Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures
Abstract
:1. Introduction
- (1)
- To efficiently achieve the classification task, we design a transformer-based classification approach for generating the highly discriminative feature representation of both rocks and minerals, where the inter-category representation variant is enlarged and the intra-category representation similarity is aggregated;
- (2)
- A category-aware contrastive learning is integrated within the developed transformer-based classification approach. In this case, the super-parameters of the whole network are learned and trained in an end-to-end multi-task manner. Consequently, the remarkable distinctions among different types of rock and minerals occur in their high-dimensional feature space;
- (3)
- We demonstrate the reliability and robustness of the developed approach on a dataset containing rocks and minerals with complicated categories. It is of significance for the investigation of the developed approach’s generalization ability.
2. Materials and Methods
2.1. Data Acquisition
2.2. The Developed Classification Approach of Rocks and Minerals
2.2.1. Transformer-Based Feature Encoder Module
2.2.2. Multi-Task Loss Function for Optimization
3. Experimentation and Analysis
3.1. Evaluation Criteria
3.2. Implementation Details
3.3. Rock Classification Results
3.4. T-SNE Visualization in the Discriminative Feature Space
4. Discussion
4.1. Effect of the Size of Image Patches on Classification Results
4.2. Effect of the Number of Transformer Layers on Classification Results
4.3. Effect of the Number of Transformer Heads on Classification Results
4.4. Effect of Category-Aware Contrastive Loss on Classification Results
4.5. Comparisons with Other Methods
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. T-Distributed Stochastic Neighbor Embedding Visualization Technique
References
- Blake, D.; Bristow, T.; Sarrazin, P.; Zacny, K. In-Situ Mineralogical Analysis of the Venus Surface using X-ray Diffraction. Bull. Am. Astron. Soc. 2021, 53, 018. [Google Scholar] [CrossRef]
- Yang, J.; Kang, Z. A Gradient-Region Constrained Level Set Method for Autonomous Rock Detection from Mars Rover Image. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Enschede, The Netherlands, 10–14 June 2019. [Google Scholar]
- Christensen, P.R.; Bandfield, J.; Clark, R.N.; Edgett, K.; Hamilton, V.E.; Hoefen, T.; Kieffer, H.H.; Kuzmin, R.O.; Lane, M.D.; Malin, M.C.; et al. Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water. J. Geophys. Res. Earth Surf. 2000, 105, 9623–9642. [Google Scholar] [CrossRef]
- Kodikara, G.R.; McHenry, L.J. Machine learning approaches for classifying lunar soils. Icarus 2020, 345, 113719. [Google Scholar] [CrossRef]
- Alemanno, G.; Maturilli, A.; D’Amore, M.; Helbert, J. A new laboratory emissivity and reflectance spectral library for the interpretation of Mars thermal infrared spectral data. Icarus 2021, 368, 114622. [Google Scholar] [CrossRef]
- Anderson, R.C.; Jandura, L.; Okon, A.B.; Sunshine, D.; Roumeliotis, C.; Beegle, L.; A Hurowitz, J.; Kennedy, B.P.; Limonadi, D.; McCloskey, S.; et al. Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System. Space Sci. Rev. 2012, 170, 57–75. [Google Scholar] [CrossRef]
- Caudill, C.M.; Pontefract, A.J.; Osinski, G.R.; Tornabene, L.L.; Pilles, E.A.; Battler, M.; Francis, R.; Godin, E.; Galofre, A.G.; Haltigin, T.; et al. CanMars mission Science Team operational results: Implications for operations and the sample selection process for Mars Sample Return (MSR). Planet. Space Sci. 2019, 172, 43–56. [Google Scholar] [CrossRef]
- Osinski, G.R.; Battler, M.; Caudill, C.M.; Francis, R.; Haltigin, T.; Hipkin, V.J.; Kerrigan, M.; Pilles, E.A.; Pontefract, A.; Tornabene, L.L.; et al. The CanMars Mars Sample Return analogue mission. Planet. Space Sci. 2019, 166, 110–130. [Google Scholar] [CrossRef]
- Wan, W.; Wang, C.; Li, C.; Wei, Y. China’s first mission to Mars. Nat. Astron. 2020, 4, 721. [Google Scholar] [CrossRef]
- Bishop, J.L.; Bell, J.F., III; Moersch, J.E. Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Cambridge U. Press: Cambridge, UK, 2020. [Google Scholar]
