Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Landsat Data
2.2.2. Sentinel-2 MSI
2.2.3. SRTM DEM and ERA5-LAND Reanalysis
2.2.4. Auxiliary Data
3. Methods
3.1. Snow Mapping
3.2. Snow Cover Minimum Extent Extraction
3.2.1. Transient Snowline Altitude Cloud Removal
3.2.2. Time Series Fusion
3.3. Regional Snowline Altitude Extraction
3.4. Accuracy Assessment
4. Results
4.1. Accuracy of SLA-EMS
4.2. Regional SLA Dynamics during the Snowmelt Season
4.3. Interannual Variations of SLA-EMS
4.4. The Influences of Climate Factors on SLA-EMS
5. Discussion
5.1. Uncertainties and Limitations
- (1)
- in mountainous regions, the accuracy of snow cover range extraction using optical remote sensing images can be influenced by topographic effects, such as mountain shadows caused by terrain fluctuations (topographic effect). The topographic effect had a significant impact on the progress of remote sensing in mountainous regions [64,65], and thus many researchers have developed topographic correction methods. For instance, the spectral reflectance of snow cover is reduced in mountainous areas under the shadow, as compared to the reflectance of soil or vegetation that is exposed to direct sunlight. The latest topographic correction methods may greatly eliminate the effect of topographic effect on mountain snow cover information identification [66,67,68]. In addition, for the SLA extraction at the pixel scale [4,35], the effect of microtopographic factors (e.g., slope gradients and aspect) on SLA should be considered. This study focuses on the SLA at the regional scale (e.g., a glacier area or a catchment) to obtain one comprehensive SLA value for a region. Therefore, this study does not consider the slight effect of the topographic effect and microtopographic factors for a while.
- (2)
- cloud and cloud shadow interferences have long been one of the most significant error sources of snow cover information extraction in optical remote sensing. In this study, a small amount of cloud cover can be removed by the regional SLA (when the proportion of cloud cover and snow cover is less than 1). However, when this ratio is greater than 1 (very large), the accuracy of the extracted regional SLA is greatly reduced, and then so is the accuracy of cloud removal. Moreover, the cloud information of Landsat is derived from the cloud flag based on the CFMask algorithm with an overall accuracy of 96.4% [69]. Selkowitz et al. [70] (2015) reported that the CFMask algorithm was susceptible to commission errors in regions of rocky, alpine terrain, and where a combination of snow, ice, and other land cover types were present. In this case, the revised CFmask approach developed by Selkowitz et al. (2015) can be adopted to improve the ability of cloud recognition based on Landsat data. Additionally, combining Sentinel-1 synthetic aperture radar (SAR) remote sensing data with Sentinel-2 optical remote sensing data can improve the ability to identify snow cover under cloud cover [71,72].
- (3)
- Landsat image has a long revisit period (16 days) and there are inevitable data gaps at a certain time, originating from cloud cover, sensor, orbital limitations, and other factors. In this case, the available snow cover maps during the snowmelt season are quite scarce, and thus the accuracy of SLA-EMS extraction will be affected.
5.2. Spatiotemporal Variation of SLA-EMS
5.3. Effect of Climatic Factors and ENSO on SLA-EMS
6. Conclusions
- (1)
- The developed method for extracting the spatiotemporal patterns of the snowline altitude at the end of the melting season (SLA-EMS) is efficient. Furthermore, the accuracy of the extracted SLA-EMS data was assessed using higher resolution Sentinel-2 data, resulting in an OA of 92.6% and a Kappa coefficient of 0.85.
- (2)
- The SLA-EMS in all glacier areas in the Himalayas exhibited a general increasing trend during the period from 1991 to 2022. The SLA-EMS of Longbasaba is the significantly fastest rising (9.41 m·a−1), and the SLA-EMS of Namunani is the slowest rising (0.4 m·a−1).
- (3)
- The results of the correlation analyses between the SLA-EMS and temperature/precipitation demonstrate that the sensitivity of temperature and precipitation to variations in SLA-EMS varies across the different glacier areas. However, annual temperature/precipitation has a more significant impact than summer temperature/precipitation in general. The atmospheric circulation might have also been associated with anomalous SLA-EMS.
