Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area and Data
2.2. Image Processing and Classification
2.3. Validation and Accuracy Assessment
2.4. Feature Importance and Model Pruning
3. Results
3.1. Model Tunning
3.2. Classification and Accuracy Assesment
3.3. Variables Importance and Model Pruning
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Amorós López, J.; Izquierdo Verdiguier, E.; Gómez Chova, L.; Muñoz Marí, J.; Rodríguez Barreiro, J.Z.; Camps Valls, G.; Calpe Maravilla, J. Land cover classification of VHR airborne images for citrus grove identification. ISPRS J. Photogramm. Remote Sens. 2011, 66, 115–123. [Google Scholar] [CrossRef]
- Instituto Valenciano de Investigaciones Agrarias (IVIA). Citricultura Valenciana: Gestión Integrada de Plagas y Enfermedades en Cítricos. Available online: http://gipcitricos.ivia.es/citricultura-valenciana (accessed on 25 December 2020).
- Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. ESYRCE: Encuesta Sobre Superficies y Rendimientos del año 2019; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2019. [Google Scholar]
- Noguera, J. Viabilidad y competitividad del sistema citrícola valenciano. Boletín Asoc. Geógrafos Españoles 2010, 52, 81–99. [Google Scholar]
- Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. ESYRCE: Encuesta Sobre Superficies y Rendimientos del año 2008; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2008. [Google Scholar]
- Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente. ESYRCE: Encuesta Sobre Superficies y Rendimientos del año 2018; Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente: Madrid, Spain, 2018. [Google Scholar]
- Rounsevell, M.D.A.; Reginster, I.; Araújo, M.B.; Carter, T.R.; Dendoncker, N.; Ewert, F.; House, J.I.; Kankaanpää, R.; Leemans, R.; Metzger, M.J.; et al. A coherent set of future land use change scenarios for Europe. Agric. Ecosyst. Environ. 2006, 114, 57–68. [Google Scholar] [CrossRef]
- Löw, F.; Prishchepov, F.; Waldner, F.; Dubovyk, O.; Akramkhanov, A.; Biradar, C.; Lamers, J. Mapping Cropland Abandonment in the Aral Sea Basin with MODIS Time Series. Remote Sens. 2018, 10, 159. [Google Scholar] [CrossRef] [Green Version]
- Alcántara, C.; Kuemmerle, T.; Prishchepov, A.V.; Radeloff, V.C. Mapping abandoned agriculture with multi-temporal MODIS satellite data. Remote Sens. Environ. 2012, 124, 334–347. [Google Scholar] [CrossRef]
- Estel, S.; Kuemmerle, T.; Alcántara, C.; Levers, C.; Prishchepov, A.V.; Hostert, P. Mapping farmland abandonment and recultivation across Europe using MODIS NDVI time series. Remote Sens. Environ. 2015, 163, 312–325. [Google Scholar] [CrossRef]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Grădinaru, S.R.; Kienast, F.; Psomas, A. Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecol. Indic. 2019, 96, 79–86. [Google Scholar] [CrossRef]
- Schrivastava, R.J.; Gebelein, J.L. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS J. Photogramm. Remote Sens. 2007, 61, 341–353. [Google Scholar] [CrossRef]