- Viviano, C.E.; Seelos, F.P.; Murchie, S.L.; Kahn, E.G.; Seelos, K.D.; Taylor, H.W.; Taylor, K.; Ehlmann, B.L.; Wiseman, S.M.; Mustard, J.F.; et al. Revised CRISM spectral parameters and summary products based on the currently detected mineral diversity on Mars. J. Geophys. Res.-Planet 2014, 119, 1403–1431. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Chauhan, P. Study of phyllosilicates and carbonates from the Capri Chasma region of Valles Marineris on Mars based on Mars Reconnaissance Orbiter-Compact Reconnaissance Imaging Spectrometer for Mars (MRO-CRISM) observations. Icarus 2015, 250, 7–17. [Google Scholar] [CrossRef]
- Fox, V.K.; Arvidson, R.E.; Guinness, E.A.; McLennan, S.M.; Catalano, J.G.; Murchie, S.L.; Powell, K.E. Smectite deposits in Marathon Valley, Endeavour Crater, Mars, identified using CRISM hyperspectral reflectance data. Geophys. Res. Lett. 2016, 43, 4885–4892. [Google Scholar] [CrossRef] [Green Version]
- Núñez, J.I.; Barnouin, O.S.; Murchie, S.L.; Seelos, F.P.; McGovern, J.A.; Seelos, K.D.; Buczkowski, D.L. New insights into gully formation on Mars: Constraints from composition as seen by MRO/CRISM. Geophys. Res. Lett. 2016, 43, 8893–8902. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, Y.; Yu, L. Mineral composition of the Martian Gale and Nili Fossae regions from Mars Reconnaissance Orbiter CRISM images. Planet. Space Sci. 2018, 163, 97–105. [Google Scholar] [CrossRef]
- Amador, E.S.; Bandfield, J.L.; Thomas, N.H. A search for minerals associated with serpentinization across Mars using CRISM spectral data. Icarus 2018, 311, 113–134. [Google Scholar] [CrossRef]
- Lin, H.; Mustard, J.F.; Zhang, X. A methodology for quantitative analysis of hydrated minerals on Mars with large endmember library using CRISM near-infrared data. Planet. Space Sci. 2018, 165, 124–136. [Google Scholar] [CrossRef]
- Li, J.; Zhang, L.; Wu, Z.; Ling, Z.; Cao, X.; Guo, K.; Yan, F. Autonomous Martian rock image classification based on transfer deep learning methods. Earth Sci. Inform. 2020, 13, 951–963. [Google Scholar] [CrossRef]
- De Albuquerque, M.P.; Esquef, I.; Mello, A.G. Image thresholding using Tsallis entropy. Pattern Recognit. Lett. 2004, 25, 1059–1065. [Google Scholar] [CrossRef]
- Ribas, L.C.; Gonçalves, D.N.; Oruê, J.P.M.; Gonçalves, W.N. Fractal dimension of maximum response filters applied to texture analysis. Pattern Recognit. Lett. 2015, 65, 116–123. [Google Scholar] [CrossRef]
- Sato, S.; Sano, M.; Sawada, Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems. Prog. Theor. Phys. 1987, 77, 1–5. [Google Scholar] [CrossRef]
- Patel, A.K.; Chatterjee, S. Computer vision-based limestone rock-type classification using probabilistic neural network. Geosci. Front. 2016, 7, 53–60. [Google Scholar] [CrossRef]
- Shang, C.; Barnes, D. Support vector machine-based classification of rock texture images aided by efficient feature selection. In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 10–15 June 2012. [Google Scholar]
- Valentín, M.B.; De Bom, C.R.; de Albuquerque, M.P.; Faria, E.L.; Correia, M.; Surmas, R. On a method for Rock Classification using Textural Features and Genetic Optimization. arXiv 2016, arXiv:1607.01679. [Google Scholar] [CrossRef] [Green Version]
- Shu, L.; McIsaac, K.; Osinski, G.R.; Francis, R. Unsupervised feature learning for autonomous rock image classification. Comput. Geosci. 2017, 106, 10–17. [Google Scholar] [CrossRef]
- Singh, N.; Singh, T.N.; Tiwary, A.; Sarkar, K.M. Textural identification of basaltic rock mass using image processing and neural network. Comput. Geosci. 2010, 14, 301–310. [Google Scholar] [CrossRef]
- Ishikawa, S.T.; Gulick, V.C. An automated mineral classifier using Raman spectra. Comput. Geosci. 2013, 54, 259–268. [Google Scholar] [CrossRef]
- Sharif, H.; Ralchenko, M.; Samson, C.; Ellery, A. Autonomous rock classification using Bayesian image analysis for Rover-based planetary exploration. Comput. Geosci. 2015, 83, 153–167. [Google Scholar] [CrossRef]
- Díaz, G.F.; Ortiz, J.M.; Silva, J.F.; Lobos, R.A.; Egaña, F. Variogram-Based Descriptors for Comparison and Classification of Rock Texture Images. Math. Geosci. 2020, 52, 451–476. [Google Scholar] [CrossRef]
- Parmar, N.; Vaswani, A.; Uszkoreit, J.; Kaiser, L.; Shazeer, N.; Ku, A.; Tran, D. Image transformer. In Proceedings of the International Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; Volume 80, pp. 4055–4064. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Pascual, A.D. Autonomous and Real Time Rock Image Classification using Convolutional Neural Networks. Electronic Thesis and Dissertation Repository. Master’s Thesis, The University of Western Ontario, London, ON, Canada, 2019. Available online: https://ir.lib.uwo.ca/etd/6059 (accessed on 25 July 2022).
