A Response of Snow Cover to the Climate in the Northwest Himalaya (NWH) Using Satellite Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. MODIS Snow Product
2.3. Meteorological Data
2.4. Digital Elevation Model (DEM) Analysis
2.5. Snow Cover Area (SCA)
2.6. Snow Cover Frequency (SCF)
2.7. Statistical Analysis Methods
2.7.1. Modified Mann-Kendall Test
2.7.2. Spearman’s Correlation Method
3. Results
3.1. SCA Analysis
3.2. Trend Analysis
3.2.1. SCA Trend Analysis
3.2.2. Temperature Trend Analysis
3.2.3. Precipitation Trend Analysis
3.3. Association of SCA with Climate Variables
3.4. Snow Cover Frequency (SCF) Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Annual | Pre-Monsoon | Monsoon | Post-Monsoon | Winter | |
---|---|---|---|---|---|
ERA5 | −0.708 * p < 0.001 | −0.608 * p = 0.004 | −0.681 * p < 0.001 | −0.559 * p = 0.01 | −0.632 * p = 0.002 |
MODIS | −0.81 * p < 0.001 | −0.80 * p < 0.001 | −0.45 * p = 0.043 | −0.73 * p < 0.001 | −0.56 * p = 0.01 |
Annual | Pre-Monsoon | Monsoon | Post-Monsoon | Winter | |
---|---|---|---|---|---|
CHIRPS | 0.47 * p = 0.03 | 0.41 p = 0.07 | 0.31 p = 0.17 | 0.74 * p < 0.001 | 0.22 p = 0.35 |
PERSIANN-CDR | 0.42 p = 0.06 | 0.42 p = 0.066 | 0.19 p = 0.23 | 0.65 * p < 0.001 | 0.45 * p = 0.042 |
References
- Chen, X.; Long, D.; Liang, S.; He, L.; Zeng, C.; Hao, X.; Hong, Y. Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sens. Environ. 2018, 215, 284–299. [Google Scholar] [CrossRef]
- Sicart, J.E.; Pomeroy, J.W.; Essery, R.L.H.; Bewley, D. Incoming longwave radiation to melting snow: Observations, sensitivity and estimation in Northern environments. Hydrol. Process. 2006, 20, 3697–3708. [Google Scholar] [CrossRef]
- Brown, R.D. Northern Hemisphere snow cover variability and change, 1915–97. J. Clim. 2000, 13, 2339–2355. [Google Scholar] [CrossRef]
- Heinilä, K.; Salminen, M.; Metsämäki, S.; Pellikka, P.; Koponen, S.; Pulliainen, J. Reflectance variation in boreal landscape during the snow melting period using airborne imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 66–76. [Google Scholar] [CrossRef]
- Yu, L.; Liu, T.; Zhang, S. Temporal and spatial changes in snow cover and the corresponding radiative forcing analysis in Siberia from the 1970s to the 2010s. Adv. Meteorol. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Snowmelt runoff modelling in a Himalayan basin with the aid of satellite data. Int. J. Remote Sens. 2010, 31, 6603–6618. [Google Scholar] [CrossRef]
- Jain, S.K.; Goswami, A.; Saraf, A.K. Accuracy assessment of MODIS, NOAA and IRS data in snow cover mapping under Himalayan conditions. Int. J. Remote Sens. 2008, 29, 5863–5878. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- McGowan, H.; Callow, J.N.; Soderholm, J.; McGrath, G.; Campbell, M.; Zhao, J. xin Global warming in the context of 2000 years of Australian alpine temperature and snow cover. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef]
- Singh, S.K.; Rathore, B.P.; Bahuguna, I.M. Ajai Snow cover variability in the Himalayan-Tibetan region. Int. J. Climatol. 2014, 34, 446–452. [Google Scholar] [CrossRef]
- Negi, H.S.; Kanda, N.; Shekhar, M.S.; Ganju, A. Recent wintertime climatic variability over the North West Himalayan cryosphere. Curr. Sci. 2018, 114, 760–770. [Google Scholar] [CrossRef]
- Kohler, T.; Giger, M.; Hurni, H.; Ott, C.; Wiesmann, U.; Von Dach, S.W.; Maselli, D. Mountains and climate change: A global concern. Mt. Res. Dev. 2010, 30, 53–55. [Google Scholar] [CrossRef] [Green Version]
- Pepin, N.; Bradley, R.S.; Diaz, H.F.; Baraer, M.; Caceres, E.B.; Forsythe, N.; Fowler, H.; Greenwood, G.; Hashmi, M.Z.; Liu, X.D.; et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 2015, 5, 424–430. [Google Scholar] [CrossRef] [Green Version]
