Assessment of the Effectiveness of Sand-Control and Desertification in the Mu Us Desert, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Data and Processing
2.2.1. Data
Satellite Data
Socioeconomic Data
Meteorological Data
Field Data
2.2.2. Processing Procedures
Satellite Data Processing
Land Cover Classification
Processing of the Driving Factors
2.3. Effectiveness Assessment of Sand-Control
2.3.1. Post-Classification Differencing
2.3.2. ΔGDVI
2.3.3. Multiple Linear Regression Analysis
2.3.4. Logistic Regression Analysis
3. Results
3.1. Dynamic Situation of the Desert
3.2. Effectiveness of the Combating Desertification
3.3. Determinants of Sand-Control and Desertification
3.4. Spatial Variability of Sand-Control
4. Discussion
4.1. Spatiotemporal Variability of the Sand-Control Effectiveness
4.2. Driving Forces for Desertification and Sand-Control
4.3. Spatially Explicit Probability of Sand-Control and Desertification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UNCCD, UNCCD Terminology. 1994. Available online: https://www.unccd.int (accessed on 27 December 2021).
- Wu, W. Application de la Geomatique au Suivi de la Dynamique Environnementale en Zones Arides. Doctoral Dissertation, Université Panthéon-Sorbonne-Paris I, Paris, France, 2003. [Google Scholar]
- The State Forestry Administration of the People’s Republic of China. Atlas of Desertified and Sandified Land in China, 1st ed.; Science Press: Beijing, China, 2009; pp. 36–37. [Google Scholar]
- Hellden, U. Desertification monitoring: Is the desert encroaching? Desertif. Control. Bull 1988, 17, 8–12. [Google Scholar]
- Tucker, C.J.; Dregne, H.E.; Newcomb, W.W. Expansion and contraction of Sahara Desert from 1980 to 1990. Science 1991, 253, 299–300. [Google Scholar] [CrossRef]
- Wu, W.; Zhang, W. Present land use and cover patterns and their development potential in North Ningxia. J. Geogr. Sci. 2003, 13, 54–62. [Google Scholar] [CrossRef]
- Symeonakis, E.; Drake, N. Monitoring desertification and land degradation over sub-Saharan Africa. Int. J. Remote Sens. 2004, 25, 573–592. [Google Scholar] [CrossRef]
- Wu, W.; De Pauw, E.; Zucca, C. Using remote sensing to assess impacts of land management policies in the Ordos rangelands in China. Int. J. Digit. Earth 2013, 6 (Suppl. 2), 81–102. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, D.; Peng, D.; Zhang, Y. Quantifying the influences of natural and human factors on the water footprint of afforestation in desert regions of northern China. Sci. Total Environ. 2021, 780, 146577. [Google Scholar] [CrossRef]
- Kaushalya, R. Monitoring the impact of desertification in western Rajasthan using remote sensing. J. Arid. Environ. 1992, 22, 293–304. [Google Scholar] [CrossRef]
- Kumar, M.; Goossens, E.; Goossens, R. Assessment of sand dune change detection in Rajasthan (Thar) Desert, India. Int. J. Remote Sens. 1993, 14, 1689–1703. [Google Scholar] [CrossRef]
- Wu, W. Monitoring Land Degradation in Drylands by Remote Sensing. In Desertification and Risk Analysis Using High and Medium Resolution Satellite Data; Marini, A., Talbi, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 157–170. [Google Scholar] [CrossRef]
- Kim, J.W.; Song, C.H.; Park, E.B.; Lee, J.Y.; Choi, S.E.; Lee, W.K. A study for Desertification Monitoring and Assessment based on satellite imagery in Tunisia. J. Korean Assoc. Geogr. Inf. Stud. 2018, 21, 91–107. [Google Scholar] [CrossRef]
- Duan, H.; Wang, T.; Xue, X.; Yan, C. Dynamic monitoring of aeolian desertification based on multiple indicators in Horqin Sandy Land, China. Sci. Total Environ. 2019, 650, 2374–2388. [Google Scholar] [CrossRef]
- Cui, G.; Lee, W.K.; Kwak, D.A.; Choi, S.; Park, T.; Lee, J. Desertification monitoring by LANDSAT TM satellite imagery. For. Sci. Technol. 2011, 7, 110–116. [Google Scholar] [CrossRef]
- Sun, D.; Richard, D.; Li, H.; Li, B. Modeling desertification change in Minqin County, China. Environ. Monit. Assess. 2005, 108, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Liu, S. A Review of Remote Sensing Monitoring and Quantitative Assessment of Aeolian Desertification (in Chinese with English abstract). J. Desert Res. 2014, 34, 1222–1229. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Li, J.; Hua, T. Identifying the effect of climate change on desertification in northern China via trend analysis of potential evapotranspiration and precipitation. Ecol. Indic. 2020, 112. [Google Scholar] [CrossRef]
- Han, X.; Sun, Y.; Chen, Y.; Feng, Z.; Gong, Y.; Cheng, Y. Monitoring in Dynamic Change of Desertification in the Region of Central Asia Based on NOAA/AVHRR Image. Key Eng. Mater. 2012, 500, 592–597. [Google Scholar] [CrossRef]