- Saranathan, A.M.; Parente, M. Adversarial feature learning for improved mineral mapping of CRISM data. Icarus 2021, 355, 114107. [Google Scholar] [CrossRef]
- Grove, C.; Hook, S.; Paylor, I. Compilation of Laboratory Reflectance Spectra of 160 Minerals, 0.4 to 2.5 Micrometers. In Jet Propulsion Laboratory; NASA: Washington, DC, USA, 1992. [Google Scholar]
- Kruse, F. Artificial Intelligence for Geologic Mapping with Imaging Spectrometers. 1993. Available online: https://ntrs.nasa.gov/citations/19930008790 (accessed on 25 August 2022).
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Xie, B.; Wu, L.; Mao, W.; Zhou, S.; Liu, S. An Open Integrated Rock Spectral Library (RockSL) for a Global Sharing and Matching Service. Minerals 2022, 12, 118. [Google Scholar] [CrossRef]
- Christensen, P.R.; Bandfield, J.; Smith, M.D.; Hamilton, V.E.; Clark, R.N. Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data. J. Geophys. Res. Earth Surf. 2000, 105, 9609–9621. [Google Scholar] [CrossRef] [Green Version]
- Michalski, J.R.; Niles, P.B.; Glotch, T.D.; Cuadros, J. Infrared Spectral Evidence for K-Metasomatism of Volcanic Rocks on Mars. Geophys. Res. Lett. 2021, 48, e2021GL093882. [Google Scholar] [CrossRef]
- Mallapaty, S. What China’s mars rover will do next. Nature 2021, 593, 323–324. [Google Scholar] [CrossRef]
- Li, R.; Di, K.; Howard, A.B.; Matthies, L.; Wang, J.; Agarwal, S. Rock modeling and matching for autonomous long-range Mars rover localization. J. Field Robot. 2007, 24, 187–203. [Google Scholar] [CrossRef]
- Baykan, N.A.; Yılmaz, N. Mineral identification using color spaces and artificial neural networks. Comput. Geosci. 2010, 36, 91–97. [Google Scholar] [CrossRef]
- Xiao, X.; Cui, H.; Yao, M.; Tian, Y. Autonomous rock detection on mars through region contrast. Adv. Space Res. 2017, 60, 626–635. [Google Scholar] [CrossRef]
- Xiao, X.; Cui, H.; Yao, M.; Fu, Y.; Qi, W. Auto rock detection via sparse-based background modeling for mars rover. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar]
- Zhang, J.; Mei, K.; Zheng, Y.; Fan, J. Learning multi-layer coarse-to-fine representations for large-scale image classification. Pattern Recognit. 2019, 91, 175–189. [Google Scholar] [CrossRef]
- Fukunaga, K.; Flick, T.E. Classification error for a very large number of classes. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 779–788. [Google Scholar] [CrossRef]
- Reid, R.J.; Smith, P.H.; Lemmon, M.; Tanner, R.; Burkland, M.; Wegryn, E.; Weinberg, J.; Marcialis, R.; Britt, D.T.; Thomas, N.; et al. Imager for Mars Pathfinder (IMP) image calibration. J. Geophys. Res.-Planet 1999, 104, 8907–8925. [Google Scholar] [CrossRef]
- Lanchantin, J.; Wang, T.; Ordonez, V.; Qi, Y. General Multi-label Image Classification with Transformers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021. [Google Scholar]
