Evaluation of SST Data Products from Multi-Source Satellite Infrared Sensors in the Bohai-Yellow-East China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Himawari-8 SST
2.2.2. AVHRR SST
2.2.3. MODIS SST
2.2.4. iQuam2 SST
2.3. Methods
2.3.1. Match-Up Method
- (1)
- Based on the geographic coordinates (latitude and longitude) and observation date of the in situ data, we selected the corresponding satellite products acquired on the same day as the in situ observation. Subsequently, we recorded the in situ SST value at the nearest satellite overpass time (where in situ measurements were obtained within a time window of less than 0.5 h);
- (2)
- The satellite SST data were selected from the 0.5 × 0.5 pixel box centered on the in situ SST sample points. Each pixel represents the spatial resolution of the satellite data. Half the spatial resolution of the satellite data was used as the size of the box. To ensure the validity of the assessment results, negative SST values were excluded to avoid the impact of invalid data.
- (3)
- Next, the average effective satellite SST value within the spatial window (0.5 pixels) and the average effective in situ SST within the temporal window (0.5 h) were considered as pairs of matching data and subsequently included in the validation dataset.
- (4)
- In order to mitigate the impact of anomalous data, the validation dataset’s standard deviation (STD) was computed, and subsequently, the matching points that exceeded 1.5 × STD were eliminated.
2.3.2. Verification and Statistics
3. Results
3.1. Results of Our Comparision with In Situ SST Data
3.2. The Cross-Comparison Results with MODIS-Aqua SST Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, Y.-C.; Lu, C.-Y.; Huang, S.-J.; Yang, T.-Z.; Chang, Y.-C.; Ho, C.-R. On the Reconstruction of Missing Sea Surface Temperature Data from Himawari-8 in Adjacent Waters of Taiwan Using DINEOF Conducted with 25-h Data. Remote Sens. 2022, 14, 2818. [Google Scholar] [CrossRef]
- Bao, X.; Wan, X.; Gao, G.; Wu, D. The characteristics of the seasonal variability of the sea surface temperature field in the Bohai Sea, the Huanghai Sea and the East China Sea from AVHRR data. Acta Oceanol. Sin. 2002, 24, 125–133. [Google Scholar]
- García-Monteiro, S.; Sobrino, J.A.; Julien, Y.; Sòria, G.; Skokovic, D. Surface Temperature trends in the Mediterranean Sea from MODIS data during years 2003–2019. Reg. Stud. Mar. Sci. 2022, 49, 102086. [Google Scholar] [CrossRef]
- Mohamed, B.; Nilsen, F.; Skogseth, R. Interannual and Decadal Variability of Sea Surface Temperature and Sea Ice Concentration in the Barents Sea. Remote Sens. 2022, 14, 4413. [Google Scholar] [CrossRef]
- Tang, X.; Wang, F.; Chen, Y.; Li, M. Warming trend in northern East China Sea in recent four decades. Chin. J. Oceanol. Limnol. 2009, 27, 185–191. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Lin, X.; Wu, D. Modes and mechanisms of sea surface temperature low-frequency variations over the coastal China seas. J. Geophys. Res. 2010, 115, C08031. [Google Scholar] [CrossRef]
- Zhang, H.; Ignatov, A. A Completeness and Complementarity Analysis of the Data Sources in the NOAA In Situ Sea Surface Temperature Quality Monitor (iQuam) System. Remote Sens. 2021, 13, 3741. [Google Scholar] [CrossRef]
- Alerskans, E.; Høyer, J.L.; Gentemann, C.L.; Pedersen, L.T.; Nielsen-Englyst, P.; Donlon, C. Construction of a climate data record of sea surface temperature from passive microwave measurements. Remote Sens. Environ. 2020, 236, 111485. [Google Scholar] [CrossRef]
- Cao, M.; Mao, K.; Yan, Y.; Shi, J.; Wang, H.; Xu, T.; Fang, S.; Yuan, Z. A new global gridded sea surface temperature data product based on multisource data. Earth Syst. Sci. Data 2021, 13, 2111–2134. [Google Scholar] [CrossRef]