- Hosaka, M.; Nohara, D.; Kitoh, A. Changes in Snow Cover and Snow Water Equivalent Due to Global Warming Simulated by a 20km-mesh Global Atmospheric Model. Sola 2005, 1, 93–96. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.K.; Gusain, H.S.; Mishra, V.; Gupta, N. Snow cover variability in North-West Himalaya during last decade. Arab. J. Geosci. 2018, 11, 1–12. [Google Scholar] [CrossRef]
- Kropacek, J.; Feng, C.; Alle, M.; Kang, S.; Hochschild, V. Temporal and spatial aspects of snow distribution in the Nam Co Basin on the Tibetan Plateau from MODIS data. Remote Sens. 2010, 2, 2700–2712. [Google Scholar] [CrossRef] [Green Version]
- Brown, R.D.; Mote, P.W. The response of Northern Hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Shafiq, M.; Ahmed, P.; Islam, Z.; Joshi, P.K.; Bhat, W.A. Snow cover area change and its relations with climatic variability in Kashmir Himalayas, India. Geocarto Int. 2019, 34, 688–702. [Google Scholar] [CrossRef]
- Bednorz, E. Snow cover in eastern Europe in relation to temperature, precipitation and circulation. Int. J. Climatol. 2004, 24, 591–601. [Google Scholar] [CrossRef]
- Li, Q.; Ma, M.; Wu, X.; Yang, H. Snow Cover and Vegetation-Induced Decrease in Global Albedo From 2002 to 2016. J. Geophys. Res. Atmos. 2018, 123, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Shaman, J.; Tziperman, E. The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the south Asian monsoons. J. Clim. 2005, 18, 2067–2079. [Google Scholar] [CrossRef]
- Summary for Policymakers. In Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (Ed.) Cambridge University Press: Cambridge, UK, 2014; pp. 1–30. ISBN 9781107057999. [Google Scholar]
- Sospedra-Alfonso, R.; Merryfield, W.J. Influences of Temperature and Precipitation on Historical and Future Snowpack Variability over the Northern Hemisphere in the Second Generation Canadian Earth System Model. J. Clim. 2017, 30, 4633–4656. [Google Scholar] [CrossRef]
- Lemke, P.; Ren, J.F.; Allison, I.; Carrasco, J.F. Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D.M., Manning, Z., Chen, M., Marquis, K.B., Tignor, A.M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Rasterling, D.; Klein, T.A.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and atmospheric climate change. Changes 2007, 164, 235–336. [Google Scholar] [CrossRef] [Green Version]
- Bhutiyani, M.R.; Kale, V.S.; Pawar, N.J. Long-term trends in maximum, minimum and mean annual air temperatures across the Northwestern Himalaya during the twentieth century. Clim. Chang. 2007, 85, 159–177. [Google Scholar] [CrossRef]
- Shekhar, M.S.; Chand, H.; Kumar, S.; Srinivasan, K.; Ganju, A. Climate-change studies in the western Himalaya. Ann. Glaciol. 2010, 51, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Maskey, S.; Uhlenbrook, S.; Ojha, S. An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data. Clim. Chang. 2011, 108, 391–400. [Google Scholar] [CrossRef]
- Mir, R.A.; Jain, S.K.; Saraf, A.K.; Goswami, A. Decline in snowfall in response to temperature in Satluj basin, western Himalaya. J. Earth Syst. Sci. 2015, 124, 365–382. [Google Scholar] [CrossRef] [Green Version]
- Sharma, V.; Mishra, V.D.; Joshi, P.K. Snow cover variation and streamflow simulation in a snow-fed river basin of the Northwest Himalaya. J. Mt. Sci. 2012, 9, 853–868. [Google Scholar] [CrossRef]
- Sharma, V.; Mishra, V.D.; Joshi, P.K. Topographic controls on spatio-temporal snow cover distribution in Northwest Himalaya. Int. J. Remote Sens. 2014, 35, 3036–3056. [Google Scholar] [CrossRef]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Ashraf, M.; Bhatti, M.T. Snow cover trend and hydrological characteristics of the Astore River basin (Western Himalayas) and its comparison to the Hunza basin (Karakoram region). Sci. Total Environ. 2015, 505, 748–761. [Google Scholar] [CrossRef]
