Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations
Abstract
:1. Introduction
2. Study Area
3. Data
3.1. Field Data
3.2. Sentinel-1 Time Series
4. Methods
4.1. Backscattering Detection Method
- (1)
- The value needs to be larger than the previous value and the next value :
- (2)
- The amplitude of the changes, expressed as per cent increase and decrease :
4.2. Coherence Jump Detection Methods
4.3. Method Calibration, Evaluation and Validation
5. Results
5.1. Method Calibration
5.2. Robustness to Confounding Factors
5.3. Parcel-Based Validation
6. Discussion
6.1. Mowing Detection Methods
6.2. Limitations
6.3. Reference Data and Quality Metrics
6.4. Potential and Prospects
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EUNIS | European nature information system |
GRD | Ground range detected |
InSAR | Interferometric SAR |
LPIS | Land parcel identification system |
MCC | Matthews correlation coefficient |
NDVI | Normalised difference vegetation index |
OA | Overall accuracy |
SAR | Synthetic aperture radar |
SLC | Single look complex |
UAA | Utilised agricultural area |
Appendix A
References
- Hansen, M.C.; Defries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Arino, O.; Ramos Perez, J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009 (GlobCover 2009); © European Space Agency (ESA) and Université catholique de Louvain (UCL), PANGAEA: Louvain-la-Neuve, Belgium, 2012. [Google Scholar] [CrossRef]
- Tsendbazar, N.; Herold, M.; Mayaux, P.; Achard, F.; Kirches, G.; Brockmann, C.; Boettcher, M.; Lamarche, C.; Bontemps, S.; Defourny, P. CCI Land Cover Product Validation and Inter-comparison Report; Technical Report; UCL-Geomatics: Louvain-la-Neuve, Belgium, 2014. [Google Scholar]
- Allan, E.; Bossdorf, O.; Dormann, C.F.; Prati, D.; Gossner, M.M.; Tscharntke, T.; Blüthgen, N.; Bellach, M.; Birkhofer, K.; Boch, S.; et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl. Acad. Sci. USA 2014, 111, 308–313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleijn, D.; Kohler, F.; Báldi, A.; Batáry, P.; Concepción, E.D.; Clough, Y.; Díaz, M.; Gabriel, D.; Holzschuh, A.; Knop, E.; et al. On the relationship between farmland biodiversity and land-use intensity in Europe. Proc. R. Soc. B Biol. Sci. 2009, 276, 903–909. [Google Scholar] [CrossRef] [PubMed]
- Uematsu, Y.; Koga, T.; Mitsuhashi, H.; Ushimaru, A. Abandonment and intensified use of agricultural land decrease habitats of rare herbs in semi-natural grasslands. Agric. Ecosyst. Environ. 2010, 135, 304–309. [Google Scholar] [CrossRef]
- Zlinszky, A.; Schroiff, A.; Kania, A.; Deák, B.; Mücke, W.; Vári, A.; Székely, B.; Pfeifer, N. Categorizing Grassland Vegetation with Full-Waveform Airborne Laser Scanning: A Feasibility Study for Detecting Natura 2000 Habitat Types. Remote Sens. 2014, 6, 8056–8087. [Google Scholar] [CrossRef] [Green Version]
- Horn, D.J.; Koford, R.R. Relation of Grassland Bird Abundance to Mowing of Conservation Reserve Program Fields in North Dakota. Wildl. Soc. Bull. 2000, 28, 653–659. [Google Scholar]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Asam, S.; Klein, D.; Dech, S. Estimation of grassland use intensities based on high spatial resolution LAI time series. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2015, XL-7/W3, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Dusseux, P.; Vertès, F.; Corpetti, T.; Corgne, S.; Hubert-Moy, L. Agricultural practices in grasslands detected by spatial remote sensing. Environ. Monit. Assess. 2014, 186, 8249–8265. [Google Scholar] [CrossRef]
- Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. [Google Scholar] [CrossRef]
- Gómez Giménez, M.; de Jong, R.; Della Peruta, R.; Keller, A.; Schaepman, M.E. Determination of grassland use intensity based on multi-temporal remote sensing data and ecological indicators. Remote Sens. Environ. 2017, 198, 126–139. [Google Scholar] [CrossRef]
- Estel, S.; Mader, S.; Levers, C.; Verburg, P.H.; Baumann, M.; Kuemmerle, T. Combining satellite data and agricultural statistics to map grassland management intensity in Europe. Environ. Res. Lett. 2018, 13, 074020. [Google Scholar] [CrossRef]
- Zheng, J.; Li, F.; Du, X. Using Red Edge Position Shift to Monitor Grassland Grazing Intensity in Inner Mongolia. J. Indian Soc. Remote Sens. 2018, 46, 81–88. [Google Scholar] [CrossRef]
- Kolecka, N.; Ginzler, C.; Pazur, R.; Price, B.; Verburg, P.H. Regional Scale Mapping of Grassland Mowing Frequency with Sentinel-2 Time Series. Remote Sens. 2018, 10, 1221. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, P.; Nendel, C.; Pickert, J.; Hostert, P. Towards national-scale characterization of grassland use intensity from integrated Sentinel-2 and Landsat time series. Remote Sens. Environ. 2020, 238, 111124. [Google Scholar] [CrossRef]