- (4)
- The robust storage and computational capabilities of the GEE platform have significantly enhanced the efficiency of remote sensing-based SLA extraction and provided substantial computational resources for large-scale and long-term monitoring of SLA dynamics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Tang, Z.; Wang, X.; Wang, J.; Wang, X.; Li, H.; Jiang, Z. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001–2015. Remote Sens. 2017, 9, 1045. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nat. Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Deng, G.; Tang, Z.; Hu, G.; Wang, J.; Sang, G.; Li, J. Spatiotemporal dynamics of snowline altitude and their responses to climate change in the Tienshan Mountains, Central Asia, During 2001–2019. Sustainability 2021, 13, 3992. [Google Scholar] [CrossRef]
- Krajčí, P.; Holko, L.; Perdigão, R.A.; Parajka, J. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. J. Hydrol. 2014, 519, 1769–1778. [Google Scholar] [CrossRef]
- Girona-Mata, M.; Miles, E.S.; Ragettli, S.; Pellicciotti, F. High-resolution snowline delineation from Landsat imagery to infer snow cover controls in a Himalayan catchment. Water Resour. Res. 2019, 55, 6754–6772. [Google Scholar] [CrossRef]
- Lorrey, A.M.; Vargo, L.; Purdie, H.; Anderson, B.; Cullen, N.J.; Sirguey, P.; Mackintosh, A.; Willsman, A.; Macara, G.; Chinn, W. Southern Alps equilibrium line altitudes: Four decades of observations show coherent glacier–climate responses and a rising snowline trend. J. Glaciol. 2022, 68, 1127–1140. [Google Scholar] [CrossRef]
- Baum, S.K.; Crowley, T.J. Seasonal snowline instability in a climate model with realistic geography: Application to carboniferous (~300 MA) glaciation. Geophys. Res. Lett. 1991, 18, 1719–1722. [Google Scholar] [CrossRef]
- Mengel, J.; Short, D.; North, G. Seasonal snowline instability in an energy balance model. Clim. Dyn. 1988, 2, 127–131. [Google Scholar] [CrossRef]
- Østrem, G. The transient snowline and glacier mass balance in southern British Columbia and Alberta, Canada. Geogr. Ann. Ser. A Phys. Geogr. 1973, 55, 93–106. [Google Scholar] [CrossRef]
- Mernild, S.H.; Pelto, M.; Malmros, J.K.; Yde, J.C.; Knudsen, N.T.; Hanna, E. Identification of snow ablation rate, ELA, AAR and net mass balance using transient snowline variations on two Arctic glaciers. J. Glaciol. 2013, 59, 649–659. [Google Scholar] [CrossRef]
- Pandey, P.; Kulkarni, A.V.; Venkataraman, G. Remote sensing study of snowline altitude at the end of melting season, Chandra-Bhaga basin, Himachal Pradesh, 1980–2007. Geocarto Int. 2013, 28, 311–322. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, X.; Deng, G.; Wang, X.; Jiang, Z.; Sang, G. Spatiotemporal variation of snowline altitude at the end of melting season across High Mountain Asia, using MODIS snow cover product. J. Appl. Remote Sens. 2020, 66, 2629–2645. [Google Scholar] [CrossRef]
- Qin, D.; Yao, T.; Ding, Y. Glossary of Cryospheric Science; China Meteorological Press: Beijing, China, 2014; pp. 158–159. [Google Scholar]
- Rabatel, A.; Bermejo, A.; Loarte, E.; Soruco, A.; Gomez, J.; Leonardini, G.; Vincent, C.; Sicart, J.E. Can the snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J. Glaciol. 2012, 58, 1027–1036. [Google Scholar] [CrossRef]
- Shea, J.; Menounos, B.; Moore, R.; Tennant, C. An approach to derive regional snow lines and glacier mass change from MODIS imagery, western North America. Cryosphere 2013, 7, 667–680. [Google Scholar] [CrossRef]
- Barandun, M.; Huss, M.; Usubaliev, R.; Azisov, E.; Berthier, E.; Kääb, A.; Bolch, T.; Hoelzle, M. Multi-decadal mass balance series of three Kyrgyz glaciers inferred from modelling constrained with repeated snow line observations. Cryosphere 2018, 12, 1899–1919. [Google Scholar] [CrossRef]
