Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements
Abstract
:1. Introduction
2. Data Sets and Method
2.1. Himawari-8 L2P SST Data
2.2. Ship Observations
2.3. Quality Control and Matchups
3. Results
3.1. A Diurnal Variation Case Study
3.2. Statistics
3.3. Validation under Different Environmental Conditions
3.3.1. Performance against Wind Speed
3.3.2. Performance against SST
3.3.3. Performance against Local Solar Time
3.3.4. Performance against Relative Humidity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hollmann, R.; Merchant, C.J.; Saunders, R.; Downy, C.; Buchwitz, M.; Cazenave, A.; Chuvieco, E.; Defourny, P.; de Leeuw, G.; Forsberg, R. The ESA Climate Change Initiative: Satellite Data Records for Essential Climate Variables. Bull. Am. Meteorol. Soc. 2013, 94, 1541–1552. [Google Scholar] [CrossRef]
- Minnett, P.J.; Alvera-Azcárate, A.; Chin, T.M.; Corlett, G.K.; Gentemann, C.L.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a Century of Satellite Remote Sensing of Sea-Surface Temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea Surface Temperature Variability: Patterns and Mechanisms. Ann. Rev. Mar. Sci. 2010, 2, 115–143. [Google Scholar] [CrossRef] [PubMed]
- Tandeo, P.; Chapron, B.; Ba, S.; Autret, E.; Fablet, R. Segmentation of Mesoscale Ocean Surface Dynamics Using Satellite SST and SSH Observations. IEEE Trans. Geosci. Remote Sens. 2013, 52, 4227–4235. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea Surface Temperature from the New Japanese Geostationary Meteorological Himawari-8 Satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef]
- Kramar, M.; Ignatov, A.; Petrenko, B.; Kihai, Y.; Dash, P. Near Real Time SST Retrievals from Himawari-8 at NOAA Using ACSPO System. In Proceedings of the Ocean Sensing and Monitoring VIII SPIE, Baltimore, MD, USA, 17–21 April 2016; Volume 9827, pp. 149–159. [Google Scholar]
- Govekar, P.; Mittaz, J.; Griffin, C.; Beggs, H. Himawari-8 and Multi-sensor sea surface temperature products and their applications. In Proceedings of the 22nd GHRSST Science Team Meeting, Virtual, 7–11 June 2021; Available online: https://www.foo.org.au/wp-content/uploads/2021/11/Govekar_FOO_2021.pdf (accessed on 20 April 2023).
- Ditri, A.L.; Minnett, P.J.; Liu, Y.; Kilpatrick, K.; Kumar, A. The Accuracies of Himawari-8 and MTSAT-2 Sea-Surface Temperatures in the Tropical Western Pacific Ocean. Remote Sens. 2018, 10, 212. [Google Scholar] [CrossRef]
- Park, K.-A.; Woo, H.-J.; Chung, S.-R.; Cheong, S.-H. Development of Sea Surface Temperature Retrieval Algorithms for Geostationary Satellite Data (Himawari-8/AHI). Asia-Pac. J. Atmos. Sci. 2020, 56, 187–206. [Google Scholar] [CrossRef]
- Tu, Q.; Hao, Z. Validation of Sea Surface Temperature Derived from Himawari-8 by JAXA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 448–459. [Google Scholar] [CrossRef]
- Yang, M.; Guan, L.; Beggs, H.; Morgan, N.; Kurihara, Y.; Kachi, M. Comparison of Himawari-8 AHI SST with Shipboard Skin SST Measurements in the Australian Region. Remote Sens. 2020, 12, 1237. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.S.; Wimmer, W.; Fisher, G.; Reynolds, M.; Edwards, R.; Nightingale, T.J. An Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) for Deployment Aboard Volunteer Observing Ships (VOS). J. Atmos. Ocean. Technol. 2008, 25, 93–113. [Google Scholar] [CrossRef]
- Bureau of Meteorology. Version fv02 IMOS Himawari-8 Level 2 Pre-Processed (L2P) Single Scene SST Dataset. Bureau of Meteorology Satellite Sea Surface Temperature (SST) Collection (Collection). 2022. NCI Australia. Available online: https://geonetwork.nci.org.au/geonetwork/srv/eng/catalog.search#/metadata/f4670_9414_6533_6479 (accessed on 20 April 2023).