- Lamchin, M.; Lee, W.; Jeon, S.W.; Lee, J.; Song, C.; Piao, D.; Lim, C.H.; Khaulenbek, A.; Navaandorj, I. Correlation between Desertification and Environmental Variables Using Remote Sensing Techniques in Hogno Khaan, Mongolia. Sustainability 2017, 9, 581. [Google Scholar] [CrossRef] [Green Version]
- Eckert, S.; Hüsler, F.; Liniger, H.; Hodel, E. Trend analysis of MODIS NDVI time series for detecting land degradation and regeneration in Mongolia. J. Arid. Environ. 2015, 113, 16–28. [Google Scholar] [CrossRef]
- Wu, W. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sens. 2014, 6, 1211–1233. [Google Scholar] [CrossRef] [Green Version]
- Xie, L.; Wu, W.; Huang, X.; Ou, P.; Lin, Z.; Wang, Z.; Song, Y.; Lang, T.; Huangfu, W.; Zhang, Y.; et al. Mining and Restoration Monitoring of Rare Earth Element (REE) Exploitation by New Remote Sensing Indicators in Southern Jiangxi, China. Remote Sens. 2020, 12, 3558. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Karam, F.; Liu, G. Enhancing the performance of regional land cover mapping. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 422–432. [Google Scholar] [CrossRef]
- European Commission. Directorate-General for Research and Innovation. In The Medalus Project: Mediterranean Desertification and Land Use: Manual on Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; Publications Office: Brussel, Belgium, 1999; pp. 1–85. [Google Scholar]
- European Space Agency (ESA). DesertWatch Project Final Report. 2009. Available online: http://due.esrin.esa.int/files/131-176-149-30_2009430103852.pdf (accessed on 27 December 2021).
- Lee, E.; Piao, D.; Song, C.; Kim, J.; Lim, C.; Kim, E.; Moon, J.; Kafatos, M.; Lamchin, M.; Jeon, S.; et al. Assessing environmentally sensitive land to desertification using MEDALUS method in Mongolia. For. Sci. Technol. 2019, 15, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Bouhata, R.; Bensekhria, A. Adaptation of MEDALUS method for the analysis depicting desertification in Oued Labiod valley (Eastern Algeria). Arab. J. Geosci. 2021, 14. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Abdelatif, A.D. Assessment of desertification using modified MEDALUS model in the north Nile Delta, Egypt. Geoderma 2022, 405, 115400. [Google Scholar] [CrossRef]
- Xu, D.; Song, A.; Tong, H.; Ren, H.; Hu, Y.; Shao, Q. A spatial system dynamic model for regional desertification simulation–A case study of Ordos, China. Environ. Model. Softw. 2016, 83, 179–192. [Google Scholar] [CrossRef]
- Feng, K.; Yan, C.; Xie, J.; Qian, D. Spatial-temporal Evolution of Aeolian Desertification Process in Ordos City during 1975–2015 (in Chinese with English abstract). J. Desert Res. 2018, 38, 233–242. [Google Scholar] [CrossRef]
- Bai, Z.; Cui, J.; Ding, X. Desertification and its driving factors in the Ordos Plateau from 1986 to 2015 (in Chiness with English abstract). Arid. Zone Res. 2020, 37, 749–756. [Google Scholar] [CrossRef]
- Feng, K.; Wang, T.; Liu, S.; Yan, C.; Kang, W.; Chen, X.; Guo, Z. Path analysis model to identify and analyse the causes of aeolian desertification in Mu Us Sandy Land, China. Ecol. Indic. 2021, 124, 107386. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, Q.; Yan, Y.; Zhang, X.; Niu, J.; Svenning, J.C. Ecological restoration is the dominant driver of the recent reversal of desertification in the Mu Us Desert (China). J. Clean. Prod. 2020, 268, 122241. [Google Scholar] [CrossRef]
- Hu, Y.; Han, Y.; Zhang, Y. Land desertification and its influencing factors in Kazakhstan. J. Arid. Environ. 2020, 180, 104203. [Google Scholar] [CrossRef]
- Han, J.; Wang, J.; Chen, L.; Xiang, J.; Ling, Z.; Li, Q.; Wang, E. Driving factors of desertification in Qaidam Basin, China: An 18-year analysis using the geographic detector model. Ecol. Indic. 2021, 124, 107404. [Google Scholar] [CrossRef]
- Hua, D.; Hao, X. Spatiotemporal change and drivers analysis of desertification in the arid region of northwest China based on Geographic Detector. Environ. Chall. 2021, 4, 100082. [Google Scholar] [CrossRef]
- Tong, L.; Ning, X.; Zhang, J.; Zhang, X. Spatial-temporal variation and driving mechanism of desertification in Hunshandake (Otindag) Sandy Land in recent 30 years (in Chinese with English abstract). Arid. Land Geogr. 2021, 44, 992–1002. [Google Scholar] [CrossRef]
- National Meteorological Science Data Center of China. Available online: http://data.cma.cn/data/cdcindex/cid/0b9164954813c573.html (accessed on 18 June 2021).
