Tectonic Significances of the Geomorphic Evolution in the Southern Alashan Block to the Outward Expansion of the Northeastern Tibetan Plateau
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Stream Power Incision Model
3.2. Hypsometric Integral
4. Results
5. Discussion
5.1. Coupling Relationship of Terrain-Geomorphic Parameters-Tectonic Activities
5.2. The Implication of Knickpoints
5.3. Geomorphic Response Time
6. Conclusions
- (1)
- The spatiotemporal distribution of geomorphic parameters is coupled with tectonic activity, and the geomorphic evolution of Yabulai Shan is controlled by that. The values indicate that the tectonic activity in the southern margin was strong, while gradually decreasing towards the north. In addition, the HI values reveal that the Yabrai Shan is in the mature stage of geomorphological evolution.
- (2)
- The variations of and the distribution of knickpoints indicate that there were at least two tectonic acceleration events. The characteristic distribution of the two-stage knickpoints is due to the altered tectonic stress in the area.
- (3)
- The geomorphic of Yabrai Shan evolution recorded the transformation in this area from the original extensional environment, affected by the Ordos Block, to the compressional environment, affected by the north-eastern expansion of the Tibetan Platea after 1 Ma.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burchfiel, B.C.; Deng, Q.D.; Molnar, P.; Royden, L.; Wang, Y.P.; Zhang, P.Z. Intracrustal detachment within zones of continental deformation. Geology 1989, 17, 748. [Google Scholar] [CrossRef]
- Darby, B.; Ritts, B.; Yue, Y.; Meng, Q. Did the Altyn Tagh fault extend beyond the Tibetan Plateau. Earth Planet. Sci. Lett. 2005, 240, 425–435. [Google Scholar] [CrossRef]
- Tapponnier, P. Oblique stepwise rise and growth of the Tibetan Plateau. Science 2001, 294, 1671–1677. [Google Scholar] [CrossRef] [PubMed]
- Melissa, A.L.A.; Andrew, D.H.B.; Stephan, A.G.A.; Gombosuren, B.C.; Laura, E.W.D. Left-lateral sense offset of Upper Proterozoic to Paleozoic features across the Gobi Onon, Tost, and Zuunbayan faults in southern Mongolia and implications for other central Asian faults. Earth Planet. Sci. Lett. 1999, 173, 183–194. [Google Scholar]
- Vincent, S.J.; Allen, M.B. Evolution of the Minle and Chaoshui Basins, China: Implications for Mesozoic strike-slip basin formation in Central Asia. Geol. Soc. Am. Bull. 1999, 111, 725–742. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, P.Z.; He, W.G.; Yuan, D.Y.; Shao, Y.X.; Zheng, D.W.; Ge, W.P.; Min, W. Transformation of displacement between strike-slip and crustal shortening in the northern margin of the Tibetan Plateau: Evidence from decadal GPS measurements and late Quaternary slip rates on faults. Tectonophysics 2013, 584, 267–280. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, H.P.; Zhang, P.Z.; Molnar, P.; Liu, X.W.; Yuan, D.Y. Late Quaternary slip rates of the thrust faults in western Hexi Corridor (Northern Qilian Shan, China) and their implications for northeastward growth of the Tibetan Plateau. Geosphere 2013, 9, 342–354. [Google Scholar]
- Zheng, W.J.; Zhang, P.Z.; Ge, W.P.; Molnar, P.; Zhang, H.P.; Yuan, D.Y.; Liu, J.H. Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics 2013, 32, 271–293. [Google Scholar] [CrossRef]
- Zheng, W.J. Geometric Pattern and Active Tectonics of the Hexi Corridor and Its Adjacent Regions. Recent Dev. World Seismol. 2010, 3, 33–36. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, B.X.; Yuan, D.Y.; Chen, G.; Zhang, Y.P.; Yu, J.X.; Zhang, D.L.; Bi, H.Y.; Liu, B.X.; Yang, Y.J. Tectonic Activity in the Southern Alashan Block and the Latest Boundary of Outward Expansion on the Northeastern Tibetan Plateau, China. J. Earth Sci. Environ. 2021, 43, 224–236. [Google Scholar]