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A. An Update on the RTTOV Fast Radiative Transfer Model (Currently at Version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Hocking, J.; Rayer, P.; Rundle, D.; Saunders, R.; Matricardi, M.; Geer, A.; Brunel, P.; Vidot, J. RTTOV V12 Users Guide. Available online: https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov12/users_guide_rttov12_v1.3.pdf (accessed on 20 April 2023).
- Merchant, C.J.; Harris, A.R.; Maturi, E.; MacCallum, S. Probabilistic Physically Based Cloud Screening of Satellite Infrared Imagery for Operational Sea Surface Temperature Retrieval. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 2735–2755. [Google Scholar] [CrossRef]
- Puri, K.; Dietachmayer, G.; Steinle, P.; Dix, M.; Rikus, L.; Logan, L.; Naughton, M.; Tingwell, C.; Xiao, Y.; Barras, V. Implementation of the Initial ACCESS Numerical Weather Prediction System. Aust. Meteorol. Oceanogr. J. 2013, 63, 265–284. [Google Scholar] [CrossRef]
- Embury, O.; Merchant, C.J.; Corlett, G.K. A Reprocessing for Climate of Sea Surface Temperature from the Along-Track Scanning Radiometers: Initial Validation, Accounting for Skin and Diurnal Variability Effects. Remote Sens. Environ. 2012, 116, 62–78. [Google Scholar] [CrossRef]
- Merchant, C.J.; Le Borgne, P.; Marsouin, A.; Roquet, H. Optimal Estimation of Sea Surface Temperature from Split-Window Observations. Remote Sens. Environ. 2008, 112, 2469–2484. [Google Scholar] [CrossRef]
- Donlon, C.J.; Casey, K.S.; Robinson, I.S.; Gentemann, C.L.; Reynolds, R.W.; Barton, I.; Arino, O.; Stark, J.; Rayner, N.; LeBorgne, P.; et al. The GODAE High-Resolution Sea Surface Temperature Pilot Project. Oceanography 2009, 22, 34–45. [Google Scholar] [CrossRef]
- Petrenko, B.; Ignatov, A.; Kihai, Y.; Dash, P. Sensor-Specific Error Statistics for SST in the Advanced Clear-Sky Processor for Oceans. J. Atmos. Ocean. Technol. 2016, 33, 345–359. [Google Scholar] [CrossRef]
- Zhang, H.; Babanin, A.V.; Ignatov, A.; Petrenko, B. Initial Evaluation of the Sensor-Specific Error Statistics in the NOAA Advanced Clear-Sky Processor for Oceans SST System: Diurnal Variation Signals Captured. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1642–1646. [Google Scholar] [CrossRef]
- Griffin, C.; Beggs, H.; Majewski, L. GHRSST Compliant AVHRR SST Products over the Australian Region—Version 1; Technical Report; Bureau of Meteorology: Melbourne, Australia, 2017; 151p. Available online: http://imos.org.au/fileadmin/user_upload/shared/SRS/SST/GHRSST-DOC-basic-v1.0r1.pdf (accessed on 20 April 2023).
- Beggs, H.; Morgan, N.; Sisson, J. IMOS Ship SST for Satellite SST Validation. In Proceedings of the GHRSST XVIII Science Team Meeting, Qingdao, China, 5–9 June 2017; ISSN 2014-2529. pp. 127–134. Available online: https://repository.oceanbestpractices.org/handle/11329/2074 (accessed on 20 April 2023).