- Kour, R.; Patel, N.; Krishna, A.P. Assessment of temporal dynamics of snow cover and its validation with hydro-meteorological data in parts of Chenab Basin, western Himalayas. Sci. China Earth Sci. 2016, 59, 1081–1094. [Google Scholar] [CrossRef]
- Snehmani; Dharpure, J.K.; Kochhar, I.; Ram, R.P.H.; Ganju, A. Analysis of snow cover and climatic variability in Bhaga basin located in western Himalaya. Geocarto Int. 2016, 31, 1094–1107. [Google Scholar] [CrossRef]
- Sharma, S.; Harshit, R.J.; Dhyani, P. Climate Change & North-West Himalaya: Prioritization of Agriculture Based Livelihood Action; G.B. Pant National Institute of Himalayan Environment & Sustainable Development: Almora, India, 2018; p. 27. [Google Scholar]
- Kulkarni, A.V.; Rathore, B.P.; Singh, S.K. Ajai Distribution of seasonal snow cover in central and western Himalaya. Ann. Glaciol. 2010, 51, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Kripalani, R.H.; Kulkarni, A.; Sabade, S.S. Western Himalayan snow cover and Indian monsoon rainfall: A re-examination with INSAT and NCEP/NCAR data. Theor. Appl. Climatol. 2003, 74, 1–18. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; de Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- Rathore, B.P.; Bahuguna, I.M.; Singh, S.K.; Brahmbhatt, R.M.; Randhawa, S.S.; Jani, P.; Yadav, S.K.S.; Rajawat, A.S. Trends of snow cover in Western and West-Central Himalayas during 2004–2014. Curr. Sci. 2018, 114, 800–807. [Google Scholar] [CrossRef]
- Nikam, B.R.; Garg, V.; Gupta, P.; Thakur, P.K.; Aggarwal, S.P.; Kumar, A.S. A Preliminary Assessment Report on Assessment of Long-Term and Current Status (2016–2017) of Snow Cover Area in North Western Himalayan River Basins using Remote Sensing Indian Institute of Remote Sensing ISRO, DoS; Govt. of India: Dehradun, India, 2017. [Google Scholar]
- Kaur, R.; Kulkarni, A.V.; Chaudhary, B.S. Using RESOURCESAT-1 data for determination of snow cover and snowline altitude, Baspa Basin, India. Ann. Glaciol. 2010, 51, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yan, S.; Lu, Y. Snow cover monitoring using MODIS data in liaoning province, Northeastern China. Remote Sens. 2010, 2, 777–793. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Hagolle, O.; Huc, M.; Jarlan, L.; Dejoux, J.F.; Szczypta, C.; Marti, R.; Sánchez, R. A snow cover climatology for the Pyrenees from MODIS snow products. Hydrol. Earth Syst. Sci. 2015, 19, 2337–2351. [Google Scholar] [CrossRef] [Green Version]
- Dietz, A.J.; Kuenzer, C.; Gessner, U.; Dech, S. Remote sensing of snow—A review of available methods. Int. J. Remote Sens. 2012, 33, 4094–4134. [Google Scholar] [CrossRef]
- Riggs, G.; Hall, D.; Salomonson, V. MODIS snow products user guide to collection 5. Digit. Media 2006, 6, 1–80. [Google Scholar]
- Parajka, J.; Blöschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Tang, B.H.; Shrestha, B.; Li, Z.L.; Liu, G.; Ouyang, H.; Gurung, D.R.; Giriraj, A.; Aung, K.S. Determination of snow cover from MODIS data for the Tibetan Plateau region. Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 356–365. [Google Scholar] [CrossRef]
- Klein, A.G.; Barnett, A.C. Validation of daily MODIS snow cover maps of the Upper Rio Grande River Basin for the 2000–2001 snow year. Remote Sens. Environ. 2003, 86, 162–176. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Barton, J.S. MODIS Snow and Sea Ice-Mapping Algorithms. Modis Atbd. 2001. Available online: https://modis-snow-ice.gsfc.nasa.gov/?c=atbd (accessed on 5 September 2001).