- Sano, E.E.; Ferreira, L.G.; Asner, G.P.; Steinke, E.T. Spatial and temporal probabilities of obtaining cloud-free Landsat images over the Brazilian tropical savanna. Int. J. Remote Sens. 2007, 28, 2739–2752. [Google Scholar] [CrossRef]
- Howison, R.A.; Piersma, T.; Kentie, R.; Hooijmeijer, J.C.E.W.; Olff, H. Quantifying landscape-level land-use intensity patterns through radar-based remote sensing. J. Appl. Ecol. 2018, 55, 1276–1287. [Google Scholar] [CrossRef] [Green Version]
- Jacob, A.W.; Vicente-Guijalba, F.; Lopez-Martinez, C.; Lopez-Sanchez, J.M.; Litzinger, M.; Kristen, H.; Mestre-Quereda, A.; Ziółkowski, D.; Lavalle, M.; Notarnicola, C.; et al. Sentinel-1 InSAR Coherence for Land Cover Mapping: A Comparison of Multiple Feature-Based Classifiers. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 535–552. [Google Scholar] [CrossRef] [Green Version]
- Shang, J.; Liu, J.; Poncos, V.; Geng, X.; Qian, B.; Chen, Q.; Dong, T.; Macdonald, D.; Martin, T.; Kovacs, J.; et al. Detection of Crop Seeding and Harvest through Analysis of Time-Series Sentinel-1 Interferometric SAR Data. Remote Sens. 2020, 12, 1551. [Google Scholar] [CrossRef]
- Tampuu, T.; Praks, J.; Uiboupin, R.; Kull, A. Long Term Interferometric Temporal Coherence and DInSAR Phase in Northern Peatlands. Remote Sens. 2020, 12, 1566. [Google Scholar] [CrossRef]
- Schuster, C.; Ali, I.; Lohmann, P.; Frick, A.; Förster, M.; Kleinschmit, B. Towards Detecting Swath Events in TerraSAR-X Time Series to Establish NATURA 2000 Grassland Habitat Swath Management as Monitoring Parameter. Remote Sens. 2011, 3, 1308–1322. [Google Scholar] [CrossRef] [Green Version]
- Curnel, Y. Satellite Remote Sensing Priorities for Better Assimilation in Crop Growth Models: Winter Wheat LAI and Grassland Mowing Dates Case Studies. Ph.D. Thesis, UCL-Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 2015. [Google Scholar]
- Taravat, A.; Wagner, M.P.; Oppelt, N. Automatic Grassland Cutting Status Detection in the Context of Spatiotemporal Sentinel-1 Imagery Analysis and Artificial Neural Networks. Remote Sens. 2019, 11, 711. [Google Scholar] [CrossRef] [Green Version]
- Morishita, Y.; Hanssen, R.F. Temporal decorrelation in L-, C-, and X-band satellite radar interferometry for pasture on drained peat soils. IEEE Trans. Geosci. Remote Sens. 2014, 53, 1096–1104. [Google Scholar] [CrossRef]
- Monti-Guarnieri, A.; Manzoni, M.; Giudici, D.; Recchia, A.; Tebaldini, S. Vegetated target decorrelation in SAR and interferometry: Models, simulation, and performance evaluation. Remote Sens. 2020, 12, 2545. [Google Scholar] [CrossRef]
- Voormansik, K.; Zalite, K.; Sünter, I.; Tamm, T.; Koppel, K.; Verro, T.; Brauns, A.; Jakovels, D.; Praks, J. Separability of Mowing and Ploughing Events on Short Temporal Baseline Sentinel-1 Coherence Time Series. Remote Sens. 2020, 12, 3784. [Google Scholar] [CrossRef]
- Zalite, K.; Antropov, O.; Praks, J.; Voormansik, K.; Noorma, M. Monitoring of Agricultural Grasslands With Time Series of X-Band Repeat-Pass Interferometric SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3687–3697. [Google Scholar] [CrossRef]
- Tamm, T.; Zalite, K.; Voormansik, K.; Talgre, L. Relating Sentinel-1 Interferometric Coherence to Mowing Events on Grasslands. Remote Sens. 2016, 8, 802. [Google Scholar] [CrossRef] [Green Version]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Statbel (Direction générale Statistique—Statistics Belgium). Service Public Fédéral Economie, P.M.E., Classes moyennes et Energie. In Chiffres clés de l’agriculture 2020; Statbel (Direction générale Statistique—Statistics Belgium): Brussels, Belgium, 2020. [Google Scholar]
- Milionis, N. The Land Parcel Identification System: A Useful Tool to Determine the Eligibility of Agricultural Land—But Its Management Could Be Further Improved; Special Report 25; European Court of Auditors: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Statbel (Direction générale Statistique—Statistics Belgium). Service Public Fédéral Economie, P.M.E., Classes Moyennes et Energie. In Chiffres clés de l’agriculture 2015; Statbel (Direction générale Statistique—Statistics Belgium): Brussels, Belgium, 2015. [Google Scholar]
- Les prairies et les pelouses (E)—Biotopes—La Biodiversité en Wallonie. Available online: Http://biodiversite.wallonie.be/fr/prairies-et-pelouses-e.html?IDC=815 (accessed on 19 January 2021).