- McFadden, E.; Ramage, J.; Rodbell, D. Landsat TM and ETM+ derived snowline altitudes in the Cordillera Huayhuash and Cordillera Raura, Peru, 1986–2005. Cryosphere 2011, 5, 419–430. [Google Scholar] [CrossRef]
- You, Q.; Wu, T.; Shen, L.; Pepin, N.; Zhang, L.; Jiang, Z.; Wu, Z.; Kang, S.; AghaKouchak, A. Review of snow cover variation over the Tibetan Plateau and its influence on the broad climate system. Earth Sci. Rev. 2020, 201, 103043. [Google Scholar] [CrossRef]
- Tang, Z.; Ma, J.; Peng, H.; Wang, S.; Wei, J. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Adv. Space Res. 2017, 60, 969–979. [Google Scholar] [CrossRef]
- Kehrwald, N.M.; Thompson, L.G.; Tandong, Y.; Mosley-Thompson, E.; Schotterer, U.; Alfimov, V.; Beer, J.; Eikenberg, J.; Davis, M.E. Mass loss on Himalayan glacier endangers water resources. Geophys. Res. Lett. 2008, 35, L22503. [Google Scholar] [CrossRef]
- Mayewski, P.A.; Jeschke, P.A. Himalayan and Trans-Himalayan glacier fluctuations since AD 1812. Arct. Alp. Res. 1979, 11, 267–287. [Google Scholar] [CrossRef]
- Bahuguna, I.; Rathore, B.; Brahmbhatt, R.; Sharma, M.; Dhar, S.; Randhawa, S.; Kumar, K.; Romshoo, S.; Shah, R.; Ganjoo, R. Are the Himalayan glaciers retreating? Curr. Sci. 2014, 106, 1008–1013. [Google Scholar]
- Lee, E.; Carrivick, J.L.; Quincey, D.J.; Cook, S.J.; James, W.H.; Brown, L.E. Accelerated mass loss of Himalayan glaciers since the Little Ice Age. Sci. Rep. 2021, 11, 24284. [Google Scholar] [CrossRef]
- Kulkarni, A.V.; Karyakarte, Y. Observed changes in Himalayan glaciers. Curr. Sci. 2014, 106, 237–244. [Google Scholar]
- Guo, H.; Li, X.; Qiu, Y. Comparison of global change at the Earth’s three poles using spaceborne Earth observation. Chin. Sci. Bull. 2020, 65, 1320–1323. [Google Scholar] [CrossRef]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 2019, 11, 493–514. [Google Scholar] [CrossRef]
- Debnath, M.; Sharma, M.C.; Syiemlieh, H.J. Glacier dynamics in changme khangpu basin, sikkim himalaya, India, between 1975 and 2016. Geosciences 2019, 9, 259. [Google Scholar] [CrossRef]
- Ran, Y.; Li, X.; Cheng, G.; Nan, Z.; Che, J.; Sheng, Y.; Wu, Q.; Jin, H.; Luo, D.; Tang, Z. Mapping the permafrost stability on the Tibetan Plateau for 2005–2015. Sci. China Earth Sci. 2021, 64, 62–79. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef]
- Tang, Z.; Deng, G.; Hu, G.; Zhang, H.; Pan, H.; Sang, G. Satellite observed spatiotemporal variability of snow cover and snow phenology over high mountain Asia from 2002 to 2021. J. Hydrol. 2022, 613, 128438. [Google Scholar] [CrossRef]
- Choubin, B.; Alamdarloo, E.H.; Mosavi, A.; Hosseini, F.S.; Ahmad, S.; Goodarzi, M.; Shamshirband, S. Spatiotemporal dynamics assessment of snow cover to infer snowline elevation mobility in the mountainous regions. Cold Reg. Sci. Technol. 2019, 167, 102870. [Google Scholar] [CrossRef]
- Notarnicola, C. Hotspots of snow cover changes in global mountain regions over 2000–2018. Remote Sens. Environ. 2020, 243, 111781. [Google Scholar] [CrossRef]
- Verbyla, D.; Hegel, T.; Nolin, A.W.; Van de Kerk, M.; Kurkowski, T.A.; Prugh, L.R. Remote sensing of 2000–2016 alpine spring snowline elevation in dall sheep mountain ranges of Alaska and Western Canada. Remote Sens. 2017, 9, 1157. [Google Scholar] [CrossRef]
- Spiess, M.; Huintjes, E.; Schneider, C. Comparison of modelled-and remote sensing-derived daily snow line altitudes at Ulugh Muztagh, northern Tibetan Plateau. J. Mt. Sci. 2016, 13, 593–613. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, J.; Li, H.; Liang, J.; Li, C.; Wang, X. Extraction and assessment of snowline altitude over the Tibetan plateau using MODIS fractional snow cover data (2001 to 2013). J. Appl. Remote Sens. 2014, 8, 084689. [Google Scholar] [CrossRef]