- Ramírez, M.; Martínez, L.; Montilla, M.; Sarmiento, O.; Lasso, J.; Diaz, S. Obtaining agricultural land cover in Sentinel-2 satellite images with drone image injection using Random Forest in Google Earth Engine. Rev. Teledetección 2020, 56, 35–48. [Google Scholar]
- Campos-Taberner, M.; García-Haro, F.J.; Martínez, B.; Gilabert, M.A. Deep learning for agricultural land use classification from Sentinel-2. Rev. Teledetección 2020, 56, 35–48. [Google Scholar] [CrossRef]
- Vajsová, B.; Fasbender, D.; Wirnhardt, C.; Lemajic, S.; Devos, W. Assessing Spatial Limits of Sentinel-2 Data on Arable Crops in the Context of Checks by Monitoring. Remote Sens. 2020, 12, 2195. [Google Scholar] [CrossRef]
- Vajsová, B.; Fasbender, D.; Wirnhardt, C.; Lemajic, S.; Sima, A.; Astrand, P. Applicability Limits of Sentine-2 Data Compared to Higher Resolution Imagery for CAP Checks by Monitoring; JRC Technical Report: JRC115564; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-01935-0. [Google Scholar]
- Morell-Monzó, S.; Estornell, J.; Sebastiá-Frasquet, M.T. Comparison of Sentinel-2 and High-Resolution Imagery for Mapping Land Abandonment in Fragmented Areas. Remote Sens. 2020, 12, 2062. [Google Scholar] [CrossRef]
- Feng, Q.; Liu, J.; Gong, J. UAV Remote Sensing for Urban Vegetation Mapping Using Random Forest and Texture Analysis. Remote Sens. 2015, 7, 1074–1094. [Google Scholar] [CrossRef] [Green Version]
- Haralick, M.R.; Shanmugan, K.; Distein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–620. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; He, D.-C. Texture classification using texture spectrum. Pattern Recognit. 1990, 23, 905–910. [Google Scholar] [CrossRef]
- Laws, K.I. Texture Image Segmentation. Ph.D. Dissertation, University Southern California, Los Angeles, CA, USA, January 1980. [Google Scholar]
- Jain, A.K.; Farrokhnia, F. Unsupervised texture segmentation using Gabor filters. Pattern Recognit. 1991, 24, 1167–1186. [Google Scholar] [CrossRef] [Green Version]
- Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef] [Green Version]
- Balaguer, A.; Ruiz, L.A.; Hermosilla, T.; Recio, J.A. Definition of a comprehensive set of texture semivariogram features and their evaluation for object-oriented image classification. Comput. Geosci. 2010, 36, 231–240. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Lan, Z.; Liu, Y. Study on Multi-Scale Window Determination for GLCM Texture Description in High-Resolution Remote Sensing Image Geo-Analysis Supported by GIS and Domain Knowledge. ISPRS Int. J. Geo-Inf. 2018, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhao, Y.; Pu, R.; Zhang, Z. Mapping Robinia Pseudoacacia Forest Health Conditions by Using Combined Spectral, Spatial, and Textural Information Extracted from IKONOS Imagery and Random Forest Classifier. Remote Sens. 2015, 7, 9020–9044. [Google Scholar] [CrossRef] [Green Version]
- Jia, L.; Zhou, Z.; Li, B. Study of SAR Image Texture Feature Extraction Based on GLCM in Guizhou Karst Mountainous Region. In Proceedings of the 2012 2nd International Conference on Remote Sensing, Environment and Transportation Engineering, Nanjing, China, 1–3 June 2012.