- Wimmer, W.; Robinson, I.S. The ISAR Instrument Uncertainty Model. J. Atmos. Ocean. Technol. 2016, 33, 2415–2433. [Google Scholar] [CrossRef]
- Donlon, C.J.; Wimmer, W.; Robinson, I.; Fisher, G.; Ferlet, M.; Nightingale, T.; Bras, B. A Second-Generation Blackbody System for the Calibration and Verification of Seagoing Infrared Radiometers. J. Atmos. Ocean. Technol. 2014, 31, 1104–1127. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Ignatov, A.; Babanin, A.V. Nighttime Cool Skin Effect Observed from Infrared SST Autonomous Radiometer (ISAR) and Depth Temperatures. J. Atmos. Ocean. Technol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Schulz, E.; Sisson, J.; Beggs, H. Quality Control Procedure for IMOS Real-Time Meteorological and Sea Surface Observations, and Air-Sea Fluxes from Research Vessel and Mooring Platforms; Bureau Research Report No. 059; National Library of Australia Cataloguing-in-Publication Entry: Canberra, Australia, 2021; p. 14. Available online: http://www.bom.gov.au/research/publications/researchreports/BRR-059.pdf (accessed on 20 April 2023).
- Smith, S.D. Coefficients for Sea Surface Wind Stress, Heat Flux, and Wind Profiles as a Function of Wind Speed and Temperature. J. Geophys. Res. Oceans 1988, 93, 15467–15472. [Google Scholar] [CrossRef]
- IMOS. IMOS Quality Controlled ISAR SST, SBE38 SST and Meteorological Data from RV Investigator. 2022. Available online: http://thredds.aodn.org.au/thredds/catalog/IMOS/SOOP/SOOP-ASF/VLMJ_Investigator/meteorological_sst_observations/YYYY/ISAR_QC/catalog.html (accessed on 20 April 2023).
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D. Satellite-Based Time-Series of Sea-Surface Temperature since 1981 for Climate Applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Godfrey, J.S.; Wick, G.A.; Edson, J.B.; Young, G.S. Cool-Skin and Warm-Layer Effects on Sea Surface Temperature. J. Geophys. Res. C Oceans 1996, 101, 1295–1308. [Google Scholar] [CrossRef]
- Minnett, P.J.; Smith, M.; Ward, B. Measurements of the Oceanic Thermal Skin Effect. Deep Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 861–868. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P. Impact of the Atmospheric Transmittance and Total Water Vapor Content in the Algorithms for Estimating Satellite Sea Surface Temperatures. IEEE Trans. Geosci. Remote Sens. 1993, 31, 946–952. [Google Scholar] [CrossRef]
- May, D.A.; Holyer, R.J. Sensitivity of Satellite Multichannel Sea Surface Temperature Retrievals to the Air-sea Temperature Difference. J. Geophys. Res. Oceans 1993, 98, 12567–12577. [Google Scholar] [CrossRef]
- Zavody, A.M.; Mutlow, C.T.; Llewellyn-Jones, D.T. A Radiative Transfer Model for Sea Surface Temperature Retrieval for the Along-track Scanning Radiometer. J. Geophys. Res. Oceans 1995, 100, 937–952. [Google Scholar] [CrossRef]
CRUISE ID | N | BIAS (ISAR-SBE38; °C) | SD (°C) | DATE |
---|---|---|---|---|
IN2016_V02 | 15 | 0.03 | 0.05 | 14 March 2016–15 April 2016 |
IN2016_T02 | 260 | −0.33 | 0.08 | 25 August 2016–28 August 2016 |
IN2016_V04 | 404 | −0.38 | 0.11 | 31 August 2016–22 September 2016 |