- Hu, Z.; Dietz, A.; Kuenzer, C. The potential of retrieving snow line dynamics from Landsat during the end of the ablation seasons between 1982 and 2017 in European mountains. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 138–148. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, N.; Wu, H.; Wu, Y.; Wu, X.; Li, Q. Variations in firn line altitude and firn zone area on Qiyi Glacier, Qilian Mountains, over the period of 1990 to 2011. Arct. Antarct. Alp. Res. 2015, 47, 293–300. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S. Google earth engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Wayand, N.E.; Marsh, C.B.; Shea, J.M.; Pomeroy, J.W. Globally scalable alpine snow metrics. Remote Sens. Environ. 2018, 213, 61–72. [Google Scholar] [CrossRef]
- Crumley, R.L.; Palomaki, R.T.; Nolin, A.W.; Sproles, E.A.; Mar, E.J. SnowCloudMetrics: Snow information for everyone. Remote Sens. 2020, 12, 3341. [Google Scholar] [CrossRef]
- Rastner, P.; Prinz, R.; Notarnicola, C.; Nicholson, L.; Sailer, R.; Schwaizer, G.; Paul, F. On the automated mapping of snow cover on glaciers and calculation of snow line altitudes from multi-temporal landsat data. Remote Sens. 2019, 11, 1410. [Google Scholar] [CrossRef]
- Thompson, M. Not seeing the people for the population: A cautionary tale from the Himalaya. In Environment and Security; Lowi, M.R., Shaw, B.R., Eds.; International Political Economy Series; Palgrave Macmillan: London, UK, 2000; pp. 192–206. [Google Scholar]
- Hasnain, S.I. Himalayan glaciers meltdown: Impact on South Asian Rivers. In FRI 2002–Regional Hydrology: Bridging the Gap between Research and Practice; International Association of Hydrological Sciences: Wallingford, UK, 2002; Volume 274, pp. 417–423. [Google Scholar]
- Chen, F.; Wang, J.; Li, B.; Yang, A.; Zhang, M. Spatial variability in melting on Himalayan debris-covered glaciers from 2000 to 2013. Remote Sens. Environ. 2023, 291, 113560. [Google Scholar] [CrossRef]
- Muhammad, S.; Tian, L.; Nüsser, M. No significant mass loss in the glaciers of Astore Basin (North-Western Himalaya), between 1999 and 2016. J. Glaciol. 2019, 65, 270–278. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.L.; Jenkerson, C.; Masek, J.G.; Vermote, E.; Gao, F. Landsat ecosystem disturbance adaptive processing system (LEDAPS) algorithm description. In U.S. Geological Survey Open-File Report; USGS: Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef]
- Qiu, S.; Zhu, Z.; He, B. Fmask 4.0: Improved cloud and cloud shadow detection in Landsats 4–8 and Sentinel-2 imagery. Remote Sens. Environ. 2019, 231, 111205. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Huai, B.; Wang, J.; Sun, W.; Wang, Y.; Zhang, W. Evaluation of the near-surface climate of the recent global atmospheric reanalysis for Qilian Mountains, Qinghai-Tibet Plateau. Atmos. Res. 2021, 250, 105401. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change 2021, 11, 591–597. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, G.; Li, W.; Zhang, S.; Yao, X.; Wei, S. A new global dataset of mountain glacier centerlines and lengths. Earth Syst. Sci. Data 2022, 14, 3889–3913. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. El Niño/Southern Oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext). Int. J. Climatol. 2011, 31, 1074–1087. [Google Scholar] [CrossRef]