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Gil-Yepes, J.L.; Ruiz, L.A.; Recio, J.A.; Balaguer-Beser, A.; Hermosilla, T. Description and validation of a new set of object-based temporal geostatistical features for land-use/land-cover change detection. ISPRS J. Photogramm. Remote Sens. 2016, 121, 77–91. [Google Scholar] [CrossRef]
- Ruiz, L.A.; Recio, J.A.; Fernández-Sarría, A.; Hermosilla, T. A feature extraction software tool for agricultural object-based image analysis. Comput. Electron. Agric. 2011, 76, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Recio, J.A.; Hermosilla, T.; Ruiz, L.A.; Palomar, J. Automated extraction of tree and plot-based parameters in citrus orchards from aerial images. Comput. Electron. Agric. 2013, 90, 24–34. [Google Scholar] [CrossRef]
- Amorós-López, J.; Izquierdo-Verdiguier, E.; Gómez-Chova, L.; Muñoz-Marí, J.; Rodríguez-Barreiro, J.Z.; Camps-Valls, G.; Calpe-Maravilla, J. Multi-stage robust scheme for citrus identification from high resolution airborne images. In Image and Spatial Processing for Remote Sensing XIV, 1st ed.; Bruzzone, L., Notarnicola, C., Posa, F., Eds.; SPIE: Cardiff, UK, 2008; Volume 7109, p. 710908. [Google Scholar]
- Viñals, M.J. Secuencias Estratigráficas y Evolución Morfológica del Extremo Meridional del Golfo de Valencia (Cullera-Dénia). In El Cuaternario del País Valenciano, 1st ed.; Universitat de València-AEQUA: Valencia, Spain, 1995. [Google Scholar]
- Viñals, M.J. El Marjal de Oliva-Pego: Geomorfología y Evolución de un Humedal Costero Mediterráneo, 1st ed.; Conselleria de Agricultura y Medio Ambiente, Generalitat Valenciana: Valencia, Spain, 1996. [Google Scholar]
- Geleralitat Valenciana. Portal Estadístico de la Generalitat Valenciana. Fichas Municipales 2020. Available online: http://www.pegv.gva.es/es/fichas (accessed on 25 December 2020).
- Ilich, A. GLCMTextures. Available online: http://doi.org/10.5281/zenodo.4310187 (accessed on 25 December 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Viena, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 25 December 2020).
- Huang, X.; Liu, X.; Zhang, L. A Multichannel Gray Level Co-Ocurrence Matrix for Multi/Hyperspectral Image Texture Representation. Remote Sens. 2014, 6, 8424–8445. [Google Scholar] [CrossRef] [Green Version]
- Akar, Ö.; Güngör, O. Integrating multiple texture methods and NDVI to the Random Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int. J. Remote Sens. 2015, 36, 442–464. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Hall-Beyer, M. GLCM Texture: A Tutorial v. 3.0 March 2017. PRISM Univ. Calg. Digit. Repos. 2017. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests—Random Features; Technical Report 567; Statistics Department, University of California: Berkeley, CA, USA, 1999. [Google Scholar]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, R.J. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Kunh, M. Caret: Classification and Regression Training, R package version 4.0.3; 2020. Available online: https://cran.r-project.org/web/packages/caret/caret.pdf (accessed on 25 December 2020).
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved land cover map of Iran using Sentinel imagery withing Google Earth Engine and novel automatic workflow for land cover classification using migrated training samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Kursa, M.B.; Rudncki, A. Feature Selection with Boruta Package. J. Stat. Softw. 2010. Available online: https://www.jstatsoft.org/article/view/v036i11 (accessed on 25 December 2020).