- Joseph, K.; Khan, S.; Khan, F.S.; Balasubramanian, V.N. Towards open world object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, virtual, 19–25 June 2021. [Google Scholar]
- Leonard, J.; Kramer, M.A. Improvement of the backpropagation algorithm for training neural networks. Comput. Chem. Eng. 1990, 14, 337–341. [Google Scholar] [CrossRef]
- Caruana, R. Multitask learning. Mach. Learn. 1997, 28, 41–75. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 2019, 32, 8026–8037. [Google Scholar]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Zhang, J.; Li, J.; Hu, Y.; Zhou, J.Y. The identification method of igneous rock lithology based on data mining technology. Adv. Mater. Res. 2012, 466, 65–69. [Google Scholar] [CrossRef]
- Masoumi, F.; Eslamkish, T.; Abkar, A.A.; Honarmand, M.; Harris, J.R. Integration of spectral, thermal, and textural features of ASTER data using Random Forests classification for lithological mapping. J. Afr. Earth Sci. 2017, 129, 445–457. [Google Scholar] [CrossRef]
- Chatterjee, S. Vision-based rock-type classification of limestone using multi-class support vector machine. Appl. Intell. 2013, 39, 14–27. [Google Scholar] [CrossRef]
- El-Sawy, A.; El-Bakry, H.; Loey, M. CNN for handwritten arabic digits recognition based on LeNet-5. In Proceedings of the International Conference on Advanced Intelligent Systems and Informatics, Cairo, Egypt, 24–26 October 2016; Springer: Cham, Switzerland, 2016; pp. 566–575. [Google Scholar]
Parameters | Values |
---|---|
Number of channels | 9 (panchromatic and multispectral) |
Weight | 1.2 kg |
Geometric resolution | |
Radiometric resolution | 10 bits |
Pixel size | 5.5 |
Focal length | 50 mm |
Imaging distance |
Category | Mu | He | Ca | Gal | Ka | Ta | Pyr | Cha | GT | St | Gab |
Training set | 3011 | 5508 | 3149 | 4019 | 3667 | 3486 | 3360 | 3894 | 3824 | 4272 | 6044 |
Validation set | 502 | 918 | 525 | 670 | 612 | 581 | 560 | 649 | 639 | 712 | 1008 |
Test set | 1506 | 2754 | 2575 | 2009 | 1834 | 1743 | 1680 | 1947 | 1917 | 2136 | 3022 |
Category | Qu | Chl | Se | Sm | Te | Gy | Gr | Cr | Sua | Ar | Bas |
Training set | 4350 | 4882 | 3131 | 3686 | 5186 | 3378 | 3311 | 4043 | 3272 | 3900 | 4100 |
Validation set | 725 | 814 | 522 | 614 | 864 | 563 | 552 | 674 | 545 | 650 | 683 |
Test set | 2175 | 2441 | 1566 | 1843 | 2593 | 1689 | 1655 | 2022 | 1637 | 1950 | 2050 |
Category | Fl | Ps | Sa | Go | Bar | Sul | BV | Pr | Sum | In Total | |
Training set | 3840 | 3378 | 5280 | 4572 | 4050 | 4356 | 6038 | 4708 | 128,045 | 214,421 | |
Validation set | 640 | 563 | 880 | 762 | 675 | 726 | 1006 | 785 | 21,344 | ||
Test set | 1920 | 1689 | 2640 | 2286 | 2025 | 2178 | 3020 | 2355 | 65,032 |
Category | Mu | He | Ca | Gal | Ka | Ta | Pyr | Cha | GT | St | Gab |
Precision | 100.0 | 96.62 | 97.07 | 93.84 | 99.89 | 100.0 | 100.0 | 100.0 | 100.0 | 92.54 | 99.93 |