- Chavez, P.S., Jr. Image-Based Atmospheric Correction—Revisited and Improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- USGS. Landsat 8 (L8) Data Users Handbook (V1.0). 2015. Available online: http://landsat.usgs.gov/documents/Landsat8DataUsersHandbook.pdf (accessed on 30 June 2015).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Snee, R. Validation of Regression Models: Methods and Examples. Technometrics 1977, 19, 415–428. [Google Scholar] [CrossRef]
- Serneels, S.; Lambin, E.F. Proximate cause of land-use change in Narok District, Kenya: A spatial statistical model. Agric. Ecosyst. Environ. 2001, 85, 65–81. [Google Scholar] [CrossRef] [Green Version]
- Ou, P.; Wu, W.; Qin, Y.; Zhou, X.; Huangfu, W.; Zhang, Y.; Xie, L.; Huang, X.; Fu, X.; Li, J.; et al. Assessment of Landslide Hazard in Jiangxi Using Geo-information Technology. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Huangfu, W.; Wu, W.; Zhou, X.; Lin, Z.; Zhang, G.; Chen, R.; Song, Y.; Lang, T.; Qin, Y.; Ou, P.; et al. Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China. Sustainability 2021, 13, 4830. [Google Scholar] [CrossRef]
- Su, B.; Wang, Y.; Shuangguan, Z. Analysis on the Scale of a New Period of Returning Farmland to Forestland and Grassland in Northwest China (in Chinese with English abstract). Res. Soil Water Conserv. 2017, 24, 59–65. [Google Scholar] [CrossRef]
- Yao, W.; Yu, J.; Kang, H. Problems and Prospects of the Construction Effectiveness of the Three North Shelterbelt Project in Shaanxi Province (in Chinese with English abstract). Protection For. Sci. Technol. 2020, 38, 70–71. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Available online: http://www.moa.gov.cn/ztzl/lszczc/201103/t20110325_1955106.htm (accessed on 8 December 2021).
- Zhao, Z.; Wu, Q. Study on desertification monitoring from 2000 to 2014 and its driving factors through remote sensing in Ningxia, China. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 2439–2477. [Google Scholar] [CrossRef] [Green Version]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Captors | Scene Path/Row No | Acquisition Dates | Spatial Resolution | Source |
---|---|---|---|---|
Landsat 5 TM | 128/33 | 23 August 1991 | 30 m | USGS https://glovis.usgs.gov (last accessed on 20 May 2021) |
Landsat 5 TM | 28 July 1999 | |||
Landsat 5 TM | 27 August 2010 | |||
Landsat 8 OLI | 5 July 2020 | |||
Landsat 5 TM | 128/34 | 23 August 1991 | ||
Landsat 5 TM | 26 June 1999 | |||
Landsat 5 TM | 10 July 2010 | |||
Landsat 8 OLI | 7 September 2020 | |||
Landsat 5 TM | 129/33 | 30 August 1991 | ||
Landsat 5 TM | 20 August 1999 | |||
Landsat 5 TM | 28 June 2009 | |||
Landsat 8 OLI | 26 July 2019 | |||
Landsat 5 TM | 129/34 | 30 August 1991 | ||
Landsat 5 TM | 22 August 2000 | |||
Landsat 5 TM | 17 July 2010 | |||
Landsat 8 OLI | 26 July 2019 |
Year | Overall Accuracy | Kappa Coefficient |
---|---|---|
1991 | 92.35% | 0.9009 |
1999 | 92.87% | 0.9086 |
2010 | 90.33% | 0.8767 |
2020 | 92.598 | 0.9061 |
City/County or Banner | Sandy Land | ||||
---|---|---|---|---|---|
1991 | 1999 | 2010 | 2020 | ||
WuhaiCity | Area (km2) | 232.60 | 114.73 | 43.36 | 5.93 |
Proportion (%) | 1.68 | 1.10 | 0.60 | 0.12 | |
Otogqian | Area (km2) | 3164.50 | 1925.91 | 1991.04 | 1611.14 |
Proportion (%) | 22.90 | 18.52 | 27.75 | 31.55 | |
Otog | Area (km2) | 3262.41 | 2362.18 | 2118.26 | 1271.96 |
