Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues
Abstract
1. Introduction
2. Methods
3. KRAW and KRA1 Stations
4. Results
5. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Specht, M.; Specht, C.; Dąbrowski, P.; Czaplewski, K.; Smolarek, L.; Lewicka, O. Road tests of the positioning accuracy of INS/GNSS systems based on MEMS technology for navigating railway vehicles. Energies 2020, 13, 4463. [Google Scholar] [CrossRef]
- Specht, C.; Specht, M.; Dąbrowski, P. Comparative analysis of active geodetic networks in poland. In Proceedings of the 17th International Multidisciplinary Scientific GeoConference SGEM 2017, Vienna, Austria, 27–29 November 2017. [Google Scholar]
- Baire, Q.; Bruyninx, C.; Legrand, J.; Pottiaux, E.; Aerts, W.; Defraigne, P.; Bergeot, N.; Chevalier, J.M. Influence of different GPS receiver antenna calibration models on geodetic positioning. GPS Solut. 2014, 18, 529–539. [Google Scholar] [CrossRef]
- Dawidowicz, K. Comparison of Using Relative and Absolute PCV Corrections in Short Baseline GNSS Observation Processing. Artif. Satell. 2011, 46, 19–31. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS—Global Navigation Satellite Systems; Springer: Vienna, Austria, 2008; ISBN 978-3-211-73012-6. [Google Scholar]
- Luo, X. Mathematical Models for GPS Positioning. In GPS Stochastic Modelling; Springer Theses; Springer: Berlin/Heidelberg, Germany, 2013; pp. 55–116. ISBN 978-3-642-34835-8. [Google Scholar]
- Breuer, B.; Campbell, J.; Görres, B.; Hawig, R.; Wohlleben, R. Kalibrierung von GPS-Antennen für hochgenaue geodätische Anwendungen. Z. Satell. Position. Navig. Kommun. 1995, 2, 49–59. [Google Scholar]
- Schmid, R.; Dach, R.; Collilieux, X.; Jäggi, A.; Schmitz, M.; Dilssner, F. Absolute IGS antenna phase center model igs08.atx: Status and potential improvements. J. Geod. 2016, 90, 343–364. [Google Scholar] [CrossRef]
- Schupler, B.R.; Clark, T.A. How different antennas affect the GPS observable. GPS World 1991, 2, 32–36. [Google Scholar]
- Görres, B.; Campbell, J.; Becker, M.; Siemes, M. Absolute calibration of GPS antennas: Laboratory results and comparison with field and robot techniques. GPS Solut. 2006, 10, 136–145. [Google Scholar] [CrossRef]
- Daneshmand, S.; Sokhandan, N.; Zaeri-Amirani, M.; Lachapelle, G. Precise calibration of a GNSS antenna array for adaptive beamforming applications. Sensors 2014, 14, 9669–9691. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Q.; Chen, G.; Wang, G.; Dai, Z.; Li, T. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University. Sensors 2015, 15, 28717–28731. [Google Scholar] [CrossRef]
- Filler, V.; Kostelecký, J. GPS antenna calibration at the Geodetic Observatory Pecny, Czech Republic. Rep. Geod. Geoinform. 2001, 1, 233–244. [Google Scholar]
- Bergstrand, S.; Jarlemark, P.; Herbertsson, M. Quantifying errors in GNSS antenna calibrations: Towards in situ phase center corrections. J. Geod. 2020, 94, 1–15. [Google Scholar] [CrossRef]
- Krzan, G.; Dawidowicz, K.; Wielgosz, P. Antenna phase center correction differences from robot and chamber calibrations: The case study LEIAR25. GPS Solut. 2020, 24, 44. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Kiliszek, D.; Podkowa, A. Height variation depending on the source of antenna phase centre corrections: LEIAR25.R3 case study. Sensors 2019, 19, 4010. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, B.; Chen, H.; Wang, F. Multipath Effect on Phase Center Calibration of GNSS Antenna. In China Satellite Navigation Conference (CSNC) 2015 Proceedings: Volume III; Sun, J., Liu, J., Fan, S., Lu, X., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 259–268. [Google Scholar]