- Wolter, K.; Timlin, M.S. Measuring the strength of ENSO events: How does 1997/98 rank? Weather 1998, 53, 315–324. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Che, T.; Huang, X.; Hao, X.; Li, H. Snow cover mapping for complex mountainous forested environments based on a multi-index technique. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1433–1441. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, B.; Gao, X.; Liu, W.; Li, Y.; Li, R. Validation of Cloud-Gap-Filled Snow Cover of MODIS Daily Cloud-Free Snow Cover Products on the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 5642. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Wu, Y. Automated Glacier Snow Line Altitude Calculation Method Using Landsat Series Images in the Google Earth Engine Platform. Remote Sens. 2022, 14, 2377. [Google Scholar] [CrossRef]
- Liu, C.; Li, Z.; Zhang, P.; Tian, B.; Zhou, J.; Chen, Q. Variability of the snowline altitude in the eastern Tibetan Plateau from 1995 to 2016 using Google Earth Engine. J. Appl. Remote Sens. 2021, 15, 048505. [Google Scholar] [CrossRef]
- Gaddam, V.K.; Boddapati, R.; Kumar, T.; Kulkarni, A.V.; Bjornsson, H. Application of “OTSU”—An image segmentation method for differentiation of snow and ice regions of glaciers and assessment of mass budget in Chandra basin, Western Himalaya using Remote Sensing and GIS techniques. Environ. Monit. Assess. 2022, 194, 337. [Google Scholar] [CrossRef]
- Wen, J.; Liu, Q.; Xiao, Q.; Liu, Q.; Li, X. Modeling the land surface reflectance for optical remote sensing data in rugged terrain. Sci. China Ser. D Earth Sci. 2008, 51, 1169–1178. [Google Scholar] [CrossRef]
- Wang, R.; Ding, Y.; Shangguan, D.; Guo, W.; Zhao, Q.; Li, Y.; Song, M. Influence of Topographic Shading on the Mass Balance of the High Mountain Asia Glaciers. Remote Sens. 2022, 14, 1576. [Google Scholar] [CrossRef]
- Buchner, J.; Yin, H.; Frantz, D.; Kuemmerle, T.; Askerov, E.; Bakuradze, T.; Bleyhl, B.; Elizbarashvili, N.; Komarova, A.; Lewińska, K.E. Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sens. Environ. 2020, 248, 111967. [Google Scholar] [CrossRef]
- Yin, H.; Tan, B.; Frantz, D.; Radeloff, V.C. Integrated topographic corrections improve forest mapping using Landsat imagery. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102716. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, Y.; Fan, H. Evaluating and comparing performances of topographic correction methods based on multi-source DEMs and Landsat-8 OLI data. Int. J. Remote Sens. 2016, 37, 4712–4730. [Google Scholar] [CrossRef]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Int. J. Remote Sens. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- Selkowitz, D.J.; Forster, R.R. An automated approach for mapping persistent ice and snow cover over high latitude regions. Remote Sens. 2015, 8, 16. [Google Scholar] [CrossRef]
- Karbou, F.; Veyssière, G.; Coleou, C.; Dufour, A.; Gouttevin, I.; Durand, P.; Gascoin, S.; Grizonnet, M. Monitoring wet snow over an alpine region using sentinel-1 observations. Remote Sens. 2021, 13, 381. [Google Scholar] [CrossRef]
- Barella, R.; Callegari, M.; Marin, C.; Klug, C.; Galos, S.; Sailer, R.; Benetton, S.; Dinale, R.; Zebisch, M.; Notarnicola, C. Automatic glacier outlines extraction from Sentinel-1 and Sentinel-2 time series. In Proceedings of the EGU General Assembly, Online, 4–8 May 2020. [Google Scholar]
- Qiao, B.; Yi, C. Reconstruction of Little Ice Age glacier area and equilibrium line attitudes in the central and western Himalaya. Quat. Int. 2017, 444, 65–75. [Google Scholar] [CrossRef]
- Guo, Z.; Geng, L.; Shen, B.; Wu, Y.; Chen, A.; Wang, N. Spatiotemporal variability in the glacier snowline altitude across high mountain asia and potential driving factors. Remote Sens. 2021, 13, 425. [Google Scholar] [CrossRef]