Recall | 100.0 | 99.93 | 98.98 | 97.95% | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 99.70 |
F1-score | 100.0 | 98.25 | 98.01 | 95.86 | 99.94 | 100.0 | 100.0 | 100.0 | 100.0 | 96.13 | 99.81 |
Category | Qu | Chl | Se | Sm | Te | Gy | Gr | Cr | Sua | Ar | Bas |
Precision | 99.95 | 89.58 | 99.23 | 100.0 | 95.22 | 100.0 | 100.0 | 81.53 | 99.51 | 100.0 | 100.0 |
Recall | 100.0 | 82.09 | 99.93 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
F1-score | 99.97 | 85.67 | 99.58 | 100.0 | 97.55 | 100.0 | 100.0 | 89.82 | 99.76 | 100.0 | 100.0 |
Category | Fl | Ps | Sa | Go | Bar | Sul | BV | Pr | Overall accuracy | ||
Precision | 100.0 | 99.12 | 96.35 | 100.0 | 100.0 | 99.29 | 93.34 | 88.28 | 96.92% | ||
Recall | 100.0 | 100.0 | 100.0 | 99.65 | 100.0 | 58.40 | 85.03 | 98.59 | |||
F1-score | 100.0 | 99.55 | 98.14 | 99.82 | 100.0 | 73.54 | 88.99 | 93.16 |
Patch Size | Mu | He | Ca | Gal | Ka | Ta | Pyr | Cha | GT | St | Gab |
Size = 5 | 95.18 | 95.86 | 92.49 | 94.19 | 98.66 | 99.97 | 100.0 | 99.80 | 99.44 | 97.45 | 98.33 |
Size = 7 | 99.94 | 97.57 | 92.23 | 95.21 | 99.65 | 100.0 | 100.0 | 100.0 | 99.93 | 97.04 | 99.31 |
Size = 9 | 100.0 | 98.25 | 98.01 | 95.86 | 99.94 | 100.0 | 100.0 | 100.0 | 100.0 | 96.13 | 99.81 |
Size = 11 | 100.0 | 97.97 | 87.88 | 97.47 | 99.88 | 100.0 | 100.0 | 99.95 | 99.73 | 98.15 | 97.77 |
Patch size | Qu | Chl | Se | Sm | Te | Gy | Gr | Cr | Sua | Ar | Bas |
Size = 5 | 99.58 | 81.66 | 98.54 | 99.66 | 91.09 | 99.91 | 99.34 | 92.01 | 99.54 | 99.83 | 99.77 |
Size = 7 | 99.56 | 84.49 | 99.56 | 100.0 | 96.81 | 99.97 | 99.27 | 89.97 | 99.70 | 99.97 | 99.97 |
Size = 9 | 99.97 | 85.67 | 99.58 | 100.0 | 97.55 | 100.0 | 100.0 | 89.82 | 99.76 | 100.0 | 100.0 |
Size = 11 | 99.33 | 86.88 | 96.55 | 99.93 | 96.99 | 100.0 | 100.0 | 99.21 | 100.0 | 99.96 | 99.94 |
Patch size | Fl | Ps | Sa | Go | Bar | Sul | BV | Pr | Overall accuracy | ||
Size = 5 | 100.0 | 98.88 | 97.17 | 99.32 | 99.98 | 67.59 | 85.33 | 93.13 | 95.96 | ||
Size = 7 | 100.0 | 99.18 | 96.87 | 99.74 | 100.0 | 67.27 | 89.58 | 92.51 | 96.48 | ||
Size = 9 | 100.0 | 99.55 | 98.14 | 99.82 | 100.0 | 73.54 | 88.99 | 93.16 | 96.92 | ||
Size = 11 | 100.0 | 99.93 | 96.36 | 100.0 | 100.0 | 68.77 | 89.33 | 87.46 | 96.83 |
Methods | Mu | He | Ca | Gal | Ka | Ta | Pyr | Cha | GT | St | Gab |
No contrastive loss | 100.0 | 97.57 | 91.21 | 95.87 | 98.84 | 100.0 | 100.0 | 100.0 | 100.0 | 96.34 | 99.46 |
Proposed method | 100.0 | 98.25 | 98.01 | 95.86 | 99.94 | 100.0 | 100.0 | 100.0 | 100.0 | 96.1 | 99.81 |
Methods | Qu | Chl | Se | Sm | Te | Gy | Gr | Cr | Sua | Ar | Bas |
No contrastive loss | 99.97 | 80.76 | 99.45 | 100.0 | 95.85 | 100.0 | 100.0 | 93.03 | 99.87 | 99.97 | 99.97 |
Proposed method | 99.97 | 85.67 | 99.58 | 100.0 | 97.55 | 100.0 | 100.0 | 89.82 | 99.76 | 100.0 | 100.0 |
Methods | Fl | Ps | Sa | Go | Bar | Sul | BV | Pr | Average | Overall accuracy | |