- Koutantou, K.; Brunner, P.; Vazquez-Cuervo, J. Validation of NASA Sea Surface Temperature Satellite Products Using Saildrone Data. Remote Sens. 2023, 15, 2277. [Google Scholar] [CrossRef]
- Gong, S.; Wong, K. Spatio-temporal analysis of sea surface temperature in the East China Sea using TERRA/MODIS products data. Sea Level Rise Coast. Infrastruct. 2018, 13, 213–227. [Google Scholar]
- Hao, Y.; Cui, T.; Singh, V.P.; Zhang, J.; Yu, R.; Zhang, Z. Validation of MODIS Sea Surface Temperature Product in the Coastal Waters of the Yellow Sea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1667–1680. [Google Scholar] [CrossRef]
- Saleh, A.K.; Al-Anzi, B.S. Statistical Validation of MODIS-Based Sea Surface Temperature in Shallow Semi-Enclosed Marginal Sea: A Comparison between Direct Matchup and Triple Collocation. Water 2021, 13, 1078. [Google Scholar] [CrossRef]
- Kozlov, I.; Dailidienė, I.; Korosov, A.; Klemas, V.; Mingėlaitė, T. MODIS-based sea surface temperature of the Baltic Sea Curonian Lagoon. J. Mar. Syst. 2014, 129, 157–165. [Google Scholar] [CrossRef]
- Shuva, M.S.H.; Golder, M.R.; Rouf, M.A.; Uddin, M.M.; Bir, J. Daytime and nighttime sea surface temperature (SST) along with diurnal variability (D-SST) in the northern bay of bengal: A remote sensing approach. Thalass. Int. J. Mar. Sci. 2022, 38, 697–708. [Google Scholar] [CrossRef]
- Chen, Y.; Qu, L.; Guan, L. Evaluation of NOAA/AVHRR Sea Surface Temperature at Full HRPT Resolution in the Northwest Pacific Ocean. J. Ocean Univ. China 2021, 20, 1431–1439. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, D.; Kawamura, H.; Guan, L.; Qin, H. Validation of AVHRR and TMI-derived sea surface temperature in the northern South China Sea. Cont. Shelf Res. 2009, 29, 2358–2366. [Google Scholar] [CrossRef]
- Meng, X.; Qingtao, S.; Mingsen, L. Comparison in multi-infrared products of sea surface temperature in northwest pacific. Oceanol. Limnol. Sin 2017, 48, 436–453. [Google Scholar]
- Yin, W.; Ma, Y.; Wang, D.; He, S.; Huang, D. Surface Upwelling off the Zhoushan Islands, East China Sea, from Himawari-8 AHI Data. Remote Sens. 2022, 14, 3261. [Google Scholar] [CrossRef]
- Xie, S.; Huang, Z.; Wang, X.H.; Leplastrier, A. Quantitative Mapping of the East Australian Current Encroachment Using Time Series Himawari-8 Sea Surface Temperature Data. J. Geophys. Res. Ocean. 2020, 125, e2019JC015647. [Google Scholar] [CrossRef]
- Hu, Z.; Xie, G.; Zhao, J.; Lei, Y.; Xie, J.; Pang, W. Mapping Diurnal Variability of the Wintertime Pearl River Plume Front from Himawari-8 Geostationary Satellite Observations. Water 2021, 14, 43. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Y.; Luo, Y.; Wang, Y.; Liu, X.; Zhang, Y.; Zhuang, Y.; Tian, Y. Improvement and Assessment of Ocean Color Algorithms in the Northwest Pacific Fishing Ground Using Himawari-8, MODIS-Aqua, and VIIRS-SNPP. Remote Sens. 2022, 14, 3610. [Google Scholar] [CrossRef]
- Huang, Z.; Feng, M.; Beggs, H.; Wijffels, S.; Cahill, M.; Griffin, C. High-resolution marine heatwave mapping in Australasian waters using Himawari-8 SST and SSTAARS data. Remote Sens. Environ. 2021, 267, 112742. [Google Scholar] [CrossRef]
- Ditri, A.; Minnett, P.; Liu, Y.; Kilpatrick, K.; Kumar, A. The Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean. Remote Sens. 2018, 10, 212. [Google Scholar] [CrossRef]
- Tu, Q.G.; Hao, Z.Z. Validation of Sea Surface Temperature Derived From Himawari-8 by JAXA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 448–459. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef]
- Saha, K.; Zhao, X.; Zhang, H.-M.; Casey, K.; Zhang, D.; Baker-Yeboah, S.; Kilpatrick, K.; Evans, R.; Ryan, T.; Relph, J. AVHRR Pathfinder Version 5.3 Level 3 Collated (L3C) Global 4km Sea Surface Temperature for 1981-Present; NOAA National Centers for Environmental Information: Asheville, NC, USA, 2018. [Google Scholar]
