. 21: 4395. https://doi.org/10.3390/rs13214395
APA StyleDas, M., Das, A., Pereira, P., & Mandal, A. (2021). Mapping the Impact of COVID-19 Lockdown on Urban Surface Ecological Status (USES): A Case Study of Kolkata Metropolitan Area (KMA), India. Remote Sensing, 13(21), 4395. https://doi.org/10.3390/rs13214395