Proportion (%) | 23.61 | 22.71 | 29.53 | 24.91 | |
Uxin | Area (km2) | 4693.44 | 3861.74 | 2159.62 | 1848.40 |
Proportion (%) | 33.97 | 37.13 | 30.10 | 36.20 | |
Dingbian | Area (km2) | 224.60 | 99.40 | 56.16 | 55.20 |
Proportion (%) | 1.63 | 0.96 | 0.78 | 1.08 | |
Yinchuan | Area (km2) | 172.50 | 33.16 | 65.38 | 4.45 |
Proportion (%) | 1.25 | 0.32 | 0.91 | 0.09 | |
Yongning | Area (km2) | 10.31 | 1.10 | 0.56 | 0.88 |
Proportion (%) | 0.07 | 0.01 | 0.01 | 0.02 | |
Helan | Area (km2) | 10.15 | 4.79 | 2.29 | 0.07 |
Proportion (%) | 0.07 | 0.05 | 0.03 | 0.00 | |
Lingwu | Area (km2) | 703.12 | 614.50 | 323.03 | 143.80 |
Proportion (%) | 5.09 | 5.91 | 4.50 | 2.82 | |
Shizuishan | Area (km2) | 2.95 | 0.87 | 0.41 | 0.04 |
Proportion (%) | 0.02 | 0.01 | 0.01 | 0.00 | |
Pingluo | Area (km2) | 215.35 | 148.06 | 134.74 | 44.64 |
Proportion (%) | 1.56 | 1.42 | 1.88 | 0.87 | |
Wuzhong | Area (km2) | 20.09 | 5.85 | 9.44 | 0.77 |
Proportion (%) | 0.15 | 0.06 | 0.13 | 0.01 | |
Yanchi | Area (km2) | 740.98 | 1032.56 | 222.99 | 103.33 |
Proportion (%) | 5.36 | 9.93 | 3.11 | 2.02 | |
Qingtongxia | Area (km2) | 235.02 | 116.77 | 7.96 | 3.91 |
Proportion (%) | 1.70 | 1.12 | 0.11 | 0.08 | |
Zhongning | Area(km2) | 130.41 | 79.41 | 38.63 | 11.71 |
Proportion (%) | 0.94 | 0.76 | 0.54 | 0.23 | |
Total | Area (km2) | 13,818.45 | 10,401.03 | 7173.87 | 5106.22 |
Period | Sand-Control | Desertification | ||||||
---|---|---|---|---|---|---|---|---|
1991–1999 | 1999–2010 | 2010–2020 | 1991–2020 | 1991–1999 | 1999–2010 | 2010–2020 | 1991–2020 | |
Area (km2) | 5537.61 | 4969.28 | 3420.24 | 9140.44 | 2120.36 | 1742.40 | 1352.53 | 428.13 |
Proportion (%) | 40.07 | 47.78 | 47.68 | 66.15 | 3.36 | 2.62 | 1.94 | 0.68 |
∆GDVI | 0.1575 | 0.1806 | 0.1456 | 0.3518 | −0.0921 | −0.1237 | −0.0997 | −0.0691 |
1991 | Sandy Land | Shrubs | Saline | Cropland | Water | Grassland | Building | Woodland | Loess | Bare Soil | Coal Mine | Gain | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1999 | Sandy Land | 8275.67 | 499.35 | 59.94 | 136.86 | 19.26 | 1274.39 | 1.26 | 20.37 | 30.85 | 78.03 | 0.05 | 2120.36 |
Shrubs | 2253.4 | 8250.17 | 258.6 | 564.14 | 65.52 | 4906.12 | 19.94 | 40.48 | 91.86 | 514.37 | 4.3 | 8718.73 | |
Saline | 229.32 | 221.6 | 744.4 | 97.18 | 25.94 | 261.19 | 3.24 | 27.36 | 18.26 | 318.12 | 0.33 | 1202.54 | |
Cropland | 213.24 | 326.93 | 200.48 | 5937.56 | 563.39 | 1582.78 | 70.77 | 493.51 | 412.97 | 350.06 | 0.99 | 4215.12 | |
Water | 38.06 | 115.75 | 102.51 | 323.55 | 896.71 | 231.81 | 75 | 28.55 | 28.9 | 143.73 | 13.47 | 1101.33 | |
Grassland | 2476.09 | 5752.67 | 214.73 | 1000.56 | 72.61 | 9852.77 | 26.3 | 83.28 | 135.12 | 472.95 | 0.97 | 10,235.28 | |
Building | 23.39 | 93.29 | 16.64 | 238.93 | 79.12 | 40.55 | 92.21 | 3.05 | 8.35 | 113.68 | 15.33 | 632.33 | |
Woodland | 0.78 | 3.18 | 16.52 | 228.48 | 1.08 | 49.49 | 0.32 | 394.15 | 150.39 | 36.43 | 0.46 | 487.13 | |
Loess | 23.2 | 7.72 | 90.41 | 394.35 | 4.92 | 39.88 | 0.23 | 996.12 | 1461 | 214.76 | 0 | 1771.59 | |
Bare soil | 278.71 | 745.14 | 174.94 | 252.38 | 41.28 | 381.84 | 9.12 | 88.26 | 133.16 | 4370.87 | 38.52 | 2143.35 | |
Coal mine | 1.42 | 27.5 | 1.5 | 0.95 | 3.73 | 1.77 | 4.34 | 0.99 | 0 | 40.76 | 38.53 | 82.96 | |
Loss | 5537.61 | 7793.13 | 1136.27 | 3237.38 | 876.85 | 8769.82 | 210.52 | 1781.97 | 2320.47 | 2282.89 | 74.42 | ||