- Lee, J.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle filtering of synthetic aperture radar images: A Review. Remote Sens. Rev. 1994, 8. [Google Scholar] [CrossRef]
- Bargiel, D.; Herrmann, S.; Lohmann, P.; Sörgel, U. Land use classification with high-resolution satellite radar for estimating the impacts of land use change on the quality of ecosystem services. In 100 Years ISPRS Advancing Remote Sensing Science, Pt 1; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences: Beijing, China, 2010; Volume 38, pp. 68–73. [Google Scholar] [CrossRef]
- Matthews, B.W. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta (BBA)-Protein Struct. 1975, 405, 442–451. [Google Scholar] [CrossRef]
- Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 2017, 12, e0177678. [Google Scholar] [CrossRef] [PubMed]
- Waldner, F.; Diakogiannis, F.I. Deep learning on edge: Extracting field boundaries from satellite images with a convolutional neural network. Remote Sens. Environ. 2020, 245, 111741. [Google Scholar] [CrossRef]
Input | Per Cent Increase Threshold % | Ratio (/) | |
---|---|---|---|
Backscattering (): VV, VH, ratio | 2; 5; 10; 15; 20; 25 | 1/4; 1/2; 3/4; 1 | |
Input | Smoothing | Window Size () | Detection Threshold Parameter |
Coherence: cohVV; cohVH; cohVVVH | Mean shift | 7; 9; 11 | Absolute (a.t) k = {0.5, 0.25, 0.1, 0.075, 0.05, 0.025, 0.01, 0.005, 0.0025}; |
Linear regression | 3; 4; 5; 6 | Relative (r.t.) = {0.0005, 0.001, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2, 0.4} | |
Two means | 8; 10 | p-value = {0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.25, 0.5, 0.75} |
Ideal | Small | Slope Dir | Narrow | Non Ideal | All | |
---|---|---|---|---|---|---|
n | 590 | 430 | 770 | 330 | 1470 | 2200 |
cohVH mean shift (d = 9) r.t. ( = 0.001) | ||||||
Pre | 78 | 50 | 53 | 13 | 47 | 57 |
Sen | 27 | 8 | 20 | 8 | 18 | 22 |
cohVH linear reg. (d = 5) r.t. ( = 0.0005) | ||||||
Pre | 60 | 63 | 59 | 33 | 51 | 54 |
Sen | 35 | 21 | 31 | 15 | 23 | 25 |
cohVV mean shift (d = 11) a.t. (k = 0.025) | ||||||
Pre | 48 | 35 | 44 | 25 | 40 | 42 |
Sen | 69 | 63 | 59 | 31 | 47 | 53 |
cohVV linear reg. (d = 6) r.t. ( = 0.005) | ||||||
Pre | 38 | 32 | 44 | 32 | 39 | 39 |
Sen | 69 | 42 | 57 | 46 | 49 | 54 |
cohVVVH linear reg. (d = 5) a.t. (k = 0.1) | ||||||
Pre | 42 | 32 | 44 | 26 | 38 | 38 |
Sen | 54 | 63 | 45 | 46 | 43 | 45 |
cohVVVH linear reg. (d = 6) r.t. ( = 0.005) | ||||||
Pre | 34 | 46 | 49 | 30 | 44 | 41 |
Sen | 69 | 50 | 67 | 46 | 59 | 61 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Vroey, M.; Radoux, J.; Defourny, P. Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations. Remote Sens. 2021, 13, 348. https://doi.org/10.3390/rs13030348
De Vroey M, Radoux J, Defourny P. Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations. Remote Sensing. 2021; 13(3):348. https://doi.org/10.3390/rs13030348
Chicago/Turabian StyleDe Vroey, Mathilde, Julien Radoux, and Pierre Defourny. 2021. "Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations" Remote Sensing 13, no. 3: 348. https://doi.org/10.3390/rs13030348
APA StyleDe Vroey, M., Radoux, J., & Defourny, P. (2021). Grassland Mowing Detection Using Sentinel-1 Time Series: Potential and Limitations. Remote Sensing, 13(3), 348. https://doi.org/10.3390/rs13030348