- Yu, J.X. Late Quaternary Slip Rates and Paleoearthquakes along the Yabrai Range-Front Fault in the Southern Gobi-Alashan Block; Institute of Geology, China Earthquake Administration: Beijing, China, 2013. [Google Scholar] [CrossRef]
- Yu, J.X. Active Tectonics in the Southern Gobi-Alashan Block and its Response to the Interactions of the Adjacent Crustal Blocks; Institute of Geology, China Earthquake Administration: Beijing, China, 2016. [Google Scholar] [CrossRef]
- Ye, K.; Zhang, L.; Wang, T.; Shi, X.J.; Zhang, J.J.; Liu, C. Geochronology, geochemistry and zircon Hf isotope of the Permian intermediate acid igneous rocks from the Yabrai Mountain in western Alxa, Inner Mongolia, and their tectonic implications. Acta Petrol. ET Mineral. 2016, 35, 901–928. [Google Scholar]
- Jin, F.X. The Study of Quaternary Stratigraphic Sequence in Yabrai Mountain of Alxa, Inner Mongolian Autonomous Region; China University of Geosciences: Beijing, China, 2014. [Google Scholar]
- Du, J.X. Role of Tectonic Uplift and Expansion within and Outside the Northeastern Tibetan Plateau in the Formation and Evolution of River and Desert Landscapes; University of Chinese Academy of Sciences (Aerospace Information Research Institute): Beijing, China, 2021. [Google Scholar] [CrossRef]
- Goren, L.; Fox, M.; Willett, S.D. Tectonics from fluvial topography using formal linear inversion: Theory and applications to the Inyo Mountains, California. J. Geophys. Res. Earth Surf. 2014, 119, 1651–1681. [Google Scholar] [CrossRef]
- Kerby, A.D.H. Channel changes in badlands. Geol. Soc. Am. Bull. 1983, 94, 739–752. [Google Scholar]
- Snyder, N.P.; Whipple, K.X.; Tucker, G.E.; Merritts, D.J. Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 2000, 112, 1250–1263. [Google Scholar] [CrossRef]
- Cameron, W. Tectonics from topography: Procedures, promise, and pitfalls. Tecton. Clim. Landsc. Evol. 2006, 398, 55–74. [Google Scholar]
- Pritchard, D.; Roberts, G.G.; White, N.J.; Richardson, C.N. Uplift histories from river profiles. Geophys. Res. Lett. 2009, 36, L24301. [Google Scholar] [CrossRef] [Green Version]
- Kirby, E.; Whipple, K.X.; Tang, W.; Chen, Z. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. J. Geophys. Res. 2003, 108, 2217. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.F.; Pan, B.T.; Kirby, E.; Li, Q.Y.; Geng, H.P.; Chen, J.F. Spatial differences in rock uplift rates inferred from channel steepness indices along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chin. Sci. Bull. 2010, 55, 3205–3214. [Google Scholar] [CrossRef]
- Fox, M.; Bodin, T.; Shuster, D.L. Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov Chain Monte Carlo inversion of river profiles. Geomorphology 2015, 238, 1–14. [Google Scholar] [CrossRef]
- Wu, M.B.; Liu, C.Y.; Zheng, M.L.; Yun, J.B. Jurassic depositional-tectonic evolution in the Yabrai basin, western Inner Mongolia, China and direction of petroleum exploration. Geol. Bull. China 2007, 26, 857–863. [Google Scholar]
- Zhong, F.P.; Zhong, J.H.; You, W.F.; Wang, Y.; Zhang, L.; Bian, Q.; Abdul, R.; Man, A.T.; Gao, Y.F.; Wang, J.H. Study on Sedimentary Facies and Environment of Middle Jurassic in Hongliugou of Yabrai Basin Inner Mongolia. Geol. Bull. China 2010, 32, 149–154. [Google Scholar]
- Regional Geology of Gansu Province; Geological Publishing House: Beijing, China, 1989.