- Rovera, G.D.; Abgrall, M.; Uhrich, P.; Defraigne, P.; Bertrand, B. GNSS antenna multipath effects. In Proceedings of the 2018 European Frequency and Time Forum (EFTF), Turin, Italy, 10–12 April 2018; pp. 208–212. [Google Scholar]
- Dawidowicz, K.; Krzan, G.; Baryła, R.; Swiatek, K. The Impact of GNSS Antenna Mounting during Absolute Field Calibration on Phase Center Correction—JAV_GRANT-G3T Antenna Case Study. In Proceedings of the 10th International Conference “Environmental Engineering, Vilnius, Lithuania, 27–28 April 2017; pp. 27–28. [Google Scholar]
- Echeverri, J.M.Q.; Pareja, T.F.; De Vicente y Oliva, J. Effectiveness of centering devices of geomatics instruments. Procedia Manuf. 2019, 41, 437–444. [Google Scholar] [CrossRef]
- Kostelecký, J. On determination of GPS antenna phase centres at the geodetic observatory Pecny. Reports Geod. 2002, 1, 145–152. [Google Scholar]
- Breva, J.; Kröger, J.; Kersten, T.; Schön, S. Validation of phase center corrections for new GNSS signals obtained with absolute antenna calibration in the field. In Proceedings of the EGU General Assembly 2019, Vienna, Austria, 7–12 April 2019; p. 14143. [Google Scholar]
- Zhou, R.; Hu, Z.; Zhao, Q.; Cai, H.; Liu, X.; Liu, C.; Wang, G.; Kan, H.; Chen, L. Consistency Analysis of the GNSS Antenna Phase Center Correction Models. Remote Sens. 2022, 14, 540. [Google Scholar] [CrossRef]
- Araszkiewicz, A.; Völksen, C. The impact of the antenna phase center models on the coordinates in the EUREF Permanent Network. GPS Solut. 2017, 21, 747–757. [Google Scholar] [CrossRef]
- Brockmann, E.; Ineichen, D.; Schaer, S. Benefits of double stations in permanent GNSS networks. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013; EUREF: Budapest, Hungary, 2013. [Google Scholar]
- Kudrys, J. Permanent GNSS Observations at AGH-UST Satellite Observatory. Rep. Geod. Geoinform. 2016, 100, 101–107. [Google Scholar] [CrossRef][Green Version]
- Banasik, P. Wyznaczenie wysokości normalnej i charakterystyk pola cieżkościowego dla stacji permanentnej KRAW. Geomat. Environ. Eng. 2007, 1, 53–60. [Google Scholar]
- Borowski, Ł. Determination of normal heights of ASG-EUPOS stations illustrated with an example od KRAW station. In 4th Doctoral Seminar on Geodesy and Cartography; Biryło, M., Ed.; Wydawnictwo UWM: Olsztyn, Poland, 2012; pp. 19–25. ISBN 978-83-7299-766-1. [Google Scholar]
- Borowski, Ł. Zastosowanie Sieci ASG-EUPOS Do Modelowania Lokalnej Quasi-Geoidy. Ph.D. Thesis, AGH University of Science and Technology, Krakow, Poland, 2015. [Google Scholar]
- Dach, R.; Lutz, S.; Walser, P.; Fridez, P. Bernese GNSS Software Version 5.2; University of Bern, Bern Open Publishing: Berne, Switzerland, 2015; Volume 47, ISBN 1879621142. [Google Scholar]
- Blewitt, G.; Hammond, W.; Kreemer, C. Harnessing the GPS Data Explosion for Interdisciplinary Science. Eos 2018, 99, 485. [Google Scholar] [CrossRef]
- Borowski, Ł.; Kudrys, J. Adequacy of GNSS antenna calibration model—Case study Abstract. In Proceedings of the EUREF 2017 Symposium, Wrocław, Poland, 17–19 May 2017. [Google Scholar]
- Dawidowicz, K. IGS08.ATX to IGS14.ATX change dependent differences in a gnss-derived position time series. Acta Geodyn. Geomater. 2018, 15, 363–378. [Google Scholar] [CrossRef]
- Liwosz, T.; Rogowski, J.; Kruczyk, M.; Rajner, M.; Kurka, W. Wyrównanie Kontrolne Obserwacji Satelitarnych Gnss Wykonanych na Punktach Asg-Eupos, Euref-Pol, Euvn, Polref i Osnowy i Klasy Wraz z Oceną Wyników; Warsaw Univeristy of Technology: Warsaw, Poland, 2011. [Google Scholar]
- Jaworski, L. Sprawozdanie Techniczne IV Etapu Kampani Integracyjnej—Opracowanie i Wyrównanie Obserwacji GNSS; Centrum Badań Kosmicznych PAN: Warszawa, Poland, 2011. [Google Scholar]
- Military University of Technology EPN Analysis Coordination Center. Available online: http://www.gnss.wat.edu.pl/ (accessed on 15 June 2022).