Net Change | −3417.25 | 925.6 | 66.27 | 977.74 | 224.48 | 1465.46 | 421.81 | −1294.84 | −548.88 | −139.54 | 8.54 |
1999 | Sandy Land | Shrubs | Saline | Cropland | Water | Grassland | Building | Woodland | Loess | Bare Soil | Coal Mine | Gain | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2010 | Sandy Land | 5430.03 | 590.29 | 40.22 | 23.73 | 5.23 | 1046.43 | 1.58 | 0.46 | 1.13 | 33.33 | 0 | 1742.4 |
Shrubs | 2202.47 | 10,266.32 | 460.17 | 826.95 | 185.41 | 9653.9 | 63.1 | 14.69 | 79.68 | 735.44 | 4.62 | 14,226.43 | |
Saline | 162.9 | 360.85 | 476.33 | 53.4 | 42.26 | 510.44 | 5.63 | 1.42 | 29.46 | 318.46 | 0.6 | 1485.42 | |
Cropland | 102.32 | 464.16 | 120.67 | 5878.66 | 459.82 | 985.43 | 136.96 | 311.18 | 408.84 | 118.27 | 1.13 | 3108.78 | |
Water | 26.49 | 87.23 | 89.75 | 162.16 | 660.52 | 85.4 | 27.66 | 0.88 | 4.45 | 28.28 | 1.97 | 514.27 | |
Grassland | 1885.86 | 3955.27 | 167.59 | 1079.92 | 80.18 | 6746.54 | 15.51 | 29.08 | 28.05 | 80.34 | 0.05 | 7321.85 | |
Building | 101.66 | 361.7 | 162.77 | 756.31 | 418.78 | 384.72 | 412.51 | 6.25 | 20.16 | 381.41 | 15.28 | 2609.04 | |
Woodland | 1.82 | 10.73 | 2.34 | 191.17 | 6.82 | 23.98 | 0.74 | 359.32 | 786.72 | 14.16 | 0.15 | 1038.63 | |
Loess | 157.1 | 168.95 | 81.81 | 877.57 | 26.91 | 328.69 | 10.12 | 111.33 | 1779.78 | 170.55 | 0 | 1933.03 | |
Bare soil | 325.93 | 685.61 | 434.22 | 385.57 | 117.55 | 340.43 | 68.57 | 117.28 | 387.01 | 4599.71 | 29.93 | 2892.1 | |
Coal mine | 2.73 | 64.05 | 16.01 | 5.2 | 14.21 | 7.05 | 27.66 | 0.68 | 0.02 | 142.6 | 68.06 | 280.21 | |
Loss | 4969.28 | 6748.84 | 1575.55 | 4361.98 | 1357.17 | 13,366.47 | 357.53 | 593.25 | 1745.52 | 2022.84 | 53.73 | ||
Net Change | −5006.44 | 7477.59 | −90.13 | −1253.2 | −842.9 | −6044.62 | 2251.51 | 445.38 | 187.51 | 869.26 | 226.48 |
2010 | Sandy Land | Shrubs | Saline | Cropland | Water | Grassland | Building | Woodland | Loess | Bare Soil | Coal Mine | Gain | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | Sandy Land | 3753.44 | 643.64 | 36.24 | 27.78 | 6.35 | 598.53 | 14.17 | 0.14 | 4.21 | 21.46 | 0.01 | 1352.53 |
Shrubs | 2028.74 | 15,292.54 | 487.92 | 342.77 | 54 | 6020.56 | 137 | 33.33 | 272.44 | 503.24 | 0.87 | 9880.87 | |
Saline | 134.77 | 380.96 | 350.77 | 55.83 | 107.8 | 159.92 | 20.94 | 1.62 | 0.99 | 34.46 | 0.73 | 898.02 | |
Cropland | 277.54 | 1200.4 | 196 | 6208.44 | 179.03 | 1799.9 | 884.76 | 267.71 | 669.18 | 475.64 | 4.73 | 5954.89 | |
Water | 17.68 | 109.23 | 43.59 | 133.26 | 604.69 | 71.2 | 76.54 | 1.53 | 3.79 | 62.93 | 6.01 | 525.76 | |
Grassland | 578.18 | 4145.24 | 106.36 | 354.77 | 62.85 | 4146.06 | 81.64 | 37 | 95.62 | 101.29 | 0.25 | 5563.2 | |
Building | 141.14 | 692.7 | 260.23 | 921.41 | 114.57 | 357.92 | 1523.51 | 15.04 | 66.65 | 706.38 | 66.89 | 3342.93 | |
Woodland | 51.17 | 218.46 | 1.76 | 435.71 | 7.08 | 491.66 | 9.55 | 172.03 | 64.64 | 80.09 | 0.4 | 1360.52 | |
Loess | 21.29 | 419.05 | 45.02 | 428.81 | 10.13 | 222.12 | 22.34 | 844.28 | 2351.67 | 663.06 | 0.02 | 2676.12 | |
Bare soil | 166.82 | 1339.93 | 422.8 | 75.33 | 23.62 | 199.46 | 202.91 | 24.69 | 183.61 | 4610.54 | 41.64 | 2680.81 | |
Coal mine | 2.91 | 47.58 | 11.06 | 3.32 | 4.69 | 1.06 | 48.19 | 0.56 | 0 | 232.71 | 226.73 | 352.08 | |
Loss | 3420.24 | 9197.19 | 1610.98 | 2778.99 | 570.12 | 9922.33 | 1498.04 | 1225.76 | 1361.13 | 2881.26 | 121.55 | ||