- Hack, J. Studies of Longitudinal Stream Profiles in Virginia and Maryland; USGS Professional Paper: Washington, DC, USA, 1957; Volume 294, pp. 45–97. [Google Scholar]
- Howard, A.D. A detachment-limited model of drainage basin evolution. Water Resour. Res. 1994, 30, 2261–2285. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X.; Tucker, G.E. Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. J. Geophys. Res. Solid Earth 1999, 104, 17661–17674. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Quantifying differential rock-uplift rates via stream profile analysis. Geology 2001, 29, 415–418. [Google Scholar] [CrossRef]
- Perron, J.T.; Royden, L. An integral approach to bedrock river profile analysis. Earth Surf. Proc. Land 2012, 38, 570–576. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, H.P.; Zheng, D.W.; Yu, J.X.; Xiao, L. A brief introduction to the new method for river profile analysis: Integral Approach. Seismol. Geol. 2017, 39, 1111–11126. [Google Scholar]
- Willett, S.D.; McCoy, S.D.; Perron, J.T.; Goren, L.; Chen, C.Y. Dynamic Reorganization of River Basins. Science 2014, 343, 1117. [Google Scholar] [CrossRef]
- Kirby, E.; Whipple, K.X. Expression of active tectonics in erosional landscapes. J. Struct. Geol. 2012, 44, 54–75. [Google Scholar] [CrossRef]
- Royden, L.; Perron, J.T. Solutions of the stream power equation and application to the evolution of river longitudinal profiles. J. Geophys. Res. Earth 2013, 118, 497–518. [Google Scholar] [CrossRef]
- Fox, M.; Goren, L.; May, D.A.; Willett, S.D. Inversion of fluvial channels for paleorock uplift rates in Taiwan. J. Geophys. Res. 2014, 119, 1853–1875. [Google Scholar] [CrossRef]
- Goren, L. A theoretical model for fluvial channel response time during time-dependent climatic and tectonic forcing and its inverse applications. Geophys. Res. Lett. 2016, 43, 10753–10763. [Google Scholar] [CrossRef] [Green Version]
- Strahler, A.H. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Zhu, S.J.; Tang, G.A.; Li, F.Y.; Xiong, L.Y. Spatial variation of hypsometric integral in the Loess Plateau based on DEM. Acta Geogr. Sin. 2013, 68, 921–932. [Google Scholar]
- Zhao, H.Z.; Li, Y.L.; Yang, J.C.; Lu, H.H. Influence of area and space dependence for hypsometric integral and its geological implications. Geogr. Res. 2010, 29, 271–282. [Google Scholar]
- Forte, A.M.; Whipple, K.X. Short communication: The Topographic Analysis Kit (TAK) for TopoToolbox. Earth Surf. Dyn. 2019, 7, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Schwanghart, W.; Scherler, D. Short Communication: TopoToolbox 2—MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dyn. 2014, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gallen, S.F.; Wegmann, K.W. River profile response to normal fault growth and linkage: An example from the Hellenic forearc of south-central Crete, Greece. Earth Surf. Dyn. 2017, 5, 161–186. [Google Scholar] [CrossRef] [Green Version]
- Whipple, K.X.; Kirby, E.; Brocklehurst, S.H. Geomorphic limits to climate-induced increases in topographic relief. Nature 1999, 401, 39–43. [Google Scholar] [CrossRef]
- Grohmann, C. Morphometric analysis in geographic information systems: Applications of free software GRASS and R. Comput. Geosci. 2004, 30, 1055–1067. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.P.; Zhang, P.Z.; Fan, Q.C. Initiation and recession of the fluvial knickpoints: A case study from the Yalu River-Wangtian’e volcanic region, northeastern China. Sci. China Earth Sci. 2011, 54, 1746–1753. [Google Scholar] [CrossRef]
- Willett, S.D.; Hovius, N.; Brandon, M.T.; Fisher, D. Tectonics, Climate, and Landscape Evolution; Special Paper of the Geological Society of America; Geological Society of America: Boulder, CO, USA, 2006. [Google Scholar] [CrossRef]
- Wobus, C.W.; Crosby, B.T.; Whipple, K.X. Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. J. Geophys. Res. 2016, 111, F02017. [Google Scholar] [CrossRef]
- Whipple, K.X.; Forte, A.M.; DiBiase, R.A.; Gasparini, N.M.; Ouimet, W.B. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution. J. Geophys. Res. 2017, 122, 248–273. [Google Scholar] [CrossRef]