- Bassa, C.G.; Hainaut, O.R.; Galadí-Enríquez, D. Analytical simulations of the effect of satellite constellations on optical and near-infrared observations. Astron. Astrophys. 2022, 657, A75. [Google Scholar] [CrossRef]
- Mikoś, M.; Nowak, A.; Lackowski, M.; Sośnica, K. Wkład systemu satelitarnego Galileo w rozwój geodezji. Przegląd Geod. 2022, 1, 23–26. [Google Scholar] [CrossRef]
- Maciuk, K. Advantages of Combined GNSS Processing Involving a Limited Number of Visible Satellites. Sci. J. Sil. Univ. Technol. Ser. Transp. 2018, 98, 89–99. [Google Scholar] [CrossRef]
- Prochniewicz, D.; Wezka, K.; Kozuchowska, J. Empirical stochastic model of multi-GNSS measurements. Sensors 2021, 21, 4566. [Google Scholar] [CrossRef] [PubMed]
- Prochniewicz, D.; Grzymala, M. Analysis of the impact of multipath on Galileo system measurements. Remote Sens. 2021, 13, 2295. [Google Scholar] [CrossRef]
Archive Data | Δh (mm) | σ (mm) |
---|---|---|
Warsaw University of Technology 2008–2011 (BGS) [34] | 5.5 | - |
PAN Space Research Centre 2008–2011 (BGS) [35] | 7.3 | - |
EPN Combined Solution 2013–2014 [29] | 11.0 | 1.5 |
PPP (BGS) 2012–2014 [29] | 14.7 | - |
Trimble Business Centre 2011–2016 [29] | −6.9 | 0.5 |
MUT Combined Solutions igs14.atx 2017 [36] | −0.5 | 2.2 |
MUT * Combined Solutions igs14.atx 2018–2022 (KRA1—individual PCC) [36] | 1.1 | 2.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borowski, L.; Kudrys, J.; Kubicki, B.; Slámová, M.; Maciuk, K. Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues. Remote Sens. 2022, 14, 3226. https://doi.org/10.3390/rs14133226
Borowski L, Kudrys J, Kubicki B, Slámová M, Maciuk K. Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues. Remote Sensing. 2022; 14(13):3226. https://doi.org/10.3390/rs14133226
Chicago/Turabian StyleBorowski, Lukasz, Jacek Kudrys, Bartosz Kubicki, Martina Slámová, and Kamil Maciuk. 2022. "Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues" Remote Sensing 14, no. 13: 3226. https://doi.org/10.3390/rs14133226
APA StyleBorowski, L., Kudrys, J., Kubicki, B., Slámová, M., & Maciuk, K. (2022). Phase Centre Corrections of GNSS Antennas and Their Consistency with ATX Catalogues. Remote Sensing, 14(13), 3226. https://doi.org/10.3390/rs14133226