No contrastive loss | 100.0 | 99.97 | 94.70 | 99.91 | 100.0 | 68.77 | 89.14 | 91.49 | 96.40 | 96.25 | |
Proposed method | 100.0 | 99.55 | 98.14 | 99.82 | 100.0 | 73.54 | 88.99 | 93.16 | 97.12 | 96.92 |
Methods | Mu | He | Ca | Gal | Ka | Ta | Pyr | Cha | GT | St | Gab |
Decision tree [56] | 95.98 | 85.82 | 90.06 | 90.86 | 99.20 | 95.20 | 99.97 | 87.30 | 97.62 | 95.06 | 86.29 |
Random forest [57] | 97.98 | 88.83 | 95.60 | 91.39 | 99.91 | 98.44 | 100.0 | 88.82 | 99.47 | 94.72 | 90.52 |
SVM [58] | 99.70 | 88.44 | 97.99 | 95.68 | 98.86 | 98.78 | 99.97 | 88.62 | 99.63 | 99.09 | 96.17 |
ConvNet [59] | 99.33 | 91.66 | 93.26 | 94.96 | 97.39 | 99.45 | 100.0 | 87.03 | 99.76 | 97.62 | 98.10 |
Developed method | 100.0 | 98.25 | 98.01 | 95.86 | 99.94 | 100.0 | 100.0 | 100.0 | 100.0 | 96.13 | 99.81 |
Methods | Qu | Chl | Se | Sm | Te | Gy | Gr | Cr | Sua | Ar | Bas |
Decision tree [56] | 99.15 | 57.40 | 62.62 | 85.76 | 90.48 | 99.20 | 97.58 | 95.95 | 87.53 | 96.26 | 92.66 |
Random forest [57] | 99.38 | 65.13 | 70.33 | 82.94 | 91.69 | 100.0 | 99.16 | 98.92 | 93.77 | 96.27 | 96.28 |
SVM [58] | 99.70 | 59.31 | 77.72 | 72.96 | 83.12 | 100.0 | 97.66 | 97.84 | 93.84 | 99.82 | 98.77 |
ConvNet [59] | 100.0 | 74.56 | 76.19 | 99.53 | 96.26 | 100.0 | 99.84 | 98.38 | 99.31 | 99.58 | 99.72 |
Developed method | 99.97 | 85.67 | 99.58 | 100.0 | 97.55 | 100.0 | 100.0 | 89.82 | 99.76 | 100.0 | 100.0 |
Methods | Fl | Ps | Sa | Go | Bar | Sul | BV | Pr | Average | Overall accuracy | |
Decision tree [56] | 98.23 | 96.93 | 86.79 | 97.42 | 98.99 | 69.38 | 80.17 | 91.37 | 90.24 | 90.22 | |
Random forest [57] | 99.89 | 98.39 | 91.67 | 97.62 | 99.38 | 71.56 | 83.98 | 94.00 | 92.53 | 92.41 | |
SVM | 99.94 | 95.74 | 87.25 | 98.55 | 100.0 | 30.72 | 77.18 | 90.77 | 90.79 | 90.79 | |
ConvNet [59] | 99.03 | 99.59 | 95.29 | 98.55 | 98.15 | 91.88 | 79.34 | 98.32 | 95.04 | 95.24 | |
Developed method | 100.0 | 99.55 | 98.14 | 99.82 | 100.0 | 73.54 | 88.99 | 93.16 | 97.12 | 96.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Kang, Z.; Yang, Z.; Xie, J.; Xue, B.; Yang, J.; Tao, J. Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures. Remote Sens. 2022, 14, 5070. https://doi.org/10.3390/rs14205070
Yang J, Kang Z, Yang Z, Xie J, Xue B, Yang J, Tao J. Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures. Remote Sensing. 2022; 14(20):5070. https://doi.org/10.3390/rs14205070
Chicago/Turabian StyleYang, Juntao, Zhizhong Kang, Ze Yang, Juan Xie, Bin Xue, Jianfeng Yang, and Jinyou Tao. 2022. "Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures" Remote Sensing 14, no. 20: 5070. https://doi.org/10.3390/rs14205070
APA StyleYang, J., Kang, Z., Yang, Z., Xie, J., Xue, B., Yang, J., & Tao, J. (2022). Automatic Laboratory Martian Rock and Mineral Classification Using Highly-Discriminative Representation Derived from Spectral Signatures. Remote Sensing, 14(20), 5070. https://doi.org/10.3390/rs14205070