- Yang, J.J.; Zheng, W.J.; Wang, Y.; Bi, H.Y.; Zhang, D.L.; Zhang, P.Z.; Chen, G.; Wang, W.T. Quantitative geomorphological constraints on the landform evolution of the current active boundary of the northeastern Tibetan Plateau. Geomorphology 2020, 358, 107–120. [Google Scholar] [CrossRef]
- Li, Y.G.; Zheng, W.J.; Yang, J.J.; Zhang, D.L.; Zhou, H.Y.; Liu, T. Early Quaternary Tectonic Transformation of the Helan Shan: Constraints Due to Quantitative Geomorphology. Front. Earth Sci. 2022, 10, 825849. [Google Scholar] [CrossRef]
- Zheng, D.W.; Clark, M.K.; Zhang, P.Z.; Zheng, W.J.; Farley, K.A. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere 2010, 6, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Zhang, P.; Ran, Y.; Yang, X.; Chu, Q. Basic characteristics of active tectonic of China (in Chinese). Sci. China Ser. D Earth Sci. 2003, 46, 357–372. [Google Scholar]
- Zhang, P.; Shen, Z.; Wang, M.; Gan, W.; Burgmann, R.; Molnar, P. Continuous deformation of the Tibetan Plateau from global positioning system data. Geology 2004, 32, 809–812. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zheng, D.W.; Pang, J.Z.; Zhang, H.P.; Wang, W.T.; Yu, J.X.; Zhang, Z.Q.; Zheng, W.J.; Zhang, P.Z.; Li, Y.J. Using slope-area and apatite fission track analysis to decipher the rock uplift pattern of the Yumu Shan: New insights into the growth of the NE Tibetan Plateau. Geomorphology 2018, 308, 118–128. [Google Scholar] [CrossRef]
- Molnar, P.; England, P.; Martinrod, J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian Monsoon. Rev. Geophys. 1993, 31, 357–396. [Google Scholar] [CrossRef]
W No. | Das (km) | O-E (m) | Downstream | Upper Stream | Knickpoints | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ksn (m0.9) | R2 | Ksn (m0.9) | R2 | Kp-E (m) | Chi (χ) | A (km2) | Dfm (km) | Dfd (km) | |||
3 | 14.15 | 1268 | 354.75 | 0.99 | 38.85 | 0.96 | 1315 | 0.17 | 96.54 | 0.66 | 27.87 |
4 | 15.82 | 1289 | 70.42 | 0.98 | 14.41 | 0.97 | 1313 | 0.35 | 11.23 | 0.52 | 9.69 |
6 | 27.86 | 1339 | 358.35 | 0.96 | 90.04 | 0.98 | 1393 | 0.15 | 6.42 | 0.49 | 19.01 |
7 | 37.33 | 1329 | 167.66 | 0.99 | 26.76 | 0.88 | 1612 | 1.78 | 15.17 | 3.23 | 7.52 |
8 | 40.07 | 1322 | 323.60 | 0.97 | 6.70 | 0.89 | 1630 | 1.16 | 62.33 | 4.42 | 19.86 |
10 | 61.99 | 1341 | 200.91 | 0.96 | 75.31 | 0.97 | 1532 | 0.92 | 170.80 | 4.95 | 28.48 |
16 | 104.69 | 1659 | 55.45 | 1.00 | 14.73 | 0.98 | 1689 | 0.81 | 12.38 | 1.27 | 9.32 |
17 | 107.67 | 1556 | 283.43 | 0.96 | 24.14 | 0.97 | 1658 | 0.33 | 47.79 | 0.95 | 15.88 |
18 | 113.03 | 1554 | 137.85 | 0.95 | 81.28 | 0.95 | 1579 | 0.17 | 21.62 | 0.35 | 13.50 |
19 | 120.63 | 1524 | 49.02 | 0.99 | 8.19 | 0.90 | 1704 | 3.53 | 5.79 | 6.24 | 6.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, T.; Zheng, W.; Yang, J.; Zhang, D.; Liang, S.; Li, Y.; Liu, T.; Zhou, H.; Feng, C. Tectonic Significances of the Geomorphic Evolution in the Southern Alashan Block to the Outward Expansion of the Northeastern Tibetan Plateau. Remote Sens. 2022, 14, 6269. https://doi.org/10.3390/rs14246269
Ji T, Zheng W, Yang J, Zhang D, Liang S, Li Y, Liu T, Zhou H, Feng C. Tectonic Significances of the Geomorphic Evolution in the Southern Alashan Block to the Outward Expansion of the Northeastern Tibetan Plateau. Remote Sensing. 2022; 14(24):6269. https://doi.org/10.3390/rs14246269
Chicago/Turabian StyleJi, Tingting, Wenjun Zheng, Jingjun Yang, Dongli Zhang, Shumin Liang, Yige Li, Ting Liu, Haoyu Zhou, and Changhuan Feng. 2022. "Tectonic Significances of the Geomorphic Evolution in the Southern Alashan Block to the Outward Expansion of the Northeastern Tibetan Plateau" Remote Sensing 14, no. 24: 6269. https://doi.org/10.3390/rs14246269
APA StyleJi, T., Zheng, W., Yang, J., Zhang, D., Liang, S., Li, Y., Liu, T., Zhou, H., & Feng, C. (2022). Tectonic Significances of the Geomorphic Evolution in the Southern Alashan Block to the Outward Expansion of the Northeastern Tibetan Plateau. Remote Sensing, 14(24), 6269. https://doi.org/10.3390/rs14246269