- Degenhardt, F.; Seifert, S.; Szymczak, S. Evaluation of variable selection methods for random forests and omics data sets. Brief. Bioinform. 2017, 20, 492–503. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.S.; Shaikh, T. Empirical Evaluation of the Performance of Feature Selection Approaches on Random Forests. In Proceedings of the 2017 International Conference on Computer and Applications (ICCA), Doha, United Arab Emirates, 6–7 September 2017. [Google Scholar]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta—A system for Feature Selection. Fundam. Inform. 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Franklin, S.E.; Wulder, M.A.; Lavigne, M.B. Automated derivation of geographic window sizes for use in remote sensing digital image texture. Comput. Geosci. 1996, 22, 665–673. [Google Scholar] [CrossRef]
Study Area | Plots Number | Reference Data Acquisition | Image Acquisition Date |
---|---|---|---|
Oliva (a) | 240 | Field survey 1 | 14 and 15 May 2019 |
Bellreguard-Almoines (b) | 90 | Photointerpretation | 14 May 2019 |
Benicull-Polinyà del Xúquer (c) | 90 | Photointerpretation | 15 June 2019 |
Nules (d) | 90 | Photointerpretation | 17 June 2019 |
Model | Average Pixel Accuracy | Standard Deviation Pixel Accuracy | Average Plot Accuracy | Standard Deviation Plot Accuracy |
---|---|---|---|---|
Spectral features | 0.71 | 0.04 | 0.91 | 0.07 |
Spectral + 3 × 3 GLCM features | 0.84 | 0.03 | 0.95 | 0.05 |
Spectral + 5 × 5 GLCM features | 0.86 | 0.03 | 0.95 | 0.05 |
Spectral + 7 × 7 GLCM features | 0.86 | 0.03 | 0.95 | 0.06 |
Spectral + 9 × 9 GLCM features | 0.87 | 0.03 | 0.95 | 0.04 |
Model | Precision | Recall | F1-Score | ||||||
---|---|---|---|---|---|---|---|---|---|
Not in Production | In Production | Abandoned | Not in Production | In Production | Abandoned | Not in Production | In Production | Abandoned | |
Spectral features | 0.94 | 0.90 | 0.92 | 0.99 | 0.86 | 0.88 | 0.96 | 0.87 | 0.89 |
Spectral + 3 × 3 GLCM features | 0.97 | 0.93 | 0.95 | 0.96 | 0.94 | 0.94 | 0.96 | 0.93 | 0.94 |
Spectral + 5 × 5 GLCM features | 0.97 | 0.93 | 0.95 | 0.96 | 0.94 | 0.94 | 0.96 | 0.93 | 0.94 |
Spectral + 7 × 7 GLCM features | 0.97 | 0.95 | 0.93 | 0.98 | 0.91 | 0.95 | 0.97 | 0.93 | 0.94 |
Spectral + 9 × 9 GLCM features | 0.96 | 0.96 | 0.94 | 0.98 | 0.91 | 0.96 | 0.96 | 0.92 | 0.95 |
Reference | |||||
---|---|---|---|---|---|
Not in Production | In Production | Abandoned | Average User’s Accuracy | ||
Predicted | Not in production | 0.98 | 0.04 | 0.01 | 0.95 |
In production | 0.01 | 0.91 | 0.03 | 0.96 | |
Abandoned | 0.01 | 0.05 | 0.96 | 0.94 | |
Average Producer’s Accuracy | 0.98 | 0.91 | 0.96 |
Overall accuracy | Producer’s Accuracy | User’s Accuracy | |||||
---|---|---|---|---|---|---|---|
Not in Production | In Production | Abandoned | Not in Production | In production | Abandoned | ||
Bellreguard-Almoines (b) | 0.98 | 1.0 | 1.0 | 0.93 | 1.0 | 0.94 | 0.91 |
Benicull-Polinyà del Xúquer (c) | 0.88 | 1.0 | 0.93 | 0.70 | 0.86 | 0.85 | 0.95 |
Nules (d) | 0.92 | 1.0 | 0.97 | 0.83 | 0.91 | 0.91 | 0.96 |
Average | 0.93 | 1.0 | 0.97 | 0.82 | 0.92 | 0.91 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morell-Monzó, S.; Sebastiá-Frasquet, M.-T.; Estornell, J. Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sens. 2021, 13, 681. https://doi.org/10.3390/rs13040681
Morell-Monzó S, Sebastiá-Frasquet M-T, Estornell J. Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sensing. 2021; 13(4):681. https://doi.org/10.3390/rs13040681
Chicago/Turabian StyleMorell-Monzó, Sergio, María-Teresa Sebastiá-Frasquet, and Javier Estornell. 2021. "Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information" Remote Sensing 13, no. 4: 681. https://doi.org/10.3390/rs13040681
APA StyleMorell-Monzó, S., Sebastiá-Frasquet, M. -T., & Estornell, J. (2021). Land Use Classification of VHR Images for Mapping Small-Sized Abandoned Citrus Plots by Using Spectral and Textural Information. Remote Sensing, 13(4), 681. https://doi.org/10.3390/rs13040681