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Digirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.; Riggs, G.; DiGirolamo, N.; Román, M. MODIS Cloud-Gap Filled Snow-Cover Products: Advantages and Uncertainties. Hydrol. Earth Syst. Sci. Discuss. 2019, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Thapa, A.; Muhammad, S. Contemporary snow changes in the karakoram region attributed to improved modis data between 2003 and 2018. Water 2020, 12, 2681. [Google Scholar] [CrossRef]
- Nolin, A.W.; Liang, S. Progress in bidirectional reflectance modeling and applications for surface particulate media: Snow and soils. Remote Sens. Rev. 2000, 18, 307–342. [Google Scholar] [CrossRef]
- Chu, D. Spatiotemporal variability of snow cover on Tibet, China using MODIS remote-sensing data. Int. J. Remote Sens. 2018, 39, 6784–6804. [Google Scholar] [CrossRef]
- Negi, H.S.; Thakur, N.K.; Mishra, V.D. Estimation and validation of snow surface temperature using modis data for snow-avalanche studies in NW-Himalaya. J. Indian Soc. Remote Sens. 2007, 35, 287. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, A.; Chen, R.; Meadows, M.E.; Singh, R.B.; Mal, S.; Sengupta, D. An Analysis of Long-Term Rainfall Trends and Variability in the Uttarakhand Himalaya Using Google Earth Engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.A.; Marianetti, G.; Hinrichs, S. Validation of CHIRPS precipitation dataset along the Central Andes of Argentina. Atmos. Res. 2018, 213, 437–449. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef] [Green Version]
- Katsanos, D.; Retalis, A.; Michaelides, S. Validation of a high-resolution precipitation database (CHIRPS) over Cyprus for a 30-year period. Atmos. Res. 2016, 169, 459–464. [Google Scholar] [CrossRef]
- Hsu, J.; Huang, W.-R.; Liu, P.-Y.; Li, X. Validation of CHIRPS Precipitation Estimates over Taiwan at Multiple Timescales. Remote Sens. 2021, 13, 254. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Bari, S.H.; Rahman, M.T.U.; Hoque, M.A.; Hussain, M.M. Analysis of seasonal and annual rainfall trends in the northern region of Bangladesh. Atmos. Res. 2016, 176–177, 148–158. [Google Scholar] [CrossRef]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Shourov, M.M.; Mahmud, I. pyMannKendall: A python package for non parametric Mann Kendall family of trend tests. J. Open Source Softw. 2019, 4, 1556. [Google Scholar] [CrossRef]
- Thapa, S.; Li, B.; Fu, D.; Shi, X.; Tang, B.; Qi, H.; Wang, K. Trend analysis of climatic variables and their relation to snow cover and water availability in the Central Himalayas: A case study of Langtang Basin, Nepal. Theor. Appl. Climatol. 2020, 140, 891–903. [Google Scholar] [CrossRef]
- Alashan, S. Combination of modified Mann-Kendall method and Şen innovative trend analysis. Eng. Rep. 2020, 2, 1–13. [Google Scholar] [CrossRef]
- Sa’adi, Z.; Shahid, S.; Ismail, T.; Chung, E.S.; Wang, X.J. Trends analysis of rainfall and rainfall extremes in Sarawak, Malaysia using modified Mann–Kendall test. Meteorol. Atmos. Phys. 2019, 131, 263–277. [Google Scholar] [CrossRef]
- Reading, F.; Aspects, M. Spearman Rank Correlation Coefficient. Concise Encycl. Stat. 2008, 502–505. [Google Scholar] [CrossRef]
- Dharpure, J.K.; Patel, A.; Goswami, A.; Kulkarni, A.V. Snehmani Spatiotemporal snow cover characterization and its linkage with climate change over the Chenab river basin, western Himalayas. GIScience Remote Sens. 2020, 57, 882–906. [Google Scholar] [CrossRef]
- Krishnan, R.; Sanjay, J.; Gnanaseelan, C.; Mujumdar, M.; Kulkarni, A.; Chakraborty, S. Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of India; Springer: Singapore, 2020; ISBN 9789811543272. [Google Scholar] [CrossRef]
- Islam, Z.U.; Rao, L.A.K. Seasonal and annual rainfall trends: A perspective on climate change in Kashmir valley. Northwest. Himalayas. Nat. Chang. 2015, 2, 1–13. [Google Scholar]
- Shekhar, M.S.; Rao, N.N.; Bhan, S.C.; Singh, G.P. Winter precipitation climatology over Western Himalaya: Altitude and Range wise study. J. Indian Geophys. Union 2019, 21, 148–152. [Google Scholar]