IN2016_V05 | 2223 | −0.26 | 0.10 | 27 September 2016–24 October 2016 |
IN2016_V06 | 641 | −0.26 | 0.11 | 28 October 2016–12 November 2016 |
IN2017_V01 | 0 | 0.00 | 0.00 | 14 January 2017–1 March 2017 |
IN2017_V02 | 1 | −1.33 | 0.00 | 16 March 2017–27 March 2017 |
IN2017_C01 | 94 | −1.14 | 0.41 | 11 April 2017–27 April 2017 |
IN2017_C02 | 438 | −0.86 | 0.07 | 4 May 2017–14 May 2017 |
IN2017_V03 | 51 | −1.03 | 0.10 | 15 May 2017–20 May 2017 |
IN2017_V05 | 3322 | −0.19 | 0.18 | 11 October 2017–9 November 2017 |
IN2017_T02 | 245 | −0.23 | 0.05 | 14 November 2017–25 November 2017 |
IN2018_V01 | 4 | −0.09 | 0.07 | 11 January 2018–21 February 2018 |
IN2018_T01 | 277 | −0.28 | 0.10 | 5 April 2018–14 April 2018 |
IN2019_V04 | 284 | −0.31 | 0.07 | 9 August 2019–2 September 2019 |
IN2019_V05 | 1366 | −0.37 | 0.10 | 9 September 2019–28 September 2019 |
IN2019_T02 | 472 | −0.30 | 0.09 | 6 October 2019–13 October 2019 |
IN2019_V06 | 4022 | −0.34 | 0.16 | 20 October 2019–16 December 2019 |
IN2019_T03 | 320 | 0.05 | 0.07 | 22 December 2019–31 December 2019 |
IN2020_V01 | 21 | −1.11 | 0.27 | 10 January 2020–5 May 2020 |
IN2020_V09 | 1 | −0.27 | 0.00 | 27 August 2020–12 September 2020 |
Year | Day/Night | N | Mean Bias (°C) | Median Bias (°C) | SD (°C) | RSD (°C) | R2 |
---|---|---|---|---|---|---|---|
2016 | Day | 3229 | −0.21 | −0.17 | 0.4 | 0.23 | 0.95 |
Night | 3841 | −0.16 | −0.06 | 0.44 | 0.28 | 0.99 | |
2017 | Day | 4326 | −0.14 | −0.14 | 0.29 | 0.23 | 0.97 |
Night | 3654 | 0.04 | 0.08 | 0.3 | 0.17 | 0.98 | |
2018 | Day | 254 | −0.17 | −0.17 | 0.21 | 0.21 | 0.99 |
Night | 281 | 0.1 | 0.12 | 0.24 | 0.15 | 0.99 | |
2019 | Day | 8609 | −0.08 | −0.06 | 0.55 | 0.43 | 0.97 |
Night | 7676 | −0.02 | 0.04 | 0.36 | 0.26 | 0.99 | |
2020 | Day | 0 | - | - | - | - | - |
Night | 1 | 0.28 | 0.28 | 0 | 0 | - | |
All | Day | 16,418 | −0.12 | −0.12 | 0.47 | 0.31 | 0.98 |
Night | 15,453 | −0.04 | 0.03 | 0.37 | 0.24 | 0.99 |
Study | Day/Night | N | Mean Bias (°C) | Median (°C) | SD (°C) | RSD (°C) |
---|---|---|---|---|---|---|
This Study | Day | 2025 | −0.19 | −0.16 | 0.46 | 0.28 |
Night | 2422 | −0.24 | −0.13 | 0.43 | 0.27 | |
Yang 2020 | Day | 685 | 0.13 | 0.13 | 0.27 | 0.26 |
Night | 535 | 0.00 | 0.02 | 0.25 | 0.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Beggs, H.; Griffin, C.; Govekar, P.D. Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements. Remote Sens. 2023, 15, 2841. https://doi.org/10.3390/rs15112841
Zhang H, Beggs H, Griffin C, Govekar PD. Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements. Remote Sensing. 2023; 15(11):2841. https://doi.org/10.3390/rs15112841
Chicago/Turabian StyleZhang, Haifeng, Helen Beggs, Christopher Griffin, and Pallavi Devidas Govekar. 2023. "Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements" Remote Sensing 15, no. 11: 2841. https://doi.org/10.3390/rs15112841
APA StyleZhang, H., Beggs, H., Griffin, C., & Govekar, P. D. (2023). Validation of Himawari-8 Sea Surface Temperature Retrievals Using Infrared SST Autonomous Radiometer Measurements. Remote Sensing, 15(11), 2841. https://doi.org/10.3390/rs15112841