Net Change | −2067.71 | 683.68 | −712.96 | 3175.9 | −44.36 | −4359.13 | 1844.89 | 134.76 | 1314.99 | −200.45 | 230.53 |
1991 | Sandy Land | Shrubs | Saline | Cropland | Water | Grassland | Building | Woodland | Loess | Bare Soil | Coal Mine | Gain | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2020 | Sandy Land | 4677.05 | 111.58 | 13.69 | 49.05 | 6.45 | 240.85 | 0.41 | 1.02 | 1.08 | 3.99 | 0.01 | 428.13 |
Shrubs | 5109.79 | 9696.53 | 340.29 | 788.02 | 57.74 | 8469.22 | 4.8 | 49.28 | 102.58 | 461.43 | 0.58 | 15,383.73 | |
Saline | 216.93 | 179.9 | 336.83 | 38.72 | 41.87 | 308.03 | 4.4 | 42.52 | 3.24 | 75.5 | 0.44 | 911.55 | |
Cropland | 892.83 | 781.66 | 366.31 | 5118.01 | 654.07 | 2606.05 | 105.92 | 555.63 | 381.29 | 515.73 | 4.72 | 6864.21 | |
Water | 60.23 | 58.97 | 83.91 | 134.14 | 555.17 | 144.84 | 11.74 | 7.32 | 3.28 | 56.96 | 4.39 | 565.78 | |
Grassland | 1250 | 2905.03 | 140.72 | 506.66 | 33.29 | 4660.11 | 4.45 | 42.94 | 40.69 | 116.96 | 0.32 | 5041.06 | |
Building | 508.39 | 802.95 | 211.96 | 1245.39 | 326.56 | 735.01 | 155.42 | 34.38 | 36.18 | 678.49 | 28.22 | 4607.53 | |
Woodland | 322.7 | 197.8 | 5.2 | 383.24 | 42.46 | 259.67 | 4 | 243.93 | 29.92 | 31.75 | 0.17 | 1276.91 | |
Loess | 82.59 | 85.36 | 153.79 | 682.65 | 12.82 | 484.15 | 0.64 | 1052.73 | 1756.75 | 420.72 | 0.02 | 2975.47 | |
Bare soil | 671.34 | 1051.78 | 214.48 | 223.71 | 37.67 | 686.21 | 5.92 | 144.33 | 115.86 | 4010.18 | 27.21 | 3178.51 | |
Coal mine | 25.64 | 164.21 | 13.49 | 5.36 | 5.48 | 28.46 | 5.04 | 2.09 | 0.01 | 282.05 | 46.88 | 531.83 | |
Loss | 9140.44 | 6339.24 | 1543.84 | 4056.94 | 1218.41 | 13,962.49 | 147.32 | 1932.24 | 714.13 | 2643.58 | 66.08 | ||
Net Change | −8712.31 | 9044.49 | −632.29 | 2807.27 | −652.63 | −8921.43 | 4460.21 | −655.33 | 562.78 | 331.89 | 465.75 |
Type | Factors | Symbol | Data Preprocessing |
---|---|---|---|
Social and Economic Factors | Total Sown Area | X1 | Z-Score |
Meat Product | X2 | ||
Sheep Number | X3 | ||
Total Number of Livestock at the Year-end | X4 | ||
Per capita Net Income of Farmers and Herdsmen | X5 | ||
Gross Output of Farming, Forestry, Animal Husbandry and Fishery | X6 | ||
Gross Domestic Product (GDP) | X7 | ||
Population Density | X8 | ||
Meteorological Factors | Annual Precipitation | X9 | |
Mean Temperature | X10 | ||
Maximum Wind Speed | X11 | ||
Average Wind Speed | X12 | ||
Sunshine Duration | X13 | ||
Environmental Factors | Area of Water | X14 | |
Area of Coal Mines | X15 |
Model | Period | Expression | R2 | |
---|---|---|---|---|
Sand-Control | 1991–1999 | Y1 = −0.370 − 0.679*ΔX10 − 0.420*ΔX15 | 0.898 | (7) |
1999–2010 | Y2 = −8.009 × 10−17 + 0.855*ΔX2 − 0.392*ΔX13 | 0.764 | (8) | |
2010–2020 | Y3 = 1.410 × 10−16 + 0.570*ΔX5 + 0.520*ΔX3 | 0.835 | (9) | |
1991–2020 | Y4 = −1.03 × 10−15 + 0.801*ΔX5 + 0.465*ΔX9 | 0.764 | (10) | |
Desertification | 1991–1999 | Y5 = 0.206 − 1.058*ΔX5 | 0.600 | (11) |
2010–2020 | Y6 = 1.646 × 10−16 + 0.573*ΔX5 − 0.404*ΔX14 | 0.638 | (12) | |
1991–2020 | Y7 = −1.091 × 10−15 + 0.637*ΔX5 + 0.411*ΔX12 | 0.628 | (13) |
Type | Factors | Data Preprocessing | |
---|---|---|---|
Social and Economic Factors | Total Sown Area | X1 | Z-Score |
Meat Product | X2 | ||
Sheep Number | X3 | ||
Total Number of Livestock at the End of Year | X4 | ||
Per capita Net Income of Farmers and Herdsmen | X5 | ||
Gross Output of Farming, Forestry, Animal Husbandry and Fishery | X6 | ||