- Kour, R.; Patel, N.; Krishna, A.P. Effects of terrain attributes on snow-cover dynamics in parts of Chenab basin, western Himalayas. Hydrol. Sci. J. 2016, 61, 1861–1876. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Shi, C.; Li, L.; Yang, Y.; Wu, J. Accuracy of CHIRPS satellite-rainfall products over mainland China. Remote Sens. 2018, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Li, Q.; Liou, K.-N.; Takano, Y.; Gu, Y.; Qi, L.; Mao, Y.; Leung, L.R. Black carbon radiative forcing over the Tibetan Plateau. Geophys. Res. Lett. 2014, 41, 7806–7813. [Google Scholar] [CrossRef]
- Gertler, C.G.; Puppala, S.P.; Panday, A.; Stumm, D.; Shea, J. Black carbon and the Himalayan cryosphere: A review. Atmos. Environ. 2016, 125, 404–417. [Google Scholar] [CrossRef]
- Panicker, A.S.; Sandeep, K.; Gautam, A.S.; Trimbake, H.K.; Nainwal, H.C.; Beig, G.; Bisht, D.S.; Das, S. Black carbon over a central Himalayan Glacier (Satopanth): Pathways and direct radiative impacts. Sci. Total. Environ. 2021, 766, 144242. [Google Scholar] [CrossRef] [PubMed]
Trend | p-Value | Slope (km2/year) | |
---|---|---|---|
Annual * | Increasing | 0.040 | 663.88 |
Premonsoon | No trend | 0.205 | 339.73 |
Monsoon | No trend | 0.183 | 720.12 |
Postmonsoon | No trend | 0.205 | 728.36 |
Winter * | Increasing | 0.006 | 453.39 |
March | No trend | 0.314 | 320.46 |
April | No trend | 0.417 | 355.14 |
May | No trend | 0.581 | 290.67 |
June | No trend | 0.085 | 732.55 |
July * | Increasing | 0.029 | 1191.79 |
August | No trend | 1 | −25.20 |
September | No trend | 0.922 | −109.49 |
October | No trend | 0.673 | 352.19 |
November | No trend | 0.495 | 834.37 |
December | No trend | 0.205 | 570.59 |
January | No trend | 0.314 | 692.65 |
February | No trend | 0.770 | −192.15 |
Lower Himalaya | Middle Himalaya | Upper Himalaya | |
---|---|---|---|
Annual | Increasing * p < 0.001 slope = 184.5 | Increasing * p = 0.014 slope = 232.1 | No trend p = 0.581 slope = 119.3 |
Premonsoon | Increasing * p = 0.021 slope = 135.1 | No trend p = 0.267 slope = 203.6 | No trend p = 1.0 slope = −0.474 |
Monsoon | Increasing * p = 0.002 slope = 147.4 | Increasing * p = 0.034 slope = 251.6 | No trend p = 0.314 slope = 188.9 |
Postmonsoon | Increasing * p = 0.012 slope = 182.9 | No trend p = 0.205 slope = 337.4 | No trend p = 0.581 slope = 291.6 |
Winter | Increasing * p = 0.001 slope = 241.5 | No trend p = 0.205 slope = 163.8 | No trend p = 0.217 slope = −52.158 |
Trend | p-Value | Slope (°C/year) | |
---|---|---|---|
Annual | No trend | 0.085 | −0.039 |
Premonsoon | No trend | 0.346 | −0.066 |
Monsoon * | Decreasing | 0.001 | −0.013 |
Postmonsoon | No trend | 0.537 | −0.053 |
Winter | No trend | 0.673 | −0.023 |
Trend | p-Value | Slope (mm/year) | |
---|---|---|---|
Annual * | Increasing | 0.003 | 24.56 |
Premonsoon * | Increasing | <0.001 | 5.41 |
Monsoon * | Increasing | 0.003 | 16.39 |
Postmonsoon * | Increasing | 0.003 | 1.28 |
Winter * | Increasing | 0.029 | 2.75 |
Annual | Pre-Monsoon | Monsoon | Post-Monsoon | Winter | |
---|---|---|---|---|---|
Temperature | −0.81 * p < 0.001 | −0.80 * p < 0.001 | −0.45 * p = 0.043 | −0.73 * p < 0.001 | −0.56 * p = 0.01 |
Precipitation | 0.47 * p = 0.03 | 0.41 p = 0.07 | 0.31 p = 0.17 | 0.74 * p < 0.001 | 0.22 p = 0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choudhury, A.; Yadav, A.C.; Bonafoni, S. A Response of Snow Cover to the Climate in the Northwest Himalaya (NWH) Using Satellite Products. Remote Sens. 2021, 13, 655. https://doi.org/10.3390/rs13040655
Choudhury A, Yadav AC, Bonafoni S. A Response of Snow Cover to the Climate in the Northwest Himalaya (NWH) Using Satellite Products. Remote Sensing. 2021; 13(4):655. https://doi.org/10.3390/rs13040655
Chicago/Turabian StyleChoudhury, Animesh, Avinash Chand Yadav, and Stefania Bonafoni. 2021. "A Response of Snow Cover to the Climate in the Northwest Himalaya (NWH) Using Satellite Products" Remote Sensing 13, no. 4: 655. https://doi.org/10.3390/rs13040655
APA StyleChoudhury, A., Yadav, A. C., & Bonafoni, S. (2021). A Response of Snow Cover to the Climate in the Northwest Himalaya (NWH) Using Satellite Products. Remote Sensing, 13(4), 655. https://doi.org/10.3390/rs13040655