- Kilpatrick, K.; Podesta, G.; Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Ocean. 2001, 106, 9179–9197. [Google Scholar] [CrossRef]
- Saha, K.; Dash, P.; Zhao, X.; Zhang, H.-m. Error estimation of pathfinder version 5.3 level-3C SST using extended triple collocation analysis. Remote Sens. 2020, 12, 590. [Google Scholar] [CrossRef]
- Esaias, W.E.; Abbott, M.R.; Barton, I.; Brown, O.B.; Campbell, J.W.; Carder, K.L.; Clark, D.K.; Evans, R.H.; Hoge, F.E.; Gordon, H.R. An overview of MODIS capabilities for ocean science observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In situ SST Quality Monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. Error characterization in iQuam SSTs using triple collocations with satellite measurements. Geophys. Res. Lett. 2016, 43, 10826–10834. [Google Scholar] [CrossRef]
- Wang, H.; Lin, M.; Ma, C.; Yin, X.; Guan, L. Evaluation of Sea Surface Temperature from HY-1C Data. In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5897–5900. [Google Scholar]
- López García, M.J. SST Comparison of AVHRR and MODIS Time Series in the Western Mediterranean Sea. Remote Sens. 2020, 12, 2241. [Google Scholar] [CrossRef]
- Zhu, Y.; Bo, Y.; Zhang, J.; Wang, Y. Fusion of Multisensor SSTs Based on the Spatiotemporal Hierarchical Bayesian Model. J. Atmos. Ocean. Technol. 2018, 35, 91–109. [Google Scholar] [CrossRef]
- Dong, S.; Gille, S.T.; Sprintall, J.; Gentemann, C. Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res. 2006, 111, C04002. [Google Scholar] [CrossRef]
- Sukresno, B.; Hanintyo, R.; Kusuma, D.W.; Jatisworo, D.; Murdimanto, A. Three-Way Error Analysis of Sea Surface Temperature (Sst) Between Himawari-8, Buoy, and Mur Sst in Savu Sea. Int. J. Remote Sens. Earth Sci. 2018, 15, 25–36. [Google Scholar] [CrossRef]
- Park, K.-A.; Woo, H.-J.; Chung, S.-R.; Cheong, S.-H. Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI). Asia Pac. J. Atmos. Sci. 2019, 56, 187–206. [Google Scholar] [CrossRef]
- Bulgin, C.E.; Embury, O.; Merchant, C.J. Sampling uncertainty in gridded sea surface temperature products and Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) data. Remote Sens. Environ. 2016, 177, 287–294. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Xue, C.; Yue, Z.; Liu, J. Sea surface temperature consistency analysis based on AVHRR and MODIS. Mar. Environ. Sci. 2021, 40, 122–132. [Google Scholar] [CrossRef]
SST | Num | Fitting Curve | Bias | STD | RMSE | R |
---|---|---|---|---|---|---|
Himawari-8-iQuam2 | 33,658 | y = 0.9669x + 0.9590 | −0.3052 | 0.6536 | 0.7214 | 0.9944 |
AVHRR-iQuam2 | 1481 | y = 0.9735x + 0.8297 | −0.2402 | 0.4537 | 0.5134 | 0.9973 |
Modis-T-iQuam2 | 1886 | y = 0.9993x − 0.0299 | 0.0879 | 0.4485 | 0.4505 | 0.9975 |
Modis-A-iQuam2 | 1997 | y = 0.9949x + 0.0894 | 0.0429 | 0.4431 | 0.4431 | 0.9974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, C.; Yin, W.; He, S.; He, M.; Li, X. Evaluation of SST Data Products from Multi-Source Satellite Infrared Sensors in the Bohai-Yellow-East China Sea. Remote Sens. 2023, 15, 2493. https://doi.org/10.3390/rs15102493
Feng C, Yin W, He S, He M, Li X. Evaluation of SST Data Products from Multi-Source Satellite Infrared Sensors in the Bohai-Yellow-East China Sea. Remote Sensing. 2023; 15(10):2493. https://doi.org/10.3390/rs15102493
Chicago/Turabian StyleFeng, Changlong, Wenbin Yin, Shuangyan He, Mingjun He, and Xiaoxia Li. 2023. "Evaluation of SST Data Products from Multi-Source Satellite Infrared Sensors in the Bohai-Yellow-East China Sea" Remote Sensing 15, no. 10: 2493. https://doi.org/10.3390/rs15102493
APA StyleFeng, C., Yin, W., He, S., He, M., & Li, X. (2023). Evaluation of SST Data Products from Multi-Source Satellite Infrared Sensors in the Bohai-Yellow-East China Sea. Remote Sensing, 15(10), 2493. https://doi.org/10.3390/rs15102493