Gross Domestic Product (GDP) | X7 | ||
Climatic Factors | Precipitation | X8 | The optimal discretization |
Temperature | X9 | ||
Maximum Wind Speed | X10 | ||
Average Wind Speed | X11 | ||
Sunshine Duration | X12 | ||
Spatial Factors | Distance from Road | X13 | |
Distance from City | X14 | ||
Distance from Water | X15 | ||
Distance from Cropland | X16 | ||
Terrain Factors | Elevation | X17 | |
Aspect | X18 | ||
Slope | X19 |
Model | Period | Expression | HL Test | |
---|---|---|---|---|
Sand-Control | 1991–1999 | 0.184 | (14) | |
1999–2010 | 0.567 | (15) | ||
2010–2020 | 0.723 | (16) | ||
1991–2020 | 0.079 | (17) | ||
Desertification | 1991–1999 | 0.277 | (18) | |
1999–2010 | 0.155 | (19) | ||
2010–2020 | 0.476 | (20) | ||
1991–2020 | 0.276 | (21) |
Factor | Sand-Control | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1991–1999 | 1999–2010 | 2010–2020 | 1991–2020 | |||||||||||||||||
β | SE | Wals | Sig | OR | β | SE | Wals | Sig | OR | β | SE | Wals | Sig | OR | β | SE | Wals | Sig | OR | |
X1 | 0.425 | 0.141 | 9.113 | 0.003 | 1.530 | |||||||||||||||
X2 | −0.362 | 0.055 | 42.557 | 00.000 | 0.696 | 0.340 | 0.060 | 32.301 | 0.000 | 1.405 | ||||||||||
X3 | −0.107 | 0.056 | 3.654 | 0.056 | 0.898 | 0.268 | 0.077 | 12.091 | 0.001 | 1.307 | −1.067 | 0.173 | 38.104 | 0.000 | 0.344 | |||||
X4 | 0.522 | 0.061 | 73.807 | 0.000 | 1.686 | 0.750 | 0.105 | 50.774 | 0.000 | 2.117 | ||||||||||
X5 | −0.693 | 0.089 | 61.035 | 0.000 | 0.500 | |||||||||||||||
X6 | −0.286 | 0.065 | 19.267 | 0.000 | 0.752 | −0.974 | 0.132 | 54.407 | 0.000 | 0.378 | ||||||||||
X7 | 0.151 | 0.074 | 4.182 | 0.041 | 1.163 | 0.210 | 0.071 | 8.675 | 0.003 | 1.234 | 0.268 | 0.094 | 8.095 | 0.004 | 1.308 | |||||
X8 | 0.801 | 0.209 | 14.761 | 0.000 | 2.228 | −1.014 | 0.169 | 36.107 | 0.000 | 0.363 | ||||||||||
X9 | −0.711 | 0.136 | 27.178 | 0.000 | 0.491 | 0.400 | 0.145 | 7.577 | 0.006 | 1.492 | 0.532 | 0.138 | 14.970 | 0.000 | 1.703 | 0.270 | 0.115 | 5.507 | 0.019 | 1.310 |
X10 | −0.658 | 0.194 | 11.563 | 0.001 | 0.518 | 0.235 | 0.135 | 3.033 | 0.082 | 1.265 | ||||||||||
X11 | 0.421 | 0.076 | 31.035 | 0.000 | 1.524 | −0.206 | 0.110 | 3.530 | 0.060 | 0.814 | ||||||||||
X12 | −19.515 | 7842.123 | 0.000 | 0.998 | 0.000 | −0.259 | 0.064 | 16.424 | 0.000 | 0.772 | ||||||||||
X13 | −0.294 | 0.096 | 9.447 | 0.002 | 0.745 | −0.776 | 0.093 | 69.097 | 0.000 | 0.460 | −0.687 | 0.128 | 28.944 | 0.000 | 0.503 | −0.527 | 0.067 | 61.855 | 0.000 | 0.590 |
X14 | −0.385 | 0.140 | 7.524 | 0.006 | 0.681 | −0.246 | 0.110 | 4.942 | 0.026 | 0.782 | ||||||||||
X15 | −0.637 | 0.157 | 16.395 | 0.000 | 0.529 | −0.333 | 0.077 | 18.564 | 0.00 | 0.717 | ||||||||||
X16 | −0.376 | 0.077 | 23.601 | 0.000 | 0.686 | −0.647 | 0.119 | 29.633 | 0.000 | 0.523 | 0.356 | 0.093 | 14.697 | 0.000 | 1.428 | −0.597 | 0.061 | 94.860 | 0.000 | 0.551 |
X17 | −0.566 | 0.105 | 29.117 | 0.000 | 0.568 | −0.326 | 0.075 | 18.896 | 0.000 | 0.722 | −0.723 | 0.078 | 85.185 | 0.000 | 0.485 | |||||
X18 | −0.047 | 0.017 | 7.510 | 0.006 | 0.954 | |||||||||||||||
X19 | −0.029 | 0.013 | 5.349 | 0.021 | 0.971 | |||||||||||||||
Const | 42.666 | 15684.246 | 0.000 | 0.998 | 3.386E18 | 3.464 | 0.705 | 24.143 | 0.000 | 31.955 | 3.274 | 0.536 | 37.246 | 0.000 | 26.419 | 5.005 | 0.585 | 73.242 | 0.00 | 149.184 |
Factor | Desertification | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1991–1999 | 1999–2010 | 2010–2020 | 1991–2020 | |||||||||||||||||