- Maanya, U.; Kulkarni, A.V.; Tiwari, A.; Bhar, E.D.; Srinivasan, J. Identification of potential glacial lake sites and mapping maximum extent of existing glacier lakes in Drang Drung and Samudra Tapu glaciers, Indian Himalaya. Current Sci. 2016, 111, 553–560. [Google Scholar] [CrossRef]
- Wei, J.; Liu, S.; Wang, X.; Zhang, Y.; Jiang, Z.; Wu, K.; Zhang, Z.; Zhang, T. Longbasaba Glacier recession and contribution to its proglacial lake volume between 1988 and 2018. J. Glaciol. 2021, 67, 473–484. [Google Scholar] [CrossRef]
- Han, F.; Zhang, B.-p.; Zhao, F.; Guo, B.; Liang, T. Estimation of mass elevation effect and its annual variation based on MODIS and NECP data in the Tibetan Plateau. J. Mt. Sci. 2018, 15, 1510–1519. [Google Scholar] [CrossRef]
- Sigdel, M.; Ma, Y. Variability and trends in daily precipitation extremes on the northern and southern slopes of the central Himalaya. Theor. Appl. Climatol. 2017, 130, 571–581. [Google Scholar] [CrossRef]
- Kattel, D.B.; Yao, T.; Yang, W.; Gao, Y.; Tian, L. Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int. J. Climatol. 2015, 35, 4431–4443. [Google Scholar] [CrossRef]
- Wang, T.; Peng, S.; Ottlé, C.; Ciais, P. Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes. Environ. Res. Lett. 2015, 10, 024018. [Google Scholar] [CrossRef]
- Sobolowski, S.; Frei, A. Lagged relationships between North American snow mass and atmospheric teleconnection indices. Int. J. Climatol. 2007, 27, 221–231. [Google Scholar] [CrossRef]
Glacier | Latitude/Longitude | Location | Landsat Path/Row | Number of Used Images | Area/km2 |
---|---|---|---|---|---|
Toshain | 35.14°E/74.48°N | West Himalaya | 149/36, 150/36, 150/35 | 419 | 32.0949 |
Durung Drong | 33.74°E/76.30°N | West Himalaya | 148/37, 148/36 | 317 | 81.7236 |
Samudra Tapu | 32.47°E/77.44°N | West Himalaya | 147/37, 147/38 | 236 | 95.0904 |
MaNa | 30.98°E/79.27°N | Central Himalaya | 146/38, 146/39 | 318 | 54.0945 |
Namunani | 30.45°E/81.32°N | Central Himalaya | 144/39 | 169 | 8.5518 |
Rikha Samba | 28.83°E/83.49°N | Central Himalaya | 142/40, 142/40 | 203 | 7.452 |
Gechongkang | 28.15°E/86.72°N | East Himalaya | 140/40, 140/41 | 263 | 53.6319 |
Longbasaba | 27.90°E/88.06°N | East Himalaya | 139/41 | 178 | 10.3356 |
Lianggang | 28.12°E/90.37°N | East Himalaya | 138/40, 138/41 | 194 | 75.1473 |
Sentinel-2 Snow | Sentinel-2 Snow-Free | ||
---|---|---|---|
Above Landsat SLA | 1219 | 121 | OA = 92.6% |
Kappa = 0.85 | |||
Below Landsat SLA | 66 | 1108 | Pre = 90.9% |
Rec = 94.9% |
Summer Temperature | Annual Temperature | Summer Precipitation | Annual Precipitation | |
---|---|---|---|---|
Toshain | 0.184 | 0.165 | −0.067 | −0.061 |
Durung Drong | 0.236 | 0.031 | −0.242 | −0.364 * |
Samudra Tapu | 0.271 | 0.160 | 0.077 | −0.488 ** |
MaNa | 0.264 | 0.462 ** | −0.017 | 0.051 |
Namunani | 0.106 | 0.027 | −0.089 | 0.164 |
Rikha Samba | 0.103 | 0.130 | −0.288 | −0.267 |
Gechongkang | 0.385 * | 0.185 | −0.092 | −0.050 |
Longbasaba | 0.034 | 0.428 ** | −0.066 | −0.058 |
Lianggang | 0.289 | 0.059 | −0.444 ** | −0.309 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tang, Z.; Deng, G.; Hu, G.; You, Y.; Zhao, Y. Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022. Remote Sens. 2023, 15, 2534. https://doi.org/10.3390/rs15102534
Wang J, Tang Z, Deng G, Hu G, You Y, Zhao Y. Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022. Remote Sensing. 2023; 15(10):2534. https://doi.org/10.3390/rs15102534
Chicago/Turabian StyleWang, Jingwen, Zhiguang Tang, Gang Deng, Guojie Hu, Yuanhong You, and Yancheng Zhao. 2023. "Landsat Satellites Observed Dynamics of Snowline Altitude at the End of the Melting Season, Himalayas, 1991–2022" Remote Sensing 15, no. 10: 2534. https://doi.org/10.3390/rs15102534