β | SE | Wals | Sig | OR | β | SE | Wals | Sig | OR | β | SE | Wals | Sig | OR | β | SE | Wals | Sig | OR | |
X1 | −0.238 | 0.127 | 3.473 | 0.062 | 0.789 | |||||||||||||||
X2 | −0.805 | 0.222 | 13.105 | 0.000 | 0.447 | |||||||||||||||
X3 | 0.458 | 0.106 | 18.831 | 0.000 | 1.581 | −0.261 | 0.124 | 4.397 | 0.036 | 0.770 | 0.707 | 0.203 | 12.152 | 0.000 | 2.027 | |||||
X4 | −0.0493 | 0.108 | 20.845 | 0.000 | 0.611 | |||||||||||||||
X5 | −0.688 | 0.126 | 29.675 | 0.000 | 0.503 | 0.310 | 0.119 | 6.806 | 0.009 | 1.363 | ||||||||||
X6 | 0.368 | 0.122 | 9.077 | 0.003 | 1.444 | |||||||||||||||
X7 | 0.260 | 0.124 | 4.424 | 0.035 | 1.297 | 0.346 | 0.125 | 7.689 | 0.006 | 1.414 | ||||||||||
X8 | 0.449 | 0.121 | 13.635 | 0.000 | 1.566 | −1.052 | 0.197 | 28.409 | 0.000 | 0.349 | 2.157 | 0.378 | 32.625 | 0.000 | 8.648 | 1.755 | 0.450 | 15.233 | 0.000 | 5.784 |
X9 | 3.410 | 0.603 | 31.954 | 0.000 | 30.255 | −0.491 | 0.203 | 5.876 | 0.015 | 0.612 | −18.066 | 6138.015 | 0.000 | 0.998 | 0.000 | |||||
X10 | 0.391 | 0.127 | 9.530 | 0.002 | 1.479 | |||||||||||||||
X11 | −0.741 | 0.189 | 15.350 | 0.000 | 0.477 | 0.746 | 0.207 | 12.923 | 0.000 | 2.108 | 1.741 | 0.228 | 58.118 | 0.000 | 5.703 | |||||
X12 | −0.524 | 0.153 | 11.641 | 0.001 | 0.592 | |||||||||||||||
X13 | 0.798 | 0.142 | 31.579 | 0.000 | 2.222 | 0.619 | 0.179 | 11.890 | 0.001 | 1.857 | 0.840 | 0.222 | 14.376 | 0.000 | 2.316 | |||||
X14 | 0.930 | 0.164 | 32.229 | 0.000 | 2.535 | 0.387 | 0.172 | 5.064 | 0.024 | 1.472 | 0.705 | 0.214 | 10.875 | 0.001 | 2.025 | |||||
X15 | 1.327 | 0.415 | 10.228 | 0.001 | 3.769 | |||||||||||||||
X16 | 1.153 | 0.156 | 54.779 | 0.000 | 3.169 | |||||||||||||||
X17 | 0.232 | 0.138 | 2.832 | 0.092 | 1.261 | −2.744 | 0.624 | 19.349 | 0.000 | 0.064 | −0.903 | 0.323 | 7.809 | 0.005 | 0.405 | |||||
X18 | ||||||||||||||||||||
X19 | −0.069 | 0.020 | 12.197 | 0.000 | 0.934 | −0.059 | 0.026 | 5.160 | 0.023 | 0.943 | −0.081 | 0.034 | 5.720 | 0.017 | 0.922 | |||||
Const | −12.257 | 1.587 | 59.674 | 0.000 | 0.000 | 1.627 | 1.066 | 2.331 | 0.127 | 5.090 | 11.825 | 6138.015 | 0.000 | 0.998 | 136669.368 | −7.632 | 0.959 | 63.292 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, W.; Fu, X.; Jiang, J.; Liu, Y.; Zhang, M.; Zhou, X.; Ke, X.; He, Y.; Li, W.; et al. Assessment of the Effectiveness of Sand-Control and Desertification in the Mu Us Desert, China. Remote Sens. 2022, 14, 837. https://doi.org/10.3390/rs14040837
Li J, Wu W, Fu X, Jiang J, Liu Y, Zhang M, Zhou X, Ke X, He Y, Li W, et al. Assessment of the Effectiveness of Sand-Control and Desertification in the Mu Us Desert, China. Remote Sensing. 2022; 14(4):837. https://doi.org/10.3390/rs14040837
Chicago/Turabian StyleLi, Jie, Weicheng Wu, Xiao Fu, Jingheng Jiang, Yixuan Liu, Ming Zhang, Xiaoting Zhou, Xinxin Ke, Yecheng He, Wenjing Li, and et al. 2022. "Assessment of the Effectiveness of Sand-Control and Desertification in the Mu Us Desert, China" Remote Sensing 14, no. 4: 837. https://doi.org/10.3390/rs14040837
APA StyleLi, J., Wu, W., Fu, X., Jiang, J., Liu, Y., Zhang, M., Zhou, X., Ke, X., He, Y., Li, W., Zhou, C., Li, Y., Song, Y., Yang, H., & Tu, Q. (2022). Assessment of the Effectiveness of Sand-Control and Desertification in the Mu Us Desert, China. Remote Sensing, 14(4), 837. https://doi.org/